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From multi-core era to many-core era

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005
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Distributed Memory Multi-Processor Architecture

• Multi-processor or multicore computers can be classified into distributed 
memory or shared memory architectures.

• A PC cluster or parallel computers for higher performance.Each memory module 
is associated with a processor

• Using explicit send and receive functions (message passing) to obtain the data 
required.

• Who will send and receive data? How?
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Cell Broadband Engine (2005)

• Cell Broadband Engine
• 1 core (PPE, Power Processor Element based on a 

general purpose PowerPC core)

• 8 core (SPE, Synergistic Processing Element) 

• each SPE has 256KB local memory

• PS3, IBM Roadrunner with 12,960 CBE chips

Diagram created by IBM to promote the CBEP, ©2005 from WIKIPEDIA

Thie photo from PlaySation.com (Japan)

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed
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Shared Memory Multi-Processor Architecture

• All the processors can access the same address space of the main memory 
(shared memory) through an interconnection network.

• The shared memory or shared address space (SAS) is used as a means for 
communication between the processors.

• What are the means to obtain the shared data?

• What are the advantages and disadvantages of shared memory?
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System

Chip

Shared memory many-core architecture

• A single-chip integrates many cores (conventional processors) and an 
interconnection network.

• The shared memory and shared address space (SAS) are used as a 
means for communication between these cores.

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core
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Caches Caches Caches

Proc3
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Intel Skylake-X, Core i9-7980XE, 2017
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2022.11 AMD EPYC 9654 processor with 96 cores

• Today's high-performance chip integrates around 100 cores.
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The free lunch is over

• Programmers have to worry much about performance and concurrency

• Parallel programming & multi-processor (multi-core) architectures

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005
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Multiprogramming

• Several independent programs (processes) run at the same time on a 
multi-core processor (multi-processor system).

Instruction window
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Instruction window

program A (process A)

program B (process B)

Instruction window Instructions to be executed for an application (a)
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Parallel programming

• Several dependent threads run at the same time on a multi-core 
processor (multi-processor system).

• This is the case that is often required.

Instruction window
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thread A

thread B
data dependency

Instruction window Instructions to be executed for an application (a)
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Sample of a wrong parallel program using pthread

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){a = a + 1;}

};

int func2(){

int i;

for(i=0; i<N; i++){a = a + 1;}

};

int main(){

pthread_t t1, t2;

pthread_create(&t1,NULL,(void *)func1,NULL);

pthread_create(&t2,NULL,(void *)func2,NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d\n", a);

return 0;

}

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){a = a + 1;}

};

int main(){

pthread_t t1, t2;

pthread_create(&t1,NULL,(void *)func1,NULL);

pthread_create(&t2,NULL,(void *)func1,NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d\n", a);

return 0;

}

% gcc main1.c –O0 –lpthread –lm –o a.out1 
% ./a.out1
main: 20000000

main1.c
sequential program

main2.c
parallel program with func1 and func2

main3.c
parallel program with func1

Single Program Multiple Data (SPMD)

#include <stdio.h>

#include <pthread.h>

#define N 10000000

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){a = a + 1;}

};

int func2(){

int i;

for(i=0; i<N; i++){a = a + 1;}

};

int main(){

func1();

func2();

printf("main: %d\n", a);

return 0;

}
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Sample of some parallel programs using pthread

% gcc main1.c –O0 –lpthread –lm –o a.out1 
% ./a.out1
main: 20000000

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

int func1(){

int i;

for(i=0; i<N; i++){ 

pthread_mutex_lock(&m);

a = a + 1; 

pthread_mutex_unlock(&m);

}

};

int main(){

pthread_t t1, t2;

pthread_create(&t1,NULL,(void *)func1,NULL);

pthread_create(&t2,NULL,(void *)func1,NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d\n", a);

return 0;

}

main4.c
parallel program with func1, lock, and unlock

main1.c
sequential program

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){a = a + 1;}

};

int main(){

pthread_t t1, t2;

pthread_create(&t1,NULL,(void *)func1,NULL);

pthread_create(&t2,NULL,(void *)func1,NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d\n", a);

return 0;

