Fiscal Year 2025

N

Course number: CSC.T440
School of Computing,
M Graduate major in Computer Science

Computer Organization and Architecture

5. Thread Level Parallelism:
Interconnection Network and Many-core

Processors f
www.arcm

Room No. M-112(H117), Lecture (Face-to-face) Kenji Kise, Department of Computer Science
Thr 13:30-15:10 kise[at]comp.isct.ac.jp

CSC.T440 Computer Organization and Architecture, Department of Computer Sciencégpience Tokyo 1

From multi-core era to many-core era

\ . 4—\ e B N
Many-core Era
Massively parallel
applications
: 100§
Increasing HW
Threads
Per Socket Multi-core Era
104 Scalar and
parallel applications
HT
14 g
[[| [[[[[[[[[
1 | 1 1 1 1 1 1 1 1 1
2003 2005 2007 2009 2011 2013

Figura 1: Currant and expacted eras of Intal® processor architectures

ﬁ Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Distributed Memory Multi-Processor Architecture

« Multi-processor or multicore computers can be classified into distributed x
memory or shared memory architectures.

« A PC cluster or parallel computers for higher performance.Each memory module
is associated with a processor

« Using explicit send and receive functions (message passing) to obtain the data

required.
« Who will send and receive data? How?
PC1 PC2 PC3 PC4
Chip Chip Chip Chip
Procl Proc?2 Proc3 Proc4
A A A A
Caches Caches Caches Caches
A A A A
Memory Memory Memory Memory
(DRAM) (DRAM) (DRAM) (DRAM)
A A A A
: \4 \ 4 \4 \4
PC cluster Interconnection network

K CSC.T440 Computer Organization and Architecture,

Department of Computer Science, Science Tokyo

Cell Broadband Engine (2005)

* Cell Broadband Engine

« 1 core (PPE, Power Processor Element based on a |
general purpose PowerPC core)
« 8 core (SPE, Synergistic Processing Element)
« each SPE has 256KB local memory [ol

« PS3, IBM Roadrunner with 12,960 CBE chips Thie photo from PlaySation.com (Japan)

‘ PPE ‘ ‘SPE1 ‘ ‘SPES‘ ‘SPES‘ ‘SPI:_I‘ ‘ I0IF1 ‘

i L L

f = =]

ata bus arbiter D
. 3 - - |-

- -] -] -

|

‘ MIC ‘ ‘SPEO‘ ‘SPE2‘ ‘SPE4‘ ‘SPES‘

o
g
i
[w)
o

/?

5
=]
L)
i
o
s
=N
oy
E
(=0
=
7]
]
=
£
i
=
L)
(=]
g
m
&
[

BIF Broadband interface
IOIF /O interface

Figure 2. Element interconnect bus (EIB).

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed
Diagram created by IBM to promote the CBEP, ©2005 from WIKIPEDIA

E CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Shared Memory Multi-Processor Architecture

« All the processors can access the same address space of the main memory
(shared memory) through an interconnection network.

* The shared memory or shared address space (SAS) is used as a means for
communication between the processors.

« What are the means to obtain the shared data?
* What are the advantages and disadvantages of shared memory?

System
Chip Chip Chip Chip
j *’-*"“'" Procl Proc? Proc3 Proc4
Caches Caches Caches Caches
Interconnection network

A A

Lttt A ST ey v v

Main memory (DRAM) I/0

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Shared memory many-core architecture

« A single-chip integrates many cores (conventional processors) and an

interconnection network.

« The shared memory and shared address space (SAS) are used as a
means for communication between these cores.

System
Chip
Core Core Core Core
Procl Proc? Proc3 Proc4
Caches Caches Caches Caches
Interconnection network
Intel Skylake-X, Core i9-7980XE, 2017 Main memory (DRAM) I/0

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

2022.11 AMD EPYC 9654 processor with 96 cores

« Today's high-performance chip integrates around 100 cores.

AMDAO
A M D E pvc " 9 0 0 4 Cores =rPYC Base/Boost* wyucw Default TDPw cTDP(w

360w 320-400w

Series Processor SORE biepd | S

84 cores
64 cores 9554/P 310/3.75 360w 320-400w
b4 cores 9534 2 45/3.70 280w 240-300w

All-in Feature Set support Sy gy e

48 cores

9454/pP 2.75/3.80 240-300w

* 12 Channels of DDOR5-4800

32“'.”'9"- ASTAF e TET "M AT
* Up to 6TB DDRS memory capacity
32 cores 9354/P 3.25/3.80 240-300w

= 128 lanes PCle® 5 32 cores 27 200-240w

* B4 lanes CXL 11+
24 cores 2.90/415 200-240w
2.50/3.70 200-240w

* AVX-512 ISA, SMT & core frequency boost

= AMD Infinity Fabric™

* AMD Infinity Guard 16 cores 200-240w

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

The free lunch is over

* Programmers have to worry much about performance and concurrency
 Parallel programming & multi-processor (multi-core) architectures

Free Lunch

Programmers haven't The traditional approach
really had to worry to application

much about performance was to
performance or simply wait for the next
concurrency because generation of processor;
of Moore's Law most software

developers did not need
to invest in performance
tuning, and enjoyed a
Why we did not see 4GHz “free lunch” from
processors in Market? hardware

improvements.

