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We have developed a processor simulator SimAlpha Version 1.0 for research and education ac-
tivities. Its design policy is to keep the source code readable (enjoyable and easy to read ) and
simple. SimAlpha is written in C++ and the source code consists of only 2,800 lines. This pa-
per describes the software architecture of SimAlpha by referring to its source code. To show an
example of SimAlpha in practical use, we present the ideal instruction-level parallelism of SPEC
CINT95 and CINT2000 benchmarks measured with a modified version of SimAlpha.
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1 Introduction

Various processor simulators[2, 7] are used as tools for
processor architecture research or processor education.
The environment in which a processor simulator can
perform is improving dramatically due to the increased
speed of PCs and the growing use of PC clusters. How-
ever, the time needed for simulator construction in-
creases as the architectural idea to be implemented in-
creases in complexity. In many cases the evaluation fin-
ishes within several weeks, although several months are
needed for the construction of the simulator, even if the
simulator is developed with existing tools. SimpleScalar
Tool Set[4] is a famous processor simulator used for pur-
poses such as processor research and education. But,
since SimpleScalar can be implemented in high-speed
simulations, it is not a code that can easily be modified.

SimAlpha Version 1.0 is an Alpha[6] processor simu-
lator. Its code is easy to understand and easy to modify.
SimAlpha has a function equivalent to the functional
simulator of SimpleScalar/Alpha or a sim-safe program.
Although it is not the clock-level simulator of pipeline
processing or out-of-order execution, the described code
should be considered an extension to these.

SimAlpha has a different policy from SimpleScalar.
The SimAlpha simulator is described from scratch. It
uses C++ and the code size is small at about 2,800
lines. In order to make it readable, neither global vari-
ables, goto statements nor conditional compilation is
used. The aim of SimAlpha is to show the implementa-
tion of a processor simulator with a different policy. A
processor simulator is an important tool, and it is ad-
vantageous to choose the most suitable tool, given many
choices. As a tool for processor research and education,
SimAlpha offers another choice.

processor simulator, SimAlpha, simple and readable

2 Preparation of SimAlpha

This section explains the structure of an original execu-
tion image file, the simulation speed, and the verification
policy of SimAlpha.

2.1 Execution image file

To run SimAlpha, application or benchmark programs
have to be prepared. SimAlpha reads an execution im-
age file in its original format. It does not read Alpha
binary files. By adapting the simple original format,
knowledge of executable formats such as ELF and COFF
is not necessary.

/* SimAlpha 1.0 Image File */
/**x Registers *xx*/

/@reg 16 0000000000000003
/@reg 17 000000011££97008
/@pc 32 0000000120007d80
/*** Memory K%k /
@11££f97008 11f£97188

Figure 1: Sample SimAlpha execution image file.

An example of an execution image file is shown in
Figure 1. This execution image file is in text format
and consists of two parts. It is created from an Alpha
binary file. In the first part, values are assigned to some
of the registers. In the example of Figure.1, the hexadec-
imal value 3 is assigned to the 16th register, the value
11ff97008 is assigned to the 17th register, and the value
of 120007d80 is assigned to a program counter. Regis-
ters without these specifications are initialized with the
value 0. Moreover, all of the floating point registers are
also initialized with the value 0. In the second part,
the value of some memory is assigned in the same man-



ner. In the example of Figure.l, the value 11ff97188
is assigned to the memory of address 11ff97008. The
content of all unspecified memory is initialized with the
value 0.

2.2 Benchmark programs and organiza-
tion of PC used for evaluations

A total of 20 benchmark programs, including 8 from
SPEC CINT95 and 12 from CINT2000[1], are used to
evaluate SimAlpha for this paper. The reduced input
set of MinneSPEC][3] from the University of Minnesota
is used on the 9 benchmarks of CINT2000. In the other
benchmarks, an input parameter is adjusted so that the
number of simulated instructions is reduced. The binary
of SPEC CINT95 is generated using a DEC C compiler
with the optimization option of O4. The binaries of
SPEC CINT2000 are downloaded from the SimpleScalar
web site.

Table 1: Organization of PC used for evaluations.