}

main3.c
parallel program with func1

#include <stdio.h>

#include <pthread.h>

#define N 10000000

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){a = a + 1;}

};

int func2(){

int i;

for(i=0; i<N; i++){a = a + 1;}

};

int main(){

func1();

func2();

printf("main: %d\n", a);

return 0;

}
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Sample of some parallel programs using pthread

main4.c
parallel program with func1, lock, and unlock

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

int func1(){

int i;

int my_a = 0;

for(i=0; i<N; i++){ 

my_a = my_a + 1; 

}

pthread_mutex_lock(&m);

a = a + my_a; 

pthread_mutex_unlock(&m);

};

int main(){

pthread_t t1, t2;

pthread_create(&t1,NULL,(void *)func1,NULL);

pthread_create(&t2,NULL,(void *)func1,NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d\n", a);

return 0;

}

main5.c
parallel program with func1, local sum, lock, and unlock

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

int func1(){

int i;

for(i=0; i<N; i++){ 

pthread_mutex_lock(&m);

a = a + 1; 

pthread_mutex_unlock(&m);

}

};

int main(){

pthread_t t1, t2;

pthread_create(&t1,NULL,(void *)func1,NULL);

pthread_create(&t2,NULL,(void *)func1,NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d\n", a);

return 0;

}
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Four steps in creating a parallel program

1. Decomposition of computation in tasks

2. Assignment of tasks to processes

3. Orchestration of data access, comm, synch.

4. Mapping processes to processors (cores)

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
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o
s
i
t
i
o
n

M
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n
g

O
r
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t
r
a
t
i
o
n

Adapted from Parallel Computer Architecture, David E. Culler

0.   Preparing an optimized sequential program (baseline)
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Simulating ocean currents

• Model as two-dimensional grids
• Discretize in space and time

• finer spatial and temporal resolution enables greater accuracy

• Many different computations per time step
• Concurrency across and within grid computations

• We use one-dimensional grids for simplicity

(a) Cross sections (b) Spatial discretization of a cross section
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Sequential version as the baseline

• A sequential program main6.c and the execution result

• Computations in blue color are fully parallel

#define N 8      /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

void solve () {

int i, done = 0;

while (!done) {

float diff = 0.0;

for (i=1; i<=N; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

for (i=1; i<=N; i++) A[i] = B[i];

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("| diff=%6.2f\n", diff); /* for debug */

}

}

int main() {

int i;

for (i=1; i<N-1; i++) A[i] = 100+i*i; // initialize

for (i=0; i<=N+1; i++) printf("%6.2f ", A[i]);

printf("\n");

solve();

}

0.00 101.00 104.00 109.00 116.00 125.00 136.00   0.00   0.00   0.00

0.00  68.26 104.56 109.56 116.55 125.54  86.91  45.29   0.00   0.00 | diff=129.32

0.00  57.55  94.03 110.11 117.10 109.56  85.83  44.02  15.08 0.00 | diff= 55.76

0.00  50.48  87.15 106.97 112.14 104.06  79.72  48.26  19.68   0.00 | diff= 42.50

0.00  45.83  81.45 101.99 107.62  98.54  77.27  49.17  22.63   0.00 | diff= 31.68

0.00  42.38  76.35  96.92 102.61  94.38  74.92  49.64  23.91   0.00 | diff= 26.88

0.00  39.54  71.81  91.87  97.87  90.55  72.91  49.44  24.49   0.00 | diff= 23.80

0.00  37.08  67.67  87.10  93.34  87.02  70.89  48.90  24.62   0.00 | diff= 22.12

0.00  34.88  63.89  82.62  89.06  83.67  68.87  48.09  24.48   0.00 | diff= 21.06

0.00  32.89  60.40  78.44  85.03  80.45  66.81  47.10  24.17   0.00 | diff= 20.26

0.00  31.07  57.19  74.55  81.23  77.35  64.72  45.98  23.73   0.00 | diff= 19.47