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005
<

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Multiprogramming

« Several independent programs (processes) run at the same time on a
multi-core processor (multi-processor system).

Instruction window
| J[8][6][5]
L L el 7]

pr'ogr'am A (Pr'ocess A) Instruction window

(d)

Pr'09r'0m B (PPOC@SS B) Instruction window

L rrr PP PP
@CSC.T44O Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Parallel programming

« Several dependent threads run at the same time on a multi-core
processor (multi-processor system).

« This is the case that is often required.

Instruction window
| |[8][6][5]
I ELNEd

(a)
NN 1] HEEEEREEN
Thr‘ead A Instruction window
L 1] L]
data dependency =
(e N\
Thread B Ins‘rru}t\j‘on window

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

A

10

Sample of a wrong parallel program using pthread

% gcc mainl.c -00 -lpthread -1m -o a.outl

% ./a.outl
main: 20000000

Single Program Multiple Data (SPMD)

\

#include <stdio.h>
#include <pthread.h>
#define N 10000000

int a = 0;
int funcl(){
int i;

for(i=0; i<N; i++){a

1

a+ 1;}

int func2(){
int i;
for(i=0; i<N; i++){a

1

a+ 1;}

int main(){
funcl();
func2();

printf("main: %d\n", a);
return 0;

}

mainl.c
sequential program

#include <stdio.h>
#include <pthread.h>
#tdefine N 10000000 // ten million

int a = 0;

int funcl(){
int i;

for(i=0; i<N; i++){a = a + 1;}
}s
int func2(){

int i;

for(i=0; i<N; i++){a = a + 1;}

}s

int main(){
pthread_t t1, t2;
pthread create(&t1,NULL, (void *)funcl,NULL);
pthread_create(&t2,NULL, (void *)func2,NULL);

pthread_join(tl, NULL);
pthread_join(t2, NULL);

printf("main: %d\n", a);
return 0;

#include <stdio.h>
#include <pthread.h>
##define N 10000000 // ten million
int a = 0;

int funcl(){
int i;
for(i=0; i<N; i++){a = a + 1;}

};

int main(){
pthread_t t1, t2;
pthread create(&t1,NULL, (void *)funcl,NULL);
pthread create(&t2,NULL, (void *)funcl,NULL);

pthread_join(tl, NULL);
pthread_join(t2, NULL);

printf("main: %d\n", a);
return 0;

main2.c
parallel program with funcl and func2

main3.c
parallel program with funcl

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

11

Sample of some parallel programs using pthread

% gcc mainl.c -00 -lpthread -1m -o a.outl

% ./a.outl
main: 20000000

#include <stdio.h>
#include <pthread.h>
#define N 10000000

int a = 0;

int funcl(){
int i;
for(i=0; i<N; i++){a

1

a+ 1;}

int func2(){
int i;
for(i=0; i<N; i++){a

1

a+ 1;}

int main(){
funcl();
func2();

printf("main: %d\n", a);
return 0;

}

mainl.c
sequential program

#include <stdio.h>
#include <pthread.h>
#tdefine N 10000000 // ten million
int a = 0;

int funcl(){
int i;
for(i=0; i<N; i++){a = a + 1;}

};

int main(){
pthread_t t1, t2;
pthread create(&t1,NULL, (void *)funcl,NULL);
pthread create(&t2,NULL, (void *)funcl,NULL);

pthread_join(tl, NULL);
pthread_join(t2, NULL);

printf("main: %d\n", a);
return 0;

#include <stdio.h>
#include <pthread.h>

##define N 10000000 // ten million

"ﬁ
int a = 9; ‘ .ﬂ

pthread_mutex_t m = PTHREAD MUTEX_INITIALIZER;

int funcl(){
int i;
for(i=0; i<N; i++){
pthread_mutex_lock(&m);
a=a+ 1;
pthread_mutex_unlock(&m);
}

) L
int main(){
pthread_t t1, t2;

pthread_create(&t1,NULL, (void *)funcl,NULL);
pthread_create(&t2,NULL, (void *)funcl,NULL);

pthread_join(tl, NULL);
pthread_join(t2, NULL);

printf("main: %d\n", a);
return 0;

main3.c
parallel program with funcl

main4.c
parallel program with funcl, lock, and unlock

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

12

#include <stdio.h>
#include <pthread.h>
##define N 10000000 // ten million

int a = 0;
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

int funcl(){
int i;
for(i=0; i<N; i++){
pthread_mutex_lock(&m);
a=a+1;
pthread mutex_unlock(&m);
}
s

int main(){
pthread_t t1, t2;
pthread_create(&t1,NULL, (void *)funcl,NULL);
pthread_create(&t2,NULL, (void *)funcl,NULL);

pthread_join(tl, NULL);
pthread_join(t2, NULL);

printf("main: %d\n", a);
return 0;