Machine GS-SR101 1U Rackmount Server
Processor | Intel Pentium ITI 1GHz x 2
DRAM 512MB (PC133/3/R-ECC x 1)
HDD Seagate ST380021A x 2

(ON] Red Hat Linux 7.2

Data such as simulation speed is measured using the
Pentium IIT 1GHz PC. The organization of the PC is
summarized in Table 1. The executed instructions of
each benchmark are summarized in the second column
of Table.2.

2.3 Simulation speed of SimAlpha

The compiler of eges-1.1.2 with the optimization option
of 02 is used to compile SimAlpha.

SimAlpha has a function equivalent to the functional
simulator of SimpleScalar/Alpha or a sim-safe program.
We ran the 20 benchmark programs on SimAlpha and
sim-safe, and calculated the average simulation speed.
The simulation speed for SimAlpha is 1.1 MIPS (Million
Instructions Per Second), compared to 3.1 MIPS for sim-
safe.

It is a drawback of SimAlpha that a simulation takes
about 3 times as long as a SimpleScalar simulation.
However, in many cases the development of a simula-
tor dominates project time. If the time of simulator de-
velopment can be shortened, the slow simulation speed
does not become a problem.

2.4 Verification of SimAlpha

During the development of SimAlpha, compatibility
with SimpleScalar was carefully confirmed.

Whenever the simulator executed one instruction, all
values of the architecture state (a program counter, 32
integer registers, 32 floating point registers) of SimAlpha
and the architecture state of SimpleScalar were com-
pared. We confirmed that the two architecture states
were identical during the 20 benchmark simulations.

In order to simplify the verification procedure, a way
to embed the object of SimAlpha into another simula-
tor is offered. Moreover, since SimAlpha does not use
any global variables, two or more simulation images can
easily be generated in one process. By using these func-
tions, any bug of the simulator under development is
discovered at an early stage. Also, by using these func-
tions one can confirm the justification of the simulator.

3 SimAlpha internals

In this section, in order to show the high readability of
the source code, the internal structure of SimAlpha is
explained showing actual C++ code (not pseudocode).

First, we start with an explanation of the main func-
tion. Then, we explain how the constructor of the object
chip generates seven objects. After seeing the definition
of some important classes, the definition and code of
the class instruction, which play an important role, are
explained.

3.1 Main function

The main function of SimAlpha is shown.

int main(int argc, char **argv){
if (arge==1) usage();
char #*p = argv[argc-1]; /* program name */
char #*opt = argv; /* options */
simple_chip #*chip = new simple_chip(p, opt);
while(chip->step());
delete chip;

return O;

After setting the program name and options, the chip
of a simple_chip type object is generated. The member
function step, which executes one instruction and re-
turns the value of 0 when all of the instructions to be
executed have been consumed (when the simulation has
been completed). The simulation is advanced by re-
peating the while loop until the function step returns



the value 0. When the loop finishes, the object chip
is released, and its destructor displays the simulation
result.

3.2 Class simple_chip

The definition and constructor of class simple_chip are
shown.

class simple_chip{

system_config *sc;

evaluation_result *e;

debug *deb;

system_manager *sys;

instruction *p;
public:

memory_system
architecture_state *as;

*mem;

simple_chip(char *, char *x);
“simple_chip();

int step();
};
simple_chip::simple_chip(char *prog, char **opt){
sc = new system_config(prog, opt);
e = new evaluation_result;
as = new architecture_state(sc, e);

mem = new memory_system(sc, e);

deb = new debug(as, mem, sc, e);

Sys = new system_manager(as, mem, sc, e);
P = new instruction(as, mem, sys, sc, e);

The constructor of a simple_chip generates seven ob-
jects. The destructor displays the simulation result, and
then it releases the seven objects.