0.00  29.39  54.21  70.92  77.63  74.36  62.62  44.77  23.21   0.00 | diff= 18.70

0.00  27.84  51.46  67.52  74.23  71.47  60.52  43.49  22.64   0.00 | diff= 17.95

0.00  26.41  48.89  64.34  71.00  68.67  58.43  42.17  22.02   0.00 | diff= 17.23

0.00  25.07  46.50  61.35  67.94  65.97  56.37  40.84  21.38   0.00 | diff= 16.53

0.00  23.83  44.26  58.54  65.02  63.36  54.34  39.49  20.72   0.00 | diff= 15.85

0.00  22.68  42.17  55.88  62.24  60.85  52.34  38.14  20.05   0.00 | diff= 15.20

0.00  21.59  40.20  53.38  59.60  58.42  50.39  36.81  19.38   0.00 | diff= 14.58

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

+, +, x 

A[0] A[9]

i=4

+, +, x 

i=8

A

B
main6.c  sequential program
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Core 1

Decomposition and assignment

• Single Program Multiple Data (SPMD)

• Decomposition: there are eight tasks to compute B[ ]

• Assignment:  the first four tasks for core 0, and the last four tasks for core 1

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0;       /* variable  in shared memory */

void solve_pp (int pid) {

int i, done = 0;                    /* private variables */

int mymin = (pid==0) ? 1 : 5;       /* private variable  */

int mymax = (pid==0) ? 4 : 8;       /* private variable  */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

diff = diff + mydiff;

if (diff<TOL) done = 1;

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

}

}

int main() { /* solve this using two cores */

initialize shared data A and B;   

create thread1 and call solve_pp(0);

create thread2 and call solve_pp(1);

}

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Decomposition

Assignment

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Core 0

Computation for B[ ]

pid = 0 pid = 1

mymin = 1
mymax = 4

mymin = 5
mymax = 8
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Orchestration 

• LOCK and UNLOCK around critical section

• Lock provides exclusive access to the locked data.

• Set of operations we want to execute atomically

• BARRIER ensures all reach here
float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0;       /* variable  in shared memory */

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_barrier_t barrier;

void solve_pp (int pid) {

int i, done = 0;                    /* private variables */

int mymin = (pid==0) ? 1 : 5;       /* private variable  */

int mymax = (pid==0) ? 4 : 8;       /* private variable  */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

pthread_mutex_lock(&m);

diff = diff + mydiff;

pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier);  // Barrier 1

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier);  // Barrier 2

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

pthread_barrier_wait(&barrier);  // Barrier 3

}

}

(1) load diff
(2) add
(3) store diff

These operations must be executed 
atomically

After all cores update the diff,  
if statement  must be executed. 

if (diff <TOL) done = 1;
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Parallel program after orchestration 

void solve_pp (void *p) {

int pid = *(int *)p;

int i, done = 0;                    /* private variables */

int mymin = 1 + (pid * N/ncores);   /* private variable  */

int mymax = mymin + N/ncores - 1;   /* private variable  */

while (!done) {

float mydiff = 0.0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

pthread_mutex_lock(&m);

diff = diff + mydiff;

pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier);

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier);

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

pthread_barrier_wait(&barrier);

}

}

#include <stdio.h>

#include <math.h>

#include <pthread.h>

#define N 8           /* the number of grids */

#define TOL 15.0      /* tolerance parameter */

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0;       /* variable  in shared memory */

int ncores = 2;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_barrier_t barrier;

int main(){

pthread_t t1, t2;

int pid0 = 0;

int pid1 = 1;

for (int i=1; i<N-1; i++) A[i] = 100+i*i;

pthread_barrier_init(&barrier, NULL, ncores);

pthread_create(&t1, NULL, (void *)solve_pp, (void*)&pid0);

pthread_create(&t2, NULL, (void *)solve_pp, (void*)&pid1);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

for (int i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("\n");

return 0;

}

main7.c  parallel program

% gcc main7.c –O0 –lpthread –lm –o a.out7
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Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput and low 
latency 