Sample of some parallel programs using pthread

main4.c

parallel program with funcl, lock, and unlock

#tinclude <stdio.h>
#include <pthread.h>
#tdefine N 10000000 // ten million

int a = 0;
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

int funcl(){

int i;

int my_a = 0;

for(i=0; i<N; i++){

my_a =my_a + 1;

}

pthread mutex_ lock(&m);

a=a+ my_a;

pthread_mutex_unlock(&m);
}s

int main(){
pthread_t ti1, t2;
pthread_create(&t1,NULL, (void *)funcl,NULL);
pthread create(&t2,NULL, (void *)funcl,NULL);

pthread_join(tl, NULL);
pthread_join(t2, NULL);

printf("main: %d\n", a);
return 0;

mainb.c

parallel program with funcl, local sum, lock, and unlock

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

13

Fo

Hw = O

<

ur steps in creating a parallel program

Preparing an optimized sequential program (baseline)
Decomposition of computation in tasks
Assignment of tasks to processes
Orchestration of data access, comm, synch.
Mapping processes to processors (cores)
Partitioning
|
| |
> o A ; v
c g ¢ °
° O ‘ ;
L O, I &
i © n a
2o f SIS
o 2O 0
- “
cgr?w%lﬁg’:iigln Tasks Processes pfgg;?;:i Processors

Adapted from Parallel Computer Architecture, David E. Culler
SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Simulating ocean currents

00000000 O0O0
0O 0000000 O0O0
0O 0O0OO0O0OO0O0O0OO0O0
00000000 O0O0
00000000 O0O0
OO0 O0OO0O0OO0OO0O0OO0O0
00000000 O0O0
0000000 O0OO0O0
O 0O0OO0O0O0OO0O0OO0O0
00000000 O0O0

\

(a) Cross sections (b) Spatial discretization of a cross section

* Model as two-dimensional grids
« Discretize in space and time
 finer spatial and femporal resolution enables greater accuracy

* Many different computations per time step
« Concurrency across and within grid computations

« We use one-dimensional grids for simplicity

E CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Sequential version as the baseline

A sequential program mainé.c and the execution result
Computations in blue color are fully parallel

#tdefine N 8 /* the number of grids */
#define TOL 15.0 /* tolerance parameter */
float A[N+2], B[N+2];

void solve () {
int i, done = ©;
while (!done) {
float diff = 0.0;
for (i=1; i<=N; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
diff = diff + fabsf(B[i] - A[i]);
}
if (diff <TOL) done = 1;
for (i=1; i<=N; i++) A[i] = B[i];

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);
printf("| diff=%6.2f\n", diff); /* for debug */

int main() {
int i;
for (i=1; i<N-1; i++) A[i] = 1@@+i*i; // initialize
for (i=0; i<=N+1; i++) printf("%6.2f ", A[i]);
printf("\n");
solve();

mainbé.c sequential program

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

0.00 101.00 104.00 109.00 116.00 125.00 136.00 ©0.00 0.00 0.00
0.00 68.26 104.56 109.56 116.55 125.54 86.91 45.29 0.00 0.00 | diff=129.32
0.00 57.55 94.03 110.11 117.10 109.56 85.83 44.02 15.08 0.00 | diff= 55.76
0.00 50.48 87.15 106.97 112.14 104.06 79.72 48.26 19.68 0.00 | diff= 42.50
0.00 45.83 81.45 101.99 107.62 98.54 77.27 49.17 22.63 0.00 | diff= 31.68
0.00 42.38 76.35 96.92 102.61 94.38 74.92 49.64 23.91 0.00 | diff= 26.88
0.00 39.54 71.81 91.87 97.87 90.55 72.91 49.44 24.49 0.00 | diff= 23.80
0.00 37.08 67.67 87.10 93.34 87.02 70.89 48.99 24.62 0.00 | diff= 22.12
0.00 34.88 63.89 82.62 89.06 83.67 68.87 48.09 24.48 0.00 | diff= 21.06
0.00 32.89 60.40 78.44 85.03 80.45 66.81 47.10 24.17 0.00 | diff= 20.26
0.00 31.07 57.19 74.55 81.23 77.35 64.72 45.98 23.73 0.00 | diff= 19.47
0.00 29.39 54.21 70.92 77.63 74.36 62.62 44.77 23.21 0.00 | diff= 18.70
0.00 27.84 51.46 67.52 74.23 71.47 60.52 43.49 22.64 0.00 | diff= 17.95
0.00 26.41 48.89 64.34 71.00 68.67 58.43 42.17 22.02 0.00 | diff= 17.23
0.00 25.07 46.50 61.35 67.94 65.97 56.37 40.84 21.38 0.00 | diff= 16.53
0.00 23.83 44.26 58.54 65.02 63.36 54.34 39.49 20.72 0.00 | diff= 15.85
0.00 22.68 42.17 55.88 62.24 60.85 52.34 38.14 20.05 0.00 | diff= 15.20
0.00 21.59 4@.20 53.38 59.60 58.42 50.39 36.81 19.38 0.00 | diff= 14.58
i=4 i=8
+ +
A A[O]| | A[11|| A[2]| | A[31|| A[4]| | A[B]| | A[6]| | AL71| | A[8]] | AL9]
+ +
B B[1] || B[2]||B[3]||B[4]||B[B]||B[6]]||B[7]]|B[8]