The code of the member function step of class
simple_chip, which performs the stepwise execution, is
shown.

int simple_chip::step(){

p—>Fetch(&as->pc) ; /* pipeline stage 0 */
p—>Slot(); /* pipeline stage 1 */
p—>Rename () ; /* pipeline stage 2 */
p—>Issue(); /* pipeline stage 3 */
p—>RegisterRead () ; /* pipeline stage 4 */
p—>Execute(&as->pc); /* pipeline stage 5 */
p—>Memory () ; /* pipeline stage 6 */

p—>WriteBack();

/* split a conditional move,see README.txt */
execute_cmovb(p, as);

e->retired_inst++;
house_keeper(sys, sc, e, deb);

return sys->running;

}

One instruction is executed by calling seven func-
tions corresponding to seven pipeline stages and then
calling the eighth function of WriteBack in order. Al-
though only the capability of a function-level simula-
tor is offered in SimAlpha Version 1.0, in considera-
tion of the readability and extendibility of a code, the
operation of an instruction was divided and described
for eight stages, referring to the instruction pipeline of
Alpha21264]6].

A conditional move instruction (CMOV instruction)
is split into two new instructions for two input operands.
Function execute_cmovb processes the second split in-
struction of the CMOV instruction.

3.3 Definition of some important classes
3.3.1 Class data_t expressing data

The calculation results are stored in a register file or
memory. These results are defined as the collection of
class data_t objects. The definition and code of class
data_t are shown.

class data_t{
uint64_t value;
public:
int cmov;
uint64_t 1dQ);
int st (uint64_t);
int init(uint64_t);
};

int data_t::init(uint64_t d){
value = d; cmov = 0; return O;
}
uint64_t data_t::1d(){ return value; }
int data_t::st(uint64_t d){
value = d; return O;

}

Function st is used to store a data value into a data_t
type object. Function 1d is used to read a data value.
Function init is used to generate a new object.

3.3.2 Architecture state

The definition and constructor of the class
architecture_state, which consists of a program counter,
an integer register, and floating point registers, are
shown.



class architecture_state{
public:
data_t pc; /* program counter */
data_t r[32]; /* general purpose regs */
data_t £[32]; /* floating point regs */
architecture_state(system_config *,
evaluation_result *);

};

3.3.3 Class evaluation_result

The data under evaluation is saved in an evalua-
tion_result type object. Although the value of the eval-
uation_result type object is updated during the simu-
lation, these values do not affect the behavior of the
simulation. The definition of class evaluation_result is
shown.

class evaluation_result{

public:
uint64_t retired_inst;
int used_memory_block;
time_t time_begin;
struct timeval tp;
struct timezone tzp;
evaluation_result();

/* start time stamp */
/* start time stamp */
/* start time stamp */

Each variable stores the executed number of instruc-
tions, the number of pages used in the main memory,
and the time when the simulation started.

3.3.4 Class system_config

Information on system configuration is stored in a sys-
tem_config type object. These values are defined be-
fore the start of the simulation and, in principle, do not
change during the simulation.

3.4 Class instruction

This section explains the definition and code of the class
instruction. Since the function Rename has no code,
its explanation is omitted. The definition of the class
instruction is shown.

class instruction{
evaluation_result *e;
architecture_state *as;
system_manager *sSys;
memory_system *mem;
INST_TYPE ir; /* 32bit instruction code */
int Op; /* Opcode field */

int RA; /* Ra field of the inst */

int RB; /* Rb field of the inst */
int RC; /* Rc field of the inst */
int ST; /* store inst ? */
int LD; /* load inst ? */
int LA; /* load address inst ? */
int BR; /* branch inst ? */
int Ai; /* Rav is immediate 7 */
int Bi; /* Rbv is immediate ? */
int Af; /* Rav from floating-reg 7 */
int Bf; /* Rbv from floating-reg 7 */
int WF; /* Write to the f-reg 7 *x/
int WB; /* Writeback reg index */
data_t Npc; /* Update PC or PC + 4 */
data_t Imm; /* immediate */
data_t Adr; /* load & store address */
data_t Rav; /* Ra */
data_t Rbv; /* Rb */
data_t Rcv; /* Rc */
public:

int Fetch(data_t *);

int Fetch(data_t #*, INST_TYPE);

int Slot();

int Rename();

int Issue();

int RegisterRead();

int Execute(data_t *);

int Memory();

int WriteBack();

INST_TYPE get_ir();

int data_ld(data_t *, data_t *);

int data_st(data_t *, data_t *);

instruction(architecture_state *,
memory_system *,
system_manager *,
system_config *,
evaluation_result *);

The values of the private variables are calculated as
the function corresponding to the pipeline stages are
called, and the processing of the instruction progresses.
Fourteen variables defined as the int type hold the de-
coded value from the instruction code ir. A data_t type
variable holds the value loaded from the memory or reg-
isters files, or holds the value to be stored in the memory
or register files.