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware 
mechanism to support 
thread synchronization 
(lock, unlock, barrier)

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Shared memory many-core architecture
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Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput and low 
latency 

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware 
mechanism to support 
thread synchronization 
(lock, unlock, barrier)

Shared memory many-core architecture

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches
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On-Chip Interconnection network requirements 

• Connecting many modules on a chip achieving high 
throughput and low latency 
• Topology

• the number of ports, links, switches (HW resources)

• bus, ring bus, tree, fat-tree, crossbar, mesh, torus

• Circuit switching / packet switching
• Centralized control / distributed control with FIFO and flow 

control (scalability)

• Routing
• deadlock free, livelock free

• in-order data delivery / out-of-order delivery

• adaptive routing, XY-dimension order routing

• Network-on-chip (NoC) router architecture



23CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Performance metrics of interconnection network 

• Network cost
• number of links on a switch to connect to the network (plus 

one link to connect to the processor)

• width in bits per link, length of link

• Network bandwidth (NB) 
• represents the best case

• bandwidth of each link x number of links

• Bisection bandwidth (BB)
• represents the worst case

• divide the machine in two parts, each with half the nodes and 
sum the bandwidth of the links that cross the dividing line
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Bus Network

• N cores (    ),  N switch  (    ),  1 link (the bus)

• Only 1 simultaneous transfer at a time

• NB (best case) = link (bus) bandwidth x 1

• BB (worst case)  = link (bus) bandwidth x 1

• All processors can snoop the bus

Core or 
processor node

A B C D E F

A B C D E F

The case where core B sends a packet to someone
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Exercise 1

• Bus Network with multiplexer (mux)

• one N-input mux for N cores

• Draw the bus network organization of 4 cores using a 4-
input mux.

C

B

A

D

C

B

A

D

A’s output 
port

A’s input 
port



26CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Ring Network

• N cores, N switches, 2 links/switch, N links

• N simultaneous transfers

• NB (best case) = link bandwidth x N

• BB (worst case) = link bandwidth x 2

• If a link is as fast as a bus, the ring is only twice as fast as a bus in the 
worst case, but is N times faster in the best case

A B C E FD

A B C E FD
The case where
A -> F, B->A, C->B, F->D
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Cell Broadband Engine (2005)

• Cell Broadband Engine
• 1 core (PPE, Power Processor Element based on a 

general purpose PowerPC core)

• 8 core (SPE, Synergistic Processing Element) 

• each SPE has 256KB local memory

• PS3, IBM Roadrunner with 12,960 CBE chips

Diagram created by IBM to promote the CBEP, ©2005 from WIKIPEDIA

Thie photo from PlaySation.com (Japan)

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed
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Intel Xeon Phi (2012)
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Fat Tree (1)

• Trees are good structures. People in CS use them all the time. 

• Any time A wants to send to C, it ties up the upper links, so that 
B can't send to D. 

• The bisection bandwidth on a tree is horrible just 1 link, at 
all times

• The solution is to 'thicken' the upper links. 

• More links as the tree gets thicker increases the bisection 
bandwidth

C DA B

Tree, N = 4
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Fat Tree (2)

• N cores, log(N-1) x logN switches, 2 up + 4 down = 6 
links/switch, N x logN links

• N simultaneous transfers

• NB = link bandwidth x N log N

• BB = link bandwidth x 4

Fat Tree, N = 4 Fat Tree, N = 8
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Crossbar (Xbar) Network

• N cores, N2 switches (unidirectional), 2 links/switch, 
N2 links

• N simultaneous transfers

• NB = link bandwidth x N (best case)

• BB = link bandwidth x N (worst case)

D

C

B

A

Wikipedia
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Exercise 2

• Crossbar Network with multiplexer (mux)

• N N-input mux for N cores

• Draw the crossbar network organization of 4 cores using 
four 4-input muxs.

