
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 1

Computer Organization and Architecture

5. Thread Level Parallelism:
Interconnection Network and Many-core

Processors

Ver. 2026-01-08aFiscal Year 2025

Course number: CSC.T440
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/coa/
Room No. M-112(H117), Lecture (Face-to-face)
Thr 13:30-15:10

Kenji Kise, Department of Computer Science
kise[at]comp.isct.ac.jp

2CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

From multi-core era to many-core era

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

3CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Distributed Memory Multi-Processor Architecture

• Multi-processor or multicore computers can be classified into distributed
memory or shared memory architectures.

• A PC cluster or parallel computers for higher performance.Each memory module
is associated with a processor

• Using explicit send and receive functions (message passing) to obtain the data
required.

• Who will send and receive data? How?

PC2 PC3 PC4PC1

Chip Chip Chip Chip

Proc1 Proc2 Proc4

Caches Caches Caches

Interconnection network

Memory
(DRAM)

Proc3

Caches

Memory
(DRAM)

Memory
(DRAM)

Memory
(DRAM)

PC cluster

4CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Cell Broadband Engine (2005)

• Cell Broadband Engine
• 1 core (PPE, Power Processor Element based on a

general purpose PowerPC core)

• 8 core (SPE, Synergistic Processing Element)

• each SPE has 256KB local memory

• PS3, IBM Roadrunner with 12,960 CBE chips

Diagram created by IBM to promote the CBEP, ©2005 from WIKIPEDIA

Thie photo from PlaySation.com (Japan)

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed

5CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Shared Memory Multi-Processor Architecture

• All the processors can access the same address space of the main memory
(shared memory) through an interconnection network.

• The shared memory or shared address space (SAS) is used as a means for
communication between the processors.

• What are the means to obtain the shared data?

• What are the advantages and disadvantages of shared memory?

System

Interconnection network

Main memory (DRAM) I/O

Chip Chip Chip Chip

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

6CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

System

Chip

Shared memory many-core architecture

• A single-chip integrates many cores (conventional processors) and an
interconnection network.

• The shared memory and shared address space (SAS) are used as a
means for communication between these cores.

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Intel Skylake-X, Core i9-7980XE, 2017

7CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

2022.11 AMD EPYC 9654 processor with 96 cores

• Today's high-performance chip integrates around 100 cores.

8CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

The free lunch is over

• Programmers have to worry much about performance and concurrency

• Parallel programming & multi-processor (multi-core) architectures

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005

9CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Multiprogramming

• Several independent programs (processes) run at the same time on a
multi-core processor (multi-processor system).

Instruction window

8 5

7

6

4

Instruction window

(d)

Instruction window

program A (process A)

program B (process B)

Instruction window Instructions to be executed for an application (a)

10CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Parallel programming

• Several dependent threads run at the same time on a multi-core
processor (multi-processor system).

• This is the case that is often required.

Instruction window

8 5

7

6

4

Instruction window

(e)
Instruction window

thread A

thread B
data dependency

Instruction window Instructions to be executed for an application (a)

11CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Sample of a wrong parallel program using pthread

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){a = a + 1;}

};

int func2(){

int i;

for(i=0; i<N; i++){a = a + 1;}

};

int main(){

pthread_t t1, t2;

pthread_create(&t1,NULL,(void *)func1,NULL);

pthread_create(&t2,NULL,(void *)func2,NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d\n", a);

return 0;

}

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){a = a + 1;}

};

int main(){

pthread_t t1, t2;

pthread_create(&t1,NULL,(void *)func1,NULL);

pthread_create(&t2,NULL,(void *)func1,NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d\n", a);

return 0;

}

% gcc main1.c –O0 –lpthread –lm –o a.out1
% ./a.out1
main: 20000000

main1.c
sequential program

main2.c
parallel program with func1 and func2

main3.c
parallel program with func1

Single Program Multiple Data (SPMD)

#include <stdio.h>

#include <pthread.h>

#define N 10000000

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){a = a + 1;}

};

int func2(){

int i;

for(i=0; i<N; i++){a = a + 1;}

};

int main(){

func1();

func2();

printf("main: %d\n", a);

return 0;

}

12CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Sample of some parallel programs using pthread

% gcc main1.c –O0 –lpthread –lm –o a.out1
% ./a.out1
main: 20000000

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

int func1(){

int i;

for(i=0; i<N; i++){

pthread_mutex_lock(&m);

a = a + 1;

pthread_mutex_unlock(&m);

}

};

int main(){

pthread_t t1, t2;

pthread_create(&t1,NULL,(void *)func1,NULL);

pthread_create(&t2,NULL,(void *)func1,NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d\n", a);

return 0;

}

main4.c
parallel program with func1, lock, and unlock

main1.c
sequential program

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){a = a + 1;}

};

int main(){

pthread_t t1, t2;

pthread_create(&t1,NULL,(void *)func1,NULL);

pthread_create(&t2,NULL,(void *)func1,NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d\n", a);

return 0;

}

main3.c
parallel program with func1

#include <stdio.h>

#include <pthread.h>

#define N 10000000

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){a = a + 1;}

};

int func2(){

int i;

for(i=0; i<N; i++){a = a + 1;}

};

int main(){

func1();

func2();

printf("main: %d\n", a);

return 0;

}

13CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Sample of some parallel programs using pthread

main4.c
parallel program with func1, lock, and unlock

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

int func1(){

int i;

int my_a = 0;

for(i=0; i<N; i++){

my_a = my_a + 1;