3.4.1 Instruction fetch stage

The code of an instruction fetch is shown.

int instruction::Fetch(data_t #*pc){
mem->1d_inst(pc, &ir);
Npc.init (pc->1d() + 4);
return O;

}



int instruction::Fetch(data_t *pc, INST_TYPE ir_t){
ir = ir_t;
Npc.init(pc->1d());
return O;

}

Two Fetch functions exist. The code shown above is
the function Fetch for the usual instruction (instruction
other than CMOV). This function loads 4 bytes of in-
struction from the address which the program counter
specifies, and stores it in the variable ir. Then, the ad-
dress of the next instruction is stored in Npc.

The code shown below is used to fetch the sec-
ond split instruction in a conditional move instruction.
Therefore, the function Fetch will be called with the in-
struction code as one of the arguments.

3.4.2 Slot stage

The code of a slot stage is shown.

int instruction::Slot(){

Op = (ir>>26) & O0x3F;
RA = (ir>>21) & Ox1F;
RB = (ir>>16) & Ox1F;
RC = (ir ) & Oxi1F;

WF = ((0Op&MSK2)==0x14 || (Op&MSK2)==0x20) ;

LA = (0p==0x08 || 0p==0x09);

LD = (Op==0x0a || Op==0x0b || Op==0x0c ||
(Op&MSK2)==0x20 || (Op&MSK2)==0x28) ;

ST = (0p==0x0d || Op==0x0e || Op==0x0f ||
(Op&MsK2)==0x24 || (Op&MSK2)==0x2c) ;

BR = ((Op&MSK4)==0x30);

WB = (LD || (Op&MSK2)==0x08 || Op==0Oxla ||
0p==0x30 || Op==0x34) 7 RA :
((Op&MSK3)==0x10 || Op==0x1c) ? RC : 31;

Af = (0Op==0x15 || 0p==0x16 || Op==0x17 ||
Op==0x1c ||
(0Op&MSK2)==0x24 ||

Bf = ((Op&MSK2)==0x14);

Ai = (0p==0x08 || 0p==0x09 || LD);

Bi = (BR || (Op&MSK2)==0x10 && (ir & BIT12));

/** For the CMOV Split Code (CMOV1) #x/

if (cmov_ir_create(ir)){ RB = RC; Bi = 0; }

return O;

(0p&MSK3) ==0x30) ;

The values of some variables are decoded using the
instruction code fetched in the previous stage. Instead of
assignment of the decoded values to variables, the code
can be described using a macro. Although an improve-
ment in simulation time is expected by using a macro,
the method of variable assignment was chosen for code
readability. The description of Verilog-HDL is similar
to the above description. Therefore, part of the C++
code can be reused for Verilog-HDL.

3.4.3 Issue stage

The code of an issue stage is shown. Here, an immediate
Imm is created according to the type of instruction.

int instruction::Issue(){
DATA_TYPE Lit, D16, D21, tmp, d2le, dil6e;
d2le = ((ir & MASK21) | EXTND21) << 2;

di6e = (ir & MASK16) | EXTND16;

Lit = (ir>>13) & OxFF;

D21 = (ir & BIT20) 7 d2le : (ir&MASK21)<<2;
D16 = (ir & BIT15) 7 dil6e : (ir&MASK16);

if (Op==0x09) D16 = (D16 << 16);

tmp = (LA||LD|[ST) ? D16 :
Imm.init (tmp) ;
return O;

(BR) ? D21 : Lit;

3.4.4 Register read stage

The code of a register read stage is shown. The values of
Rav and Rbv are each selected from an immediate value,
a floating point register file, and an integer register file.

int instruction::RegisterRead(){
Rav = Ai ? Imm : Af ? as->f[RA]
Rbv = Bi ? Imm : Bf 7 as->f[RB]
return O;

}

: as->r[RA];
: as->r[RB];

3.4.5 Execution stage

The code of an execution stage is shown. Three data val-
ues are updated in the execution stage. The arithmetic
and logic instruction calculates the value of Rcv by con-
sidering Rav and Rbv as input. A load/store instruction
calculates the memory reference address Adr. A branch
instruction calculates the branch target address Tpc.

