Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA-2004)

A Super Instruction-Flow Architecture for High Performance and
Low Power Processors

Kenji Kise, Takahiro Katagiri, Hiroki Honda, and Toshitsugu Yuba

Graduate School of Information Systems,
The University of Electro-Communications

Abstract

Microprocessor performance has improved at about 55%
per year for the past three decades. To maintain this
performance growth rate, next generation processors
with more than one billion transistors must achieve
higher levels of instruction level parallelism. However,
it is known that a conditional branch poses serious per-
formance problems in modern processors. In addition,
as an instruction pipeline becomes deep and the issue
width becomes wide, this problem becomes worse. The
goal of this study is to develop a novel processor ar-
chitecture which mitigates the performance degradation
caused by branch instructions. In order to solve this
problem, we propose a super instruction-flow ar-
chitecture. This architecture has a mechanism which
processes multiple instruction-flows efficiently and tries
to mitigate the performance degradation. Preliminary
evaluation results with small benchmark programs show
that the first generation super instruction-flow processor
efficiently mitigates branch overhead.

1 Introduction

In recent years, in order to improve processor perfor-
mance, various speculation techniques, such as data
value prediction and dynamic memory disambiguation,
have been proposed. Although these speculation tech-
niques are becoming indispensable for high performance
processors, a new paradigm or new architecture is re-
quired to attain the dramatic boost of available instruc-
tion level parallelism. In this context, new architectures
such as instruction level distributed processing [2], the
grid processor [4] and the TRIPS processor [7] are being
examined. Although these architectures offer a powerful
execution mechanism, a sophisticated instruction fetch
mechanism which supplies sufficient instructions is in-
evitable. A scalable instruction fetch mechanism still
remains an important research topic.

Most of the high performance processors in the mar-
ket predict control-flow using a sophisticated branch
predictor [8]. However, even if a processor uses one of
the latest branch predictors, such as YAGS [1], hybrid
branch predictors or two-level adaptive branch predic-
tors, the prediction accuracy is about 95% at most. A
branch predictor cannot avoid the misprediction of a
fixed rate. In order to reduce the overhead of a branch
instruction, in addition to the effort to reduce the num-
ber of mispredictions, the reduction of misprediction
penalties becomes important.

The goal of this study is to develop a novel processor
architecture which mitigates the performance degrada-

tion caused by branch instructions. In order to solve
this problem, we propose a super instruction-flow
architecture. This architecture is a type of decoupled
architecture [9]. It has a mechanism to process multiple
instruction-flows efficiently in order to mitigate perfor-
mance degradation. In addition to the architectural pro-
posal, we describe the design of its first generation pro-
cessor and report our preliminary evaluation results with
small benchmark programs. Our target applications are
single-threaded programs. Multi-threaded programs are
not in our current research scope.

2 Super Instruction-Flow

Super instruction-flow is proposed as the new archi-
tecture for attaining high instruction level parallelism
and low power consumption. It is a type of decou-
pled architecture [9]. It has a mechanism to process
multiple instruction-flows efficiently in order to mitigate
the performance degradation caused by branch instruc-
tions. A comparison of the instruction pipeline of a
super instruction-flow processor and a conventional su-
perscalar processor is shown in Figure 1.

Control-flow execution unit
Reg N E|E[E|

Read E ‘ E
E
’A Cascade ALU

IF D Rename>| Issue > Reg —* Execute» Mem
Steer Read

(a) Super instruction-flow architecture

IF ID Rename Issue > Reg —* Execute > Mem
Read

(b) Superscalar
Figure 1: Comparison of the instruction pipeline of a
super instruction-flow processor and superscalar proces-
sor.

— |

Branch instruction and branch-related instruction,
including the calculation of a branch condition, are
called control-flow instructions. Other instructions
are called data-flow instructions. In an early stage
of the instruction pipeline, a control-flow instruction
and a data-flow instruction are classified. Then, the

control-flow instruction is handled at high speed by
the dedicated hardware. The shaded portion of Fig-
ure 1 is the dedicated hardware, which is named the
control-flow execution unit. By classifying the control-
flow instruction and data-flow instruction, the opti-
mizations suitable for each flow can be applied. The
penalty of a branch misprediction is mitigated by han-
dling the control-flow instruction with priority. The su-
per instruction-flow architecture is unique to merge the
Cascade ALU architecture[5] on the control flow execu-
tion unit.