C

B

A

D

C

B

A

D
A symbol of Xbar
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Mesh Network

• N cores, N switches, 5 links/switch

• N simultaneous transfers

• NB = link bandwidth x N (best case)

• BB = link bandwidth x N1/2 (worst case)

N = 16N = 4
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2D and 3D Mesh / Torus Network

2D Mesh

Torus3D Mesh
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Intel Single-Chip Cloud Computer (2009)

• To research multi-core processors and parallel processing.

Intel Single-Chip Cloud Computer (48 Core)
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Epiphany-V: A 1024 core 64-bit RISC SoC (2016)
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Intel Skylake-X, Core i9-7980XE (2017)

• 18 core

• 2D mesh topology
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Intel Xeon Scalable Processor



39CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Bus vs. Networks on Chip (NoC) of mesh topology

intersection
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Typical NoC architecture of mesh topology

• NoC requirements: low latency, high throughput, low cost

• Packet based data transmission via NoC routers and 
XY-dimension order routing

PM: Processing Module or Core,  
R: Router

Packet
(tag + data)

RR

PM
0, 2

RR

PM
1, 2

RR

PM
2, 2

RR

PM
3, 2

RR

PM
0, 1

RR

PM
1, 1

RR

PM
2, 1

RR

PM
3, 1

RR

PM
0, 0

RR

PM
1, 0

RR

PM
2, 0

RR

PM
3, 0

RR

PM
0, 3

RR

PM
1, 3

RR

PM
2, 3

RR

PM
3, 3

x

y
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Packet organization (Flit encoding)

• A flit (flow control unit or flow control digit) is a link-level 
atomic piece that forms a network packet. 

• A packet has one head flit and some body flits.

• Each flit has typical three fields:

• payload(data) or route information(tag)

• flit type : head, body, tail, etc.

• virtual channel identifier

VC Type Route info

VC Type Payload

Head flit

Body flit

Head and body flit formats

Packet (tag + data)

Head flit

Body flit

Body flit

Body flit

Head flit

Body flit

Body flit

Tail  flit
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Packet organization (Flit encoding)

• A flit (flow control unit or flow control digit) is a link-level 
atomic piece that forms a network packet. 

• A packet has one head flit and some body flits.

• For simplicity, assume that a packet has only one flit.

• Each flit has typical three fields:

• Payload (data)

• Route information

• Virtual channel identifier (VC)

VCRoute infoFlit Payload

Packet (tag + data)
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Routing

• XY dimension order routing (XY DOR), and YX DOR

x

y
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Simple NoC router architecture

• Routing computation for XY-dimension order

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

N

E

S

W

Node (3, 3)

Packet from 
node (1, 3) to 
node (3, 1)

NoC router

Node (3, 3)

dest (3, 1)
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Simple NoC router architecture

• Buffering and arbitration
• time stamp based, round robin, etc.

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

N

E

S

W

N

S

E

W

FIFO

NoC router
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Simple NoC router architecture

• Flow control (back pressure)
• When the destination router's input buffer 

is full, the packet cannot be sent.

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

N

E

S

W

N (Y-)

South router

FIFO full?

NoC router
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Simple NoC router architecture

• Problem: Head-of-line (HOL) blocking
• The first (head) packet in the same buffer 

blocks the movement of subsequent packets.

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X
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South router

FIFO full?

FIFO

NoC router
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Two (physical) networks to mitigate HOL ?

Simple NoC router
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Datapath of Virtual Channel (VC) NoC router

• To mitigate head-of-line (HOL) blocking, virtual channels are used

N (Y-)

E (X+)

S (Y+)

W (X-)

VC0

VC1

VC2

VC0

VC1

VC2

VC0

VC1

VC2
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FIFO full
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S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

FIFO full

HOL blocking

VC NoC routerSimple NoC router
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Bus vs. Networks on Chip (NoC) of mesh topology

Virtual Channel

To mitigate 
head-of-line (HOL) blocking
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Pipelining the NoC router microarchitecture