int instruction::Execute(data_t #*Tpc){
/**x Update Rcv *x*/
if (BR || Op==0P_JSR){ Rcv=Npc; }
else if (!LD){
ALU(ir, &Rav, &Rbv, &Rcv);
}
/**x Update Adr **x/
Adr.init(0);
if (LD || STH{
ALU(ir, &Imm, &Rbv, &Adr);

}
/***x Update Tpc ***/
*Tpc = Npc;



if (0Op==0P_JSR){
*Tpc = Rbv;
Tpc—>st(Tpc->1d() & ~3ull);
}
if (BR){ BRU(ir, &Rav, &Rbv, &Npc, Tpc); }
return O;

3.4.6 Memory access stage

The code of a memory access stage is shown. In the
store instruction, the value of Rav is stored in memory.
In the load instruction, the loaded value is saved at Rcv.

int instruction::Memory(){
if (ST) data_st(&Adr, &Rav);
if (LD) data_1d(&Adr, &Rcv);
return O;

}

3.4.7 Writeback stage

The code of a writeback stage is shown. In the instruc-
tion which generates a result, Rcv is stored in a reg-
ister file, and the instruction completes execution. An
execute_pal function is called when the instruction cur-
rently executed is PAL(Privileged Architecture Library)
code.

int instruction::WriteBack(){
if (0p==0P_PAL){
sys->execute_pal (this) ;

}
if (!WF && WB!'=31) as->r[WB] = Rcv;
if( WF && WB!'=31) as->f[WB] = Rcv;

return O;

3.5 Memory system

The memory system of SimAlpha Version 1.0 does not
contain cache. It is implemented as a simple organiza-
tion of the main memory only. The address of the Alpha
AXP architecture is 64 bits in width. But, in SimAlpha
Version 1.0, 32 bits of the higher ranks of an address are
disregarded, and only 32 bits of the low rank are used.
In the code generated by the compiler, since the value
of the higher 32 bits is fixed to 0x00000001, it does not
become a problem by such implementation.
The definition of class memory _system is shown.

class memory_system{
evaluation_result *e;
class main_memory *mm;
void 1d_8byte(data_t *, data_t *);
void st_8byte(data_t *, data_t *, DATA_TYPE);
public:
void 1ld_inst(data_t *, INST_TYPE *);
void 1d_nbyte(int, data_t *, data_t *);
void st_nbyte(int, data_t *, data_t *);
“memory_system() ;
memory_system(system_config *,
evaluation_result *);

3.5.1 Implementation of main memory

The main memory is implemented as an array of the
data_t type object. 32-bit memory space is expressed as
a collection of 8-KB pages.
The definition of main memory is shown.

Array block_table, which stores the page pointer, holds
the number of entries that divide the 32-bit address by
the page size of 8 KB. In the constructor of the main
memory, all the entries of array block_table are initial-
ized by NULL. The main memory is referred to using
function 1d_8byte to load 8 bytes, and function st_8byte,
which implements the store with a mask.

class main_memoryq{
evaluation_result *e;
data_t *block_table[BLOCK_TABLE_SIZE];
data_t *allocblock(data_t *);
public:
void 1d_8byte(data_t *, data_t *);
void st_8byte(data_t *, data_t *, DATA_TYPE);
main_memory(evaluation_result *);

};

The code of the main memory is shown. In func-
tion 1d_8byte, the address to load and the pointer which
stores the loaded data are specified as arguments.

Function allocblock is called when the page contain-
ing the specified address is the first reference. Data is
loaded after function allocblock assigns the page.