16

P =22
SIS

Decomposition and assignment

 Single Program Multiple Data (SPMD)
« Decomposition: there are eight tasks to compute B[]
« Assignment: the first four tasks for core O, and the last four tasks for core 1

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0; /* variable in shared memory */

Computation for B[]

void solve_pp (int pid) {

int i, done = 9; /* private variables */

int mymin = (pid==0) ? 1 : 5; /* private variable */

int mymax = (pid==0) ? 4 : 8; /* private variable */ DecompOSiTion

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);
}
diff = diff + mydiff; .
Assignment

if (diff<TOL) done = 1; pid -0 pid -1
if (pid==1) diff = 0.9;
for (i=mymin; i<=mymax; i++) A[i] = B[i];

) Core O Core 1

B[1]1||B[2]||B[3]||B[4]||B[5]||B[6]||B[7]||BI8]

B[1]||B[2]||B[3]]||B[4] B[5] || B[6]| | B[7]|| BI8]

int main() { /* solve this using two cores */
initialize shared data A and B;
create threadl and call solve_pp(9);

=) create thread2 and call solve_pp(1l);

mymin = 1 mymin = 5
mymax = 4 mymax = 8

P CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 17

Orchestration

e LOCK and UNLOCK around critical section \

« Lock provides exclusive access to the locked data.
* Set of operations we want to execute atomically

!
« BARRIER ensures all reach here

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0; /* variable in shared memory */
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER; Thes.e oper‘a‘rlons must be executed
pthread_barrier_t barrier; Gfomlcally
void solve pp (int pid) {

int i, done = ©; /* private variables */ (1) load diff

int mymin = (pid==0) ? 1 : 5; /* private variable */

int mymax = (pid==0) ? 4 : 8; /* private variable */ / (2) add

while (!done) { (3) store diff
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[1+
mydiff = mydiff + fabsf(B[i] - Vs

AfTer' all cores update the diff,
~ if statement must be executed.

}
pthread_mutex_lock(&m);
diff = diff + mydiff;
pthread_mutex_unlock(&m);

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier); Barrier 1
if (diff <TOL) done = 1;
pthread_barrier_wait(&barrier); // Barrier 2
if (pid==1) diff =

for (i=mymin; i<=mymax; i++) A[i] = B[i];
pthread_barrier_wait(&barrier); // Barrier 3

:
@S }
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 18

Parallel program after orchestration

% gcc main7.c -00 -lpthread -1m -o a.out?

#include <stdio.h>
#tinclude <math.h>
#include <pthread.h>
t#tdefine N 8

#define TOL 15.0

/* the number of grids */
/* tolerance parameter */

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0; /* variable in shared memory */
int ncores = 2;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
pthread_barrier_t barrier;

int main(){
pthread_t t1, t2;
int pide = o;
int pidl = 1;
for (int i=1; i<N-1; i++) A[i] = 100+i*i;

pthread_barrier_init(&barrier, NULL, ncores);
pthread_create(&t1l, NULL, (void *)solve_pp, (void*)&pid@);
pthread_create(&t2, NULL, (void *)solve_pp, (void*)&pidl);

pthread_join(tl, NULL);
pthread_join(t2, NULL);

for (int i=@; i<=N+1; i++) printf("%6.2f ", B[i]);
printf("\n");
return 0;

void solve pp (void *p) {
int pid = *(int *)p;
int i, done = ©;
int mymin = 1 + (pid * N/ncores);
int mymax = mymin + N/ncores - 1;
while (!done) {
float mydiff = 0.0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]);

/* private variables */
/* private variable */
/* private variable */

}
pthread_mutex_lock(&m);

diff = diff + mydiff;
pthread mutex_unlock(&m);

pthread_barrier_wait(&barrier);

if (diff <TOL) done = 1;
pthread_barrier_wait(&barrier);

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];
pthread barrier wait(&barrier);

main7.c parallel program

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

19

Key components of many-core processors

« Interconnection network

connecting many modules on a chip achieving high throughput and low

latency

« Main memory and caches
Caches are used to reduce latency and to lower network traffic
A parallel program has private data and shared data
New issues are cache coherence and memory consistency
« Core

<

High-performance superscalar
processor providing a hardware
mechanism to support

thread synchronization

(lock, unlock, barrier)

System

Chip

Core Core

Core

Core

Procl Proc2

Proc3

Proc4

¢

¢

¢

¢

Caches Caches

Caches

Caches

¥

¥

¥

¥

| Interconnection network

3

A 4

3
A 4

Main memory (

DRAM)