IBIB

IBIB

IBIB

RCRC

IBIB

SASA

IBIB

IBIB

STST

STST

IBIB IBIB STST

IBIB IBIB STST

OBOB

OBOB

OBOB

OBOB

Head flit

Body flit

Body flit

Body flit

Routing Control Unit

Header
Flit

Forw.Table

C
ro

ss
B
a
r

Crossbar 
Control

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Arbitration
Unit

Output 
Port #

IB (Input Buffering)IB (Input Buffering) RC (Route Computation)RC (Route Computation)
SA (Switch Arb)
- VCA (VC Arb) -
SA (Switch Arb)
- VCA (VC Arb) -

ST (Switch Traversal)ST (Switch Traversal) OB (Output Buffering)OB (Output Buffering)

Input buffers

Input buffers

D
E
M

U
X

P
h
y
si

ca
l

ch
a
n
n
e
l

L
in

k
C
o
n
tr

o
l

L
in

k
C
o
n
tr

o
l

P
h
y
si

ca
l

ch
a
n
n
e
l

M
U

X

D
E
M

U
X M

U
X

Output buffers

L
in

k
C
o
n
tr

o
l

Output buffers

L
in

k
C
o
n
tr

o
l

P
h
y
si

ca
l

ch
a
n
n
e
l

P
h
y
si

ca
l

ch
a
n
n
e
l

D
E
M

U
X M

U
X

D
E
M

U
X M

U
X

“A Delay Model and Speculative Architecture for Pipelined Routers,” L. S. Peh and W. J. Dally,
Proc. of the 7th Int’l Symposium on High Performance Computer Architecture, January, 2001.
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Bus vs. Networks on Chip (NoC) of mesh topology

FIFO

Packet
(tag + data)

Distributed system

intersection
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Average packet latency of mesh NoCs

• 5 stage router pipeline

• Uniform traffic (destination nodes are selected randomly)

8x8 NoC 64x64 NoC (4096 nodes)

Thiem Van Chu, Myeonggu Kang, Shi FA and Kenji Kise: Enhanced Long Edge First Routing Algorithm and Evaluation in Large-Scale Networks-on-Chip, 
IEEE 11th International Symposium on Embedded Multicore/Many-core Systems-on-Chip, (September 2017).

Saturation
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On-Chip Interconnection network requirements 

• Connecting many modules on a chip achieving high 
throughput and low latency 
• Topology

• the number of ports, links, switches (HW resources)

• bus, ring bus, tree, fat-tree, crossbar, mesh, torus

• Circuit switching / packet switching
• Centralized control / distributed control with FIFO and flow 

control (scalability)

• Routing
• deadlock free, livelock free

• in-order data delivery / out-of-order delivery

• adaptive routing, XY-dimension order routing

• Network-on-chip (NoC) router architecture
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Bus Network with multiplexer (mux)

C

B

A

D

C

B

A

D

• One N-input multiplexer for N cores

• Arbitration, node ID, centralized control

The bus network organization of 4 cores using a 4-input mux.



57CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Crossbar (Xbar) Network with mux

C

B

A

A symbol of XbarD

C

B

A

D

• N N-input multiplexers 
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Program, process, and thread

• A process is an instance of a program that is being executed whereas a thread is part of 
a process.

• A process can have more than one thread. All the threads within one process are 
interrelated to each other. Threads have some common information, such as code 
segment, data segment, heap, etc., that is shared to their threads. But contains its own 
stack and registers (PC and x0 – x32 registers).

https://zenn.dev/farstep/articles/process-thread-difference

thread

thread thread
Multiprogramming

Parallel programming
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Quiz

• Are these three barriers necessary in the parallel program?

• What happens if we remove Barrier 1?

• What happens if we remove Barrier 2?

• What happens if we remove Barrier 3?

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0;       /* variable  in shared memory */

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_barrier_t barrier;

void solve_pp (int pid) {

int i, done = 0;                    /* private variables */

int mymin = (pid==0) ? 1 : 5;       /* private variable  */

int mymax = (pid==0) ? 4 : 8;       /* private variable  */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

pthread_mutex_lock(&m);

diff = diff + mydiff;

pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier);  // Barrier 1

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier);  // Barrier 2

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

pthread_barrier_wait(&barrier);  // Barrier 3

}

}