In function 1d_8byte, memory address, the pointer of
data to be stored and the mask are specified as argu-
ments.

main_memory: :main_memory(evaluation_result *ev){
e = ev;
for(int i=0; i<BLOCK_TABLE_SIZE; i++)
block_table[i]=NULL;



}

data_t *main_memory::allocblock(data_t *a){
data_t *ret=
(data_t *)calloc(BLOCK_SIZE/DATA_T_SIZE,
sizeof (class data_t));
block_table[MM_TABLE_INDEX(a->1d())]=ret;
if (ret==NULL){
printf ("** Error in allocblock.\n");
exit(0);
}
e—>used_memory_block++;
return ret;

}

void main_memory::1d_8byte(data_t *a, data_t *d){
ADDR_TYPE adr = a->1d() & "7;
data_t *ptr = block_table[MM_TABLE_INDEX(adr)];
unsigned int offset =
(adr & BLOCK_MASK) /DATA_T_SIZE;
if (ptr==NULL) ptr=allocblock(a);
*d = *(ptr + offset); /x* COPY *x/
}

void main_memory::st_8byte(data_t *a, data_t *d,
DATA_TYPE msk) {
ADDR_TYPE adr = a->1d() & ~7;
data_t *ptr = block_table[MM_TABLE_INDEX(adr)];
unsigned int offset =
(adr & BLOCK_MASK) /DATA_T_SIZE;
if (ptr==NULL) ptr=allocblock(a);
(ptr + offset)->st(((ptr + offset)->1d() & msk)
| d->1d0);

3.5.2 Implementation of memory system

The main memory shown previously allows only an 8-
byte reference. Reference to the memory, including 1-
byte, 2-byte and 4-byte units, is implemented as a func-

tion of the memory system.

The code of 1d_nbyte is shown. The number of bytes

to be loaded is specified in the first argument.

void memory_system::1ld_nbyte(int n,
data_t *a, data_t *d){
if (a->1d () %n!=0)
printf ("**x 1d_nbyte n=Yd miss-alignment.\n",
n);

1d_8byte(a, d);

int offset = a->1d() & 7;
switch(n){
case 1: {
DATA_TYPE data= (d->1d() >> (offset * 8))
& Oxffllu;

}

d->st(data) ;
break;

}

case 2: {
DATA_TYPE data= (d->1d() >> (offset * 8))

& Oxffffllu;
d->st(data);
break;

}

case 4: {
DATA_TYPE data= (d->1d() >> (offset * 8))

& Oxffffffffllu;
d->st(data);
break;

}

case 8: {
break;

}

default:
printf("Case J%d, Error in load_nbyte\n", n);
exit(1);

}

The code of st_nbyte is shown. The number of bytes

to be stored is specified in the first argument.

void memory_system::st_nbyte(int n, data_t *a,

data_t *d){
if (a->1d () %n!=0)
printf ("*** st_nbyte n=Yd miss-alignment.\n",
n);

int offset = a->1d() & 7;
DATA_TYPE mask = O;

switch(n){
case 1: {
mask = “(0xffllu << offset*8);
DATA_TYPE data = (d->1d() & Oxffllu)
<< offset*8;
d->st(data) ;
break;
}
case 2: {
mask = ~(Oxffffllu << offset*8);
DATA_TYPE data = (d->1d() & Oxffffllu)
<< offset*8;
d->st(data);
break;
}
case 4: {
mask = “(Oxffffffffllu << offset*8);
DATA_TYPE data = (d->1d() & Oxffffffffllu)
<< offset*8;
d->st(data);
break;
}

case 8: {



mask = 0;
break;
}
default:
printf("Case %d, Error in store_nbyte\n",
n);
exit(1);
}

st_8byte(a, d, mask);
}

4 Practical use of SimAlpha

This section gives an example of the SimAlpha practical
use. SimAlpha is modified to measure ideal instruction-
level parallelism. The parallelisin is acquired only after
considering data dependency as a restriction. The value
to be measured has the same meaning as the Oracle
instruction per cycle in [5].

4.1 Extension of class data_t

The data treated by SimAlpha is defined as a data_t type
object, not as a standard unsigned long long type value.
In order to measure ideal instruction-level parallelism,
class data_t is modified so that the value (this will be
called the rank) equivalent to the height of the data flow
graph is calculated and stored.

Physical memory is defined as an array of the ob-
ject of class data_t. Since a load-and-store instruction
refers to memory with a granularity of 1-8 bytes, there
are some choices in the granularity that expresses the
rank of the data in memory. Here, data with the 8-byte
aligned unit is defined as one object.