I/0

Shared memory many-core architecture

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

\

20

Key components of many-core processors

« Interconnection network

<

connecting many modules on a chip achieving high throughput and low

latency

System
Chip
Core Core Core Core
Procl Proc2 Proc3 Proc4
Caches Caches Caches Caches
[Interconnection network |
))
\ 4 \ 4
Main memory (DRAM) I/0

Shared memory many-core architecture

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

A

21

On-Chip Interconnection network requirements X
\

 Connecting many modules on a chip achieving high
throughput and low latency
« Topology
« the number of ports, links, switches (HW resources)
 bus, ring bus, tree, fat-tree, crossbar, mesh, torus
« Circuit switching / packet switching

« Centralized control / distributed control with FIFO and flow
control (scalability)

* Routing
e deadlock free, livelock free
 in-order data delivery / out-of-order delivery
 adaptive routing, XY-dimension order routing

« Network-on-chip (NoC) router architecture

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 22

Performance metrics of interconnection network %\%
\

* Network cost

* number of links on a switch to connect to the network (plus
one link o connect to the processor)

« width in bits per link, length of link
« Network bandwidth (NB)

 represents the best case

* bandwidth of each link x number of links
« Bisection bandwidth (BB)

* represents the worst case

« divide the machine in two parts, each with half the nodes and
sum the bandwidth of the links that cross the dividing line

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 23

Bus Network

* N cores (

« Only 1simu
« NB (best case) = link (bus) bandwidth x 1

BB (worst case) = link (bus) bandwidth x 1

« All processors can snoop the bus

The case where core B sends a packet to someone

<

A

3

), N switch (O), 1link (the bus)
taneous transfer at a time

B

3

C

S

R

E

A

3

B

C

A : 4

D

3

Core or
processor node

5

A

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Exercise 1

 Bus Network with multiplexer (mux)

 ohe N-input mux for N cores
« Draw the bus network organization of 4 cores using a 4-

input mux.

A’s output
port

——>

D

—>

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

A's input

port
—>

—>

D

\

25

Ring Network x
\

* N cores, N switches, 2 links/switch, N links
« N simultaneous transfers

« NB (best case) = link bandwidth x N

« BB (worst case) = link bandwidth x 2

« Ifalinkis as fast as a bus, the ring is only twice as fast as a bus in the
worst case, but is N times faster in the best case

A S

=

The case where . = 2 L E
A ->F,B->A, C->B, F->D }_L A }_I ﬁ\ il

NS

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 26

Cell Broadband Engine (2005)

* Cell Broadband Engine

« 1 core (PPE, Power Processor Element based on a |
general purpose PowerPC core)
« 8 core (SPE, Synergistic Processing Element)
« each SPE has 256KB local memory [ol

« PS3, IBM Roadrunner with 12,960 CBE chips Thie photo from PlaySation.com (Japan)

‘ PPE ‘ ‘SPE1 ‘ ‘SPES‘ ‘SPES‘ ‘SPI:_I‘ ‘ I0IF1 ‘

i L L

f = =]

ata bus arbiter D
. 3 - - |-

- -] -] -

|

‘ MIC ‘ ‘SPEO‘ ‘SPE2‘ ‘SPE4‘ ‘SPES‘

o
g
i
[w)
o

/?

5
=]
L)
i
o
s
=N
oy
E
(=0
=
7]
]
=
£
i
=
L)
(=]
g
m
&
[

BIF Broadband interface
IOIF /O interface

Figure 2. Element interconnect bus (EIB).

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed
Diagram created by IBM to promote the CBEP, ©2005 from WIKIPEDIA

E CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Intel Xeon Phi (2012)

T e ——— ——

Intel® Xeon Phi™ Coprocessor Block Diagram

PCle I/0

- e
e ahe o ode
-—I—v’ﬂh—\

|
= Lo J =

Table 2. Intel® Xeon Phi™ Product Family Specifications

FORM PEAK DOUBLE | PEAK MEMORY INTEL"
PRODUCT FACTOR &, BOARD NUMBER FREQUENCY | PRECISION MEMORY CAPACITY TURBO
NUMBER THERMAL TDP (WATTS) | OF CORES | (GHz) PERFORMANCE | BANDWIDTH | (GB) BOOST
SOLUTION* {GFLOP) (GB/s) TECHNOLOGY
I20P PCle, Passive | 300 57 1.1 1003 240 B MR
3120A PCle, Active | 300 57 11 1003 240 B NY/A
5110P PCle, Passive | 225 &0 1.053 1071 320 B MR
Dense form
51200 factor None | 245 60 1.053 1om 352 8 N/A
7110P PCle, Passive | 300 61 1.238 1208 352 16 Peak turbo
frequency:
7120% FCle, None 300 &1 1.238 1208 352 16 1.33 GHz

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Fat Tree (1)
AN

« Trees are good structures. People in CS use them all the time.
* Any time A wants to send to C, it ties up the upper links, so that
B can't send to D.