2.1 First Generation Processor

The block diagram of the first generation super
instruction-flow processor is shown in Figure 2. In the
instruction fetch stage, some instructions are fetched
from the instruction cache every cycle. The number of
instructions to be fetched per cycle and the instruction
fetch width are important processor parameters.

Instruction fetch address

Branch
target
buffer

«
Instruction
h
cache Taken?
Mux \¢——
7YY

! ; +
[Add]: E

1

Instruction fetch stage

— Target address
—]
P L 1
S22 9 g
g — g, 3 Control-flow 3
ap o 3- instructions =)
g S o o
g —T S <}
o) o .S .2
L 8
2 —"= & k<]
A — w g
— | E =
| RR 1 l 1 ﬁ l x RR : Misprediction
— L I 1 I T
1 EX J o T EX |
— [1 I] ' '
L I 1] ' '
MM 1 T___WB_ Update !
— ,_¢_‘ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
WB Data-flow Control-flow
pipeline pipeline

Figure 2: First generation super instruction-flow pro-
Cessor.

In order to classify a control-flow instruction and
a data-flow instruction, two instruction queues are in-
serted between the decode stage and the register read
stage. At the decode stage, the fetched instructions are
decoded and stored in the proper instruction queue. In
the control-flow execution unit, a control-flow instruc-
tion is picked out from the instruction queue and pro-
cessed. Conversely, a data-flow instruction is provided
to the data-flow pipeline.

When a branch misprediction occurs, unnecessary
instructions must be flushed. The in-order queue is sup-
plemented to realize the pipeline flush. In the fetched
order, an instruction tag or identifier is stored in an en-
try of the in-order queue. The tag is used to identify the

instructions fetched after the branch causing the mispre-
diction. The in-order queue is used also to guarantee the
order of instruction retirement.

The move instruction, which requires data transfer
between the two instruction pipelines, is divided at the
steering stage into two instructions called a send instruc-
tion and a receive instruction . The send instruction is
stored in the instruction queue of the data-flow instruc-
tions. The receive instruction is stored in the instruction
queue of the control-flow instructions. After the execu-
tion of a send instruction, data is transmitted from the
data-flow pipeline to the control-flow pipeline on the
dedicated datapath.

2.2 Preliminary Evaluation

This section reports the preliminary evaluation results
of the first generation super instruction-flow processor.
We used a software simulator to model processor with
the accuracy at the register-transfer level. In the pre-
liminary evaluation, we eliminate the effect of the Cas-
cade ALU and the data transfer between the data-flow
pipeline and the control-flow pipeline. It is the pur-
pose of this section to show the potential of a super
instruction-flow processor.

We evaluate the speedup of a first generation super
instruction-flow processor compared with the conven-
tional scalar processor. The speedup is summarized in
Figure 3. The left end bar is the base performance of
the scalar processor with the original code. This code
does not contain the overhead instruction for the su-
per instruction-flow architecture. The 2nd bar from the
left is the performance of the scalar processor with the
code modified for the super instruction-flow architec-
ture. The right four bars are the speedup with the
modified code. The right three bars are the speedup
of a super instruction-flow processor varying the fetch
width (FW) among 1, 2 and 4. The fetch width is the
maximum number of fetch instructions per cycle.

From the comparison of the two left bars, we see the
10% speed down by the overhead instructions of the su-
per instruction-flow. From the comparison of the 2nd
and 3rd bar from the left, we see that the performance
of the scalar processor and a super instruction-flow pro-
cessor with the narrow fetch width (FW=1) is almost
equivalent. On the contrary, the 4th bar from the left, a
super instruction-flow processor of FW=2, achieves the
26% speedup for selection sort and the 27% speedup for
matrix multiplication. Because a super instruction-flow
processor has only two scalar pipelines, the maximum
backend throughput is 2. Therefore, even if the fetch
width is increased from 2 to 4, there is almost no ad-
vantage.

In summary, a super instruction-flow processor of
FW=2 achieves the 26% speedup for selection sort and
the 27% speedup for matrix multiplication compared
with the conventional scalar processor. This is the
promising result of the super instruction-flow architec-
ture.