The definition of class data_t, modified to mea-
sure ideal instruction-level parallelism, are shown. The
uint32_t type variable rank was added to class data_t.
The rank is stored in this variable. In the constructor,
the variable rank is initialized by the value 0.

class data_t{
uint64_t value;

public:
int cmov;
uint32_t rank;
uint64_t 1d();
int st (uint64_t);
int init(uint64_t);

/* This line is inserted. */

4.2 Calculation method of rank and
ideal instruction level parallelism

The calculation method of a rank is shown in Figure 2.
When an arithmetic and logic instruction is executed,
the rank of output data Rcv is obtained by adding the
operation latency to the maximum of the rank of the two
input operands, Rav and Rbv. In the load instruction,
rank is calculated by adding the memory reference la-
tency and the address computation latency to the rank
of Rbv. In the store instruction, the maximum of the
Rav data written in memory and the rank obtained by
address computation is considered to be the rank of the
data.

Rav  Rbv Imm  Rbv Rav Imm Rbv
Adr \ Adr

(a) Arithmetic, Logic (b) Load (c) Store

(@ rank(Rev) = max(rank(Rav), rank(Rbv)) + latency(OP)
(b) rank(Rcv) = rank(Rbv) + latency(add) + latency(mem)
() rank = max(rank(Rav), rank(Rbv) + latency(add))

Figure 2: The calculation method of the rank for each
instruction type.

During a simulation, the maximum rank of all the
data is updated apart from the rank for each of the data.
The maximum of the ranks at the time when a simula-
tion is completed expresses the height of the data flow
graph, whose nodes are all the executed instructions.
Therefore, ideal parallelism can be calculated from the
number of executed instructions and the height of the
data flow graph (the maximum of the ranks). The re-
striction that the data cannot be moved across a system
call is added.

In the following evaluations, operation latency and
memory reference latency are assumed to be one clock
cycle when calculating a rank.

4.3 Extension of SimAlpha

SimAlpha was modified in order to measure ideal par-
allelism. Many portions of the modification consist of
the calculation of a rank at the time the data is being
generated. Only 26 lines of code is modified.

Except for the function st_8byte and the code which
displays the result, the modified code is explained. The



comment /* Added */ in the code indicates that the line
has been appended.

The code of the modified execute stage is shown. Af-
ter the calculation in ALU, the addition of the operation
latency 1 to the maximum of the rank of the Rav and
Rbv is assigned as a rank of the Rev.

int instruction::Execute(data_t *Tpc){
/*x* Update Rcv *x*/
if (BR || 0p==0P_JSR){
Rcv=Npc;
}
else if(!LD){
ALU(ir, &Rav, &Rbv, &Rcv);
Rcv.rank = (Rav.rank>Rbv.rank) ? /* Added */
Rav.rank : Rbv.rank; /* Added */
Rcv.rank += 1; /* ALU latency */ /* Added */
}

/*** Update Adr **x/
Adr.init(0);
if (LD 11 sTH{
ALU(ir, &Imm, &Rbv, &Adr);
Adr.rank = (Imm.rank>Rbv.rank) ? /* Added */
Imm.rank : Rbv.rank; /* Added */
Adr.rank += 1; /* ALU latency */ /* Added */
}

/*** Update Tpc **x/
*Tpc = Npc;
if (Op==0P_JSR) {
*Tpc = Rbv;
Tpc->st(Tpc->1d() & ~3ull);
}
if (BR){
BRU(ir, &Rav, &Rbv, &Npc, Tpc);
}

return O;

The code of the modified memory stage is shown.
In the store instruction, the rank of the data is calcu-
lated before storing Rav. In the load instruction, the
code which calculates the rank of the loaded Rev data
is appended.

int instruction::Memory(){
if (ST{
Rav.rank = (Adr.rank > Rav.rank) 7 /* Added */
Adr.rank : Rav.rank; /* Added */
if (Rav.rank <e->systemcall_rank) /* Added */
Rav.rank = e->systemcall_rank; /* Added */
data_st (&Adr, &Rav);
}
if (LD){
data_1d (&Adr, &Rcv);
Rcv.rank = (Adr.rank>Rcv.rank) ? /* Added */

Adr.rank : Rcv.rank; /* Added */
Rcv.rank += 1; /* Load latency */ /% Added */
}
return O;