» The bisection bandwidth on a tree is horrible just 1 link, at
all times

* The solution is to "thicken’ the upper links.

* More links as the tree gets thicker increases the bisection
bandwidth

A B C D

@: Tr'ee, N =4
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 29

Fat Tree (2)
AN

* N cores, log(N-1) x logN switches, 2 up + 4 down = 6
links/switch, N x logN links

* N simultaneous transfers
« NB = link bandwidth x N log N
BB = link bandwidth x 4

DS

Fat Tree, N= 4 Fat Tree, N= 8

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 30

Crossbar (Xbar) Network

N
N
N

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

cores, N? switches (unidirectional), 2 links/switch,

2 links

simultaneous transfers
NB = link bandwidth x N (best case)
BB = link bandwidth x N (worst case)

91919 [0
91919 9

A 4

91919 19
clclclE

»
)

A

Crossbar telephone exchange &
of1903 for four subscribers
(vertical bars), having four cross-
bar talking circuits (horizontal
bars), and one bar to connect the
operator (T). The lowest cross-bar
connects idle stations to ground to
enable the signaling indicators (F).
The switch is operated manually
with metal pins that create a
connection between the
horizontally and vertically arranged
bars.[1]

Wikipedia 31

Exercise 2

 Crossbar Network with multiplexer (mux)

* N N-input mux for N cores

« Draw the crossbar network organization of 4 cores using
four 4-input muxs.

A

D

—>

—

D

A symbol of Xbar

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

\

32

Mesh Network

* N cores, N switches, 5 links/switch
« N simultaneous transfers
« NB = link bandwidth x N (best case)
« BB = link bandwidth x N2 (worst case)

N =4 N = 16

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

33

2D and 3D Mesh / Torus Network

Torus

34

Intel Single-Chip Cloud Computer (2009)

« To research multi-core processors and parallel processing.

Inside the SCC

Dual-core SCDC Tile
24 Tiles L2 Gache
=l - 24 Routers - |5 Fi
= 48 IA cores - |
< Sl g Bt B

ROUTER

L2 Cache

« 2D mesh network with 256
GB/s bisection bandwidth

= 4 Integrated DDR3 memory
controllers (64GB addressable)

[a 4
w
—t
—d
(=)
o
‘—
=
o
o
>
e
o
=T
w
b

A many-core architecture
with 2D Mesh NoC

Intel Single-Chip Cloud Computer (48 Core)

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

\

Epiphany-V: A 1024 core 64-bit RISC SoC (2016)

ey,

North IO

RISC -
cpy NOC

MEMORY

RISC

ac
cPU NOC

MEMORY

Summary of Epiphany-V features:

1024 64-bit RISC processors

64-bit memory architecture

64/32-bit IEEE floating point support

64MB of distributed on-chip memory

1024 programmable 1/0 signals

Three 136-bit wide 2D mesh NOCs

2052 Independent Power Domains

Support for up to 1 billion shared memory processors
Binary compatibility with Epiphany IIT1/IV chips

E L w

RISC

CPU NOC

MEMORY

RISC

CPU NOC

MEMORY

-

Function Value (mm~2) Share of Total Die Area
SRAM 62.4 53.3%
Register File 15.1 12.9%
FPU 11.8 10.1%
NOC 12.1 10.3%
10 Logic 6.5 5.6%
“Other” Core Stuff 5.1 4.4%
10 Pads 3.9 3.3%
Always on Logic 0.66 0.6%

Table 5: Epiphany-V Area Breakdown

Custom ISA extensions for deep learning, communication, and cryptography

E CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Intel Skylake-X, Core i9-7980XE (2017)

« 18 core
« 2D mesh topology

[
= : \
|
- -
i e
- ::
- o
- -
- l

CORE i9

X-series

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Intel Xeon Scalable Processor

New Mesh Interconnect Architecture

Broadwell EX 24-core die Skylake-SP 28-core die

2xUPI x 20 PCle* x16 x16 On Pkg 1z UPI 20 PCle x16

18

| R?Pl“l

6 Dada,
ARG

RSQPF
on ErTTr—

Gom | o o re

Core

SKX Core | | SKX Core
an |cars
2y [SKX Core
com | cara CHA/SF/LLC
i SKX Core SKX Core | | SKX Core

CHA/SF/LLC

| |

SKX Core SKX Core SKX Core SKX Core | | SKX Care SKX Core

CHA - Caching and Home Agent ; SF - Snoop Filter; LLC - Last Level Cache;
SKX Core- Skylake Server Core; UPI - Intel® UltraPath Interconnect

Intel Press Workshops — June 2017 Content Under Embargo Until 1:00 PM PST June 15, 2017

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Bus vs. Networks on Chip (NoC) of mesh topology

E CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

e —

e,

intersection

\

Typical NoC architecture of mesh topology
D, —— _— .y, ——— — \

« NoC requirements: low latency, high throughput, low cost

* Packet based data transmission via NoC routers and
XY-dimension order routing

PM PM PM PM
0,3 1,3 2,3

Packet
(tag + data)

Packet organization (Flit encoding)

A
A flit (flow control unit or flow control digit) is a link-level %%

atomic piece that forms a network packet.