5 M selection sort 126 127 126 127

g 12 + M matrix multiplication

S
1.00 1.00

> 10

K] 091 0.91 0.90 0.90

S

17}

o 08

=

=]

>

o)

- 06 [+

[}

N

©

E 04 |

S

c

S

- 02

(5]

(9]

o

%)

0.0

Scalar Scalar SIF, FW=1 SIF, FW=2 SIF, FW=4
(orginal)

Figure 3: Speedup of a first generation super

instruction-flow processor (5-stage instruction pipeline).

3 Discussion and Related Work

The performance of a super instruction-flow processor
depends on the quality of the generated executables. In
the preliminary evaluation, we used the benchmark pro-
grams written in assembly code by hand. As a future
work, it is necessary to evaluate the proposed architec-
ture using the large-scale code which is generated by a
optimization compiler or a binary translator.

The decoupled access/execute architecture[9] is pro-
posed in 1982. The key concept of the architecture is
a high degree of decoupling between the operand access
and the execution. The concept of the super instruction-
flow architecture is the same but it is a decoupling
between the control-flow instructions and data-flow in-
structions.

In the literature [6], a decoupled front-end architec-
ture is proposed. This architecture allows the branch
predictor to run far in advance of the address currently
being fetched by the cache. The super instruction-flow
architecture focuses on the early resolution of branch
instructions not on the deep speculation.

4 Conclusions

Microprocessor performance has improved at about 55%
per year for the past three decades. To maintain this
performance growth rate, next generation processors
with more than one billion transistors must achieve
higher levels of parallelism. In this context, a new
paradigm or new architecture is required to attain the
dramatic boost of available instruction level parallelism.

The goal of this project is to develop a novel proces-
sor architecture which mitigates the performance degra-
dation caused by branch instructions. In order to solve
this problem, we proposed a super instruction-flow ar-
chitecture. It has a mechanism to processes multiple
instruction flows efficiently. In addition to the archi-

tectural proposal, we described the design of its first
generation processor.

We reported the preliminary evaluation results of the
first generation super instruction-flow processor. Evalu-
ation result show that the super instruction-flow proces-
sor with 5-stage pipeline achieves the 26% speedup for
selection sort and the 27% speedup for matrix multipli-
cation compared with the conventional scalar processor.

References

[1] A. N. Eden and T. Mudge. The yags branch pre-
diction scheme. In Proceedings of the 31st annual
ACM/IEEE international symposium on Microar-
chitecture, pages 69-77. IEEE Computer Society
Press, 1998.

[2] Ho-Seop Kim and James E. Smith. An instruction
set and microarchitecture for instruction level dis-
tributed processing. In Proceedings of the 29th an-
nual international symposium on Computer archi-
tecture, pages 71-81. IEEE Computer Society, 2002.

[3] J. Lee and A.J.Smiith. Branch prediction strategies
and branch-target buffer design. IEEE Computer,
17(1):6-22, 1984.

[4] Ramadass Nagarajan, Karthikeyan Sankaralingam,
Doug Burger, and Stephen W. Keckler. A design
space evaluation of grid processor architectures. In
Proceedings of the 34th annual ACM/IEEE interna-
tional symposium on Microarchitecture, pages 40-51.
IEEE Computer Society, 2001.

[5] Motokazu Ozawa, Masashi Imai, Yoichiro Ueno,
Hiroshi Nakamura, and Takashi Nanya. Perfor-
mance evaluation of cascade alu architecture for
asynchronous super-scalar processors. In Proceed-

ings of ASYNC-2001, pages 162-172, 2001.

[6] Glenn Reinman, Brad Calder, and Todd Austin.
Optimizations enabled by a decoupled front-end
architecture. IEEE Transactions on Computers,
50(4):338-355, 2001.

[7] Karthikeyan Sankaralingam, Ramadass Nagarajan,
Haiming Liu, Changkyu Kim, Jaehyuk Huh, Doug
Burger, Stephen W. Keckler, and Charles R. Moore.
Exploiting ilp, tlp, and dlp with the polymorphous
trips architecture. In Proceedings of the 30th annual
international symposium on Computer architecture,
pages 422-433. ACM Press, 2003.

[8] James E. Smith. A study of branch prediction strate-
gies. In Conference proceedings of the eighth annual
symposium on Computer Architecture, pages 135—
148, 1981.

[9] James E. Smith. Decoupled access/execute com-
puter architectures. In Proceedings of the 9th annual
symposium on Computer Architecture, pages 112—
119. IEEE Computer Society Press, 1982.