}

The code of the modified writeback stage is shown.
If data is copied to a register file, the maximum of the
ranks is calculated. Moreover, since instruction schedul-
ing over a system call is forbidden, the rank of the data
cannot become smaller than the maximum rank at the
time of the last system call.

int instruction::WriteBack(){
if (Op==0P_PAL){
sys—>execute_pal(this);
e->systemcall_rank = e—>max_rank; /* Added */

}

if (WB!=31){ /* Added */
if (e->max_rank < Rcv.rank) /* Added */
e->max_rank = Rcv.rank; /* Added */
if (Rev.rank < e->systemcall_rank) /* Added */
Rcv.rank = e->systemcall_rank; /* Added */
}
if (!WF && WB!=31) as->r[WB] = Rcv;
if( WF && WB!=31) as->f[WB] = Rcv;

return O;

4.4 Evaluation result of ideal instruction
level parallelism

The measurement result of ideal instruction-level paral-
lelism (ILP) is shown in Table 2. We also summarize
the executed code and the simulation speed (MIPS) in
Table 2.

The amount of accessed memory during the simula-
tion increases by appending the variable rank, as shown
in the modified class data_t. Moreover, in spite of the
increased processing for calculating a rank, a serious in-
crease was not seen at simulation time. The simulation
speed after modification was about 1.1 MIPS.

The measurement results of ideal instruction-level
parallelism showed low parallelism in 124.m88ksim and
253.perlbmk. In the other benchmark, parallelism ex-
ceeding 15 was shown and we confirmed the high par-
allelism of 108 in 186.crafty. The data shown here is
important in order to know the potential parallelism of
a program. In addition, it can also be used for prelim-
inary evaluations of the compilers or of compiler opti-
mizations.



Table 2: The number of executed instructions, simula-
tion speed, ideal instruction level parallelism measured
using the modified SimAlpha.

Program instruction count MIPS ILP
099.go 138 million 1.12  64.2
124 m88ksim 127 million 1.12 10.5
126.gcc 150 million 1.12  41.8
129.compress 142 million 1.14  56.6
130.1i 208 million 1.11  20.0
132.ijpeg 172 million 1.21 107.0
134.perl 153 million 1.10 433
147.vortex 184 million 1.07  32.0
164.gzip 596 million 1.19  16.9
175.vpr 17 million 1.00 25.1
176.gcc 551 million 1.10 471
181.mcf 188 million 1.12  53.1
186.crafty 4,264 million 1.10 108.0
197.parser 611 million 1.10  30.9
252.eon 94 million 0.93  49.7
253.perlbmk 200 million 1.05 8.4
254.gap 1,169 million 1.12 321
255.vortex 147 million 1.06  29.3
256.bzip2 1,819 million 1.12 436
300.twolf 91 million 1.00 219

In the example, class data-t is modified to store a
rank. By extending SimAlpha using the same technique,
the memory and branch behavior can be obtained.

5 Summary

The processor simulator SimAlpha Version 1.0 was de-
veloped for processor architecture research and proces-
sor education. In this paper, in order to show the
high readability of the code, the software architecture
of SimAlpha was explained using the actual C++ code.

As an example of the practical use of SimAlpha,
the evaluation method of ideal instruction-level paral-
lelism was explained. The function for measuring ideal
instruction-level parallelism was implemented with a
small code modification of only 26 lines. The ideal IPC
of SPEC CINT95 and CINT2000 was measured using
the modified version of SimAlpha, and the result was
reported.

Historically, the development of SimAlpha for the C
version began in March, 1999. Development of SimAl-
pha for the C++ version began in June, 1999. Now we
are implementing SimAlpha of the Verilog-HDL version,
which works on an FPGA board. This version will be
helpful when simulation speed is important.

SimAlpha Version 1.0 is a function level simulator.
We have the plan to construct cycle-accurate perfor-
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mance simulators modeling various out-of-order super-
scalar processors. It is another challenge to implement
the complex processor models with readable and simple
source code.

The source code of SimAlpha Version 1.0 and the
source code of the modified version of SimAlpha to eval-
uate ideal instruction-level parallelism are downloadable
from the following URL.

http://www.yuba.is.uec.ac.jp/ kis/SimAlpha/
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