A packet has one head flit and some body flits.
Each flit has typical three fields:

payload(data) or route information(tag)
flit type : head, body, tail, etc.

virtual channel identifier

Head flit VC | Type

Route info

Body flit | VC | Type

Payload

Head and body flit formats

Af_a'

P CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Packet (tag + a‘ra)
Head flit
Body flit
Body flit fi{ |1/
Tail flit [N/

41

Packet organization (Flit encoding) X
\

A flit (flow control unit or flow control digit) is a link-level
atomic piece that forms a network packet.

A packet has one head flit and some body flits.
For simplicity, assume that a packet has only one flit.
Each flit has typical three fields:
Payload (data)
Route information Nel
Virtual channel identifier (VC) Packet (tag + data)

[Flit Route info Ve Payload]

E CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 42

Routing

ey,

—_———— ——

« XY dimension order routing (XY DOR), and YX DOR

i

T

|

D2

32

| PP

v

X

D3

(a) XY routing

Dl . = D3

(b) Y X routing

E CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Simple NoC router architecture

« Routing computation for XY-dimension order

Node (3, 3) N
Flit Route info "/ Payload Packet from
node (1, 3) to
node (3, 1) PM
N (Y-) Node (3, 3) N (Y-)
E (X+) E (X+)
S (Y+) S (Y+) (
| x BIlE e
W (x) dest 3. 1) W (x-) e || (22 [[5e
on on A [cEE
(Module) (Module) h - =
PM] [PM PM PM
0,0 L1, 0 2.0 3,0

@’ NoC router
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Simple NoC router architecture
e — —_— .y,

 Buffering and arbitration
 time stamp based, round robin, etc.

N (Y-) FIFO N (Y-)
(T \

E (X+) E (X+)

S (Y+

2 T X

W (X-)
EEEN

PM

(Module)

@’ NoC router
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 45

Simple NoC router architecture

« Flow control (back pressure)

« When the destination router's input buffer
is full, the packet cannot be sent.

N (Y-) N (¥-)
(T3 :
E (X+) E(X+)
(TTT3 :
S (¥+) S (Y+) N (¥-)
[T} 1 X (T T—
/ FIFO full?
W (X-) W (X-)
(T
PM PM
(Module) (Module)

South router

@’ NoC router
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Simple NoC router architecture

« Problem: Head-of-line (HOL) blocking
« The first (head) packet in the same buffer

blocks the movement of subsequent packets.

N (Y-)

N (Y-)

E (X+)

(TTT]

E (X+)

S (Y+)

W (X-)

S (Y+)

N (Y-)

W (X-)

PM
(Module)

PM
(Module)

NoC router

FIFO full?

South router

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Two (physical) networks to mitigate HOL ?

N (Y-)

E (X+)

S (Y+)

W (X-)

PM

(Module

HOL blocking

— (- - -

B iy MR
N o g
i iy R
D T

N (Y-)

E (X+)

S (Y+)

FIFO full

W (X-)

PM

Simple NoC router

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-) HOL blocking
— (T T+
E (X+) \
N
S (Y+) T
X
N (Y-) HOL blocking N (Y-
— T - -, =
‘\
+ \ +
2 | =
\
\
\
20— Vo2
X FIFO full
W (X- W (X-
T <
PM PM
(ModuleLEl:l:D (Mod:ule)

48

Datapath of Virtual Channel (VC) NoC router

« To mitigate head-of-line (HOL) blocking, virtual channels are used

N (Y-) N (¥-)
— (T — =
X
E (X+) E (X+)
—{ [T }F— -
S (Y+) S (¥+)
[TTTF—— f--Fom
) FIFO full
. /
W (X) HOL blicl«f% I, W (>:<-)
PM PM
(Module) (Module)
—{ [T [}F— -

<

Simple NoC router

Flit

Route info Ve

Payload

A

N (Y-)

(T vCco
vel
[T T T

E (X+)

I:l:l:l:‘ vca2

S (Y+)

W (X-)

PM
(Module)

——

N (Y-)

E (X+)

S (Y+)

—_

FIFO full

W (X-)

PM

(Module)

VC NoC router

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

49

Bus vs. Networks on Chip (NoC) of mesh topology

\ m = ———

To mitigate
head-of-line (HOL) blocking

Virtual Channel

E CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

\

Pipelining the NoC router microarchitecture

=5 Stage 1 | Stage 2 | Stage3 | Stage 4 | Stage 5 g2
L c n c
o < Input buffers I I I I | output buffers - =8
£5123] | gPImn, ! I ! LI RE g Y TR g
— SEEL | | i | (2P 55
= b | ! | | S (R
L I I I n I 5T
3e , , : o : =
= Input buffers | | | G I | Output buffers T 2
£6|28| | 0> ! ! ! | gE - Bl
—»5‘%’—» ST 1= I I [1 pliing »:§_>
@)
il g I Routing Control Unit I I I ~
outing Control Uni -
: Header , Arbﬁ;?ttlon LN ,
I Rt _ | I Crossbar |
I OUtpUt I Control |
[Forw.Table | Port # | |
IB (Input Buffering) RC (Route Computation) SCC(;S\‘?\I}CCT:;;J) ST (Switch Traversal) OB (Output Buffering)
Head flit IB |RC|SA|ST|OB
Body flit IB|IB|IB|ST|OB J
Body flit IB|IB|IB|ST|OB
Body flit B|B|B|sT|oB] | |

Af_a'

“A Delay Model and Speculative Architecture for Pipelined Routers,” L. S. Peh and W. J. Dally,
Proc. of the 7th Int'| Symposium on High Performance Computer Architecture, January, 2001.

P CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

=

51

Bus vs. Networks

on Chi

p (NoC) of mesh topology

Distributed system

[TTT]
FIFO

‘_—\ e — iy,

Average packet latency of mesh NoCs

« b stage router pipeline
« Uniform traffic (destination nodes are selected randomly)

Saturation
200 1 XY 800
-%-YX
150 4 -*-LEF 600

—— LEF++

Avg. packet latency (cycles)
=
=

Avg. packet latency (cycles)
b

30 A 200 -
D T I T T 1 U T T T T 1
0.00 007 0.14 021 028 035 0.00 0.0 002 003 004 0.05
Injection rate (flits/node/cycle) Injection rate (flits/node/cycle)
(a) Average packet latency under uniform traffic (a) Average packet latency under uniform traffic
8x8 NoC 64x64 NoC (4096 nodes)
@ Thiem Van Chu, Myeonggu Kang, Shi FA and Kenji Kise: Enhanced Long Edge First Routing Algorithm and Evaluation in Large-Scale Networks-on-Chip,
IEEE 11th International Symposium on Embedded Multicore/Many-core Systems-on-Chip, (September 2017).
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 53

On-Chip Interconnection network requirements X
\

 Connecting many modules on a chip achieving high
throughput and low latency
« Topology
« the number of ports, links, switches (HW resources)
 bus, ring bus, tree, fat-tree, crossbar, mesh, torus
« Circuit switching / packet switching

« Centralized control / distributed control with FIFO and flow
control (scalability)

* Routing
e deadlock free, livelock free
 in-order data delivery / out-of-order delivery
 adaptive routing, XY-dimension order routing

« Network-on-chip (NoC) router architecture

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 54

¢CSC.T44O Computer Organization and Architecture, Department of Computer Science, Science Tokyo

55

Bus Network with multiplexer (mux)

* One N-input multiplexer for N cores
* Arbitration, node ID, centralized control

<

A

q L 4

VVYVYY

D

The bus network organization of 4 cores using a 4-input mux.

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

:

v

A

D

56

Crossbar (Xbar) Network with mux

* N N-input multiplexers

<

)
Ato——
f —_—
NI
)
[>
B * > R
¢ > "
>
N
)
[>
¢ > R
C | >
*—>
N
)
DIl—e»
N

A symbol of Xbar

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

57

Program, process, and thread
Dy, s B e e —

« A process is an instance of a program that is being executed whereas a thread is part of

a

process.

« A process can have more than one thread. All the threads within one process are
interrelated to each other. Threads have some common information, such as code
segment, data segment, heap, etc., that is shared to their threads. But contains its own
stack and registers (PC and x0 - x32 registers).

process

code segment data segment heap

stack L IH S

process 1 process 2

code segment data segment heap code segment data segment heap

stack registers stack registers

<

Multiprogramming

https://zenn.dev/farstep/articles/process-thread-difference

SC.T440 Computer Organization and Architecture, Department of Computer Science,

code segment data segment heap

stack registers

code segment data segment heap

stack registers stack registers

Parallel programming

Science Tokyo

58

Quiz

* Are these three barriers necessary in the parallel program?

* What happens if we remove Barrier 1?
« What happens if we remove Barrier 2?
« What happens if we remove Barrier 3?

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable
pthread _mutex_t m =
pthread_barrier_t barrier;
void solve pp (int pid) {
int i, done = 0;
int mymin = (pid==0) ? 1 : 5;
int mymax = (pid==0) ? 4 : 8;
while (!done) {
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {

in shared memory */

PTHREAD_MUTEX_ INITIALIZER;

/* private variables */
/* private variable */
/* private variable */

B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]);

}
pthread_mutex_lock(&m);

diff = diff + mydiff;
pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier);
if (diff <TOL) done = 1;
pthread_barrier wait(&barrier);
if (pid==1) diff = 0.60;

for (i=mymin; i<=mymax; i++) A[i] =

pthread_barrier_wait(&barrier);

}

// Barrier 1

// Barrier 2

B[i];
// Barrier 3

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

59