}

pthread_mutex_lock(&m);

a = a + my_a;

pthread_mutex_unlock(&m);

};

int main(){

pthread_t t1, t2;

pthread_create(&t1,NULL,(void *)func1,NULL);

pthread_create(&t2,NULL,(void *)func1,NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d\n", a);

return 0;

}

main5.c
parallel program with func1, local sum, lock, and unlock

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

int func1(){

int i;

for(i=0; i<N; i++){

pthread_mutex_lock(&m);

a = a + 1;

pthread_mutex_unlock(&m);

}

};

int main(){

pthread_t t1, t2;

pthread_create(&t1,NULL,(void *)func1,NULL);

pthread_create(&t2,NULL,(void *)func1,NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d\n", a);

return 0;

}

14CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Four steps in creating a parallel program

1. Decomposition of computation in tasks

2. Assignment of tasks to processes

3. Orchestration of data access, comm, synch.

4. Mapping processes to processors (cores)

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

Adapted from Parallel Computer Architecture, David E. Culler

0. Preparing an optimized sequential program (baseline)

15CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Simulating ocean currents

• Model as two-dimensional grids
• Discretize in space and time

• finer spatial and temporal resolution enables greater accuracy

• Many different computations per time step
• Concurrency across and within grid computations

• We use one-dimensional grids for simplicity

(a) Cross sections (b) Spatial discretization of a cross section

16CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Sequential version as the baseline

• A sequential program main6.c and the execution result

• Computations in blue color are fully parallel

#define N 8 /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

void solve () {

int i, done = 0;

while (!done) {

float diff = 0.0;

for (i=1; i<=N; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

for (i=1; i<=N; i++) A[i] = B[i];

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("| diff=%6.2f\n", diff); /* for debug */

}

}

int main() {

int i;

for (i=1; i<N-1; i++) A[i] = 100+i*i; // initialize

for (i=0; i<=N+1; i++) printf("%6.2f ", A[i]);

printf("\n");

solve();

}

0.00 101.00 104.00 109.00 116.00 125.00 136.00 0.00 0.00 0.00

0.00 68.26 104.56 109.56 116.55 125.54 86.91 45.29 0.00 0.00 | diff=129.32

0.00 57.55 94.03 110.11 117.10 109.56 85.83 44.02 15.08 0.00 | diff= 55.76

0.00 50.48 87.15 106.97 112.14 104.06 79.72 48.26 19.68 0.00 | diff= 42.50

0.00 45.83 81.45 101.99 107.62 98.54 77.27 49.17 22.63 0.00 | diff= 31.68

0.00 42.38 76.35 96.92 102.61 94.38 74.92 49.64 23.91 0.00 | diff= 26.88

0.00 39.54 71.81 91.87 97.87 90.55 72.91 49.44 24.49 0.00 | diff= 23.80

0.00 37.08 67.67 87.10 93.34 87.02 70.89 48.90 24.62 0.00 | diff= 22.12

0.00 34.88 63.89 82.62 89.06 83.67 68.87 48.09 24.48 0.00 | diff= 21.06

0.00 32.89 60.40 78.44 85.03 80.45 66.81 47.10 24.17 0.00 | diff= 20.26

0.00 31.07 57.19 74.55 81.23 77.35 64.72 45.98 23.73 0.00 | diff= 19.47

0.00 29.39 54.21 70.92 77.63 74.36 62.62 44.77 23.21 0.00 | diff= 18.70

0.00 27.84 51.46 67.52 74.23 71.47 60.52 43.49 22.64 0.00 | diff= 17.95

0.00 26.41 48.89 64.34 71.00 68.67 58.43 42.17 22.02 0.00 | diff= 17.23

0.00 25.07 46.50 61.35 67.94 65.97 56.37 40.84 21.38 0.00 | diff= 16.53

0.00 23.83 44.26 58.54 65.02 63.36 54.34 39.49 20.72 0.00 | diff= 15.85

0.00 22.68 42.17 55.88 62.24 60.85 52.34 38.14 20.05 0.00 | diff= 15.20

0.00 21.59 40.20 53.38 59.60 58.42 50.39 36.81 19.38 0.00 | diff= 14.58

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

+, +, x

A[0] A[9]

i=4

+, +, x

i=8

A

B
main6.c sequential program

17CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Core 1

Decomposition and assignment

• Single Program Multiple Data (SPMD)

• Decomposition: there are eight tasks to compute B[]

• Assignment: the first four tasks for core 0, and the last four tasks for core 1

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable in shared memory */

void solve_pp (int pid) {

int i, done = 0; /* private variables */

int mymin = (pid==0) ? 1 : 5; /* private variable */

int mymax = (pid==0) ? 4 : 8; /* private variable */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

diff = diff + mydiff;

if (diff<TOL) done = 1;

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

}

}

int main() { /* solve this using two cores */

initialize shared data A and B;

create thread1 and call solve_pp(0);

create thread2 and call solve_pp(1);

}

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Decomposition

Assignment

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Core 0

Computation for B[]

pid = 0 pid = 1

mymin = 1
mymax = 4

mymin = 5
mymax = 8

18CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Orchestration

• LOCK and UNLOCK around critical section

• Lock provides exclusive access to the locked data.

• Set of operations we want to execute atomically

• BARRIER ensures all reach here
float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable in shared memory */

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_barrier_t barrier;

void solve_pp (int pid) {

int i, done = 0; /* private variables */

int mymin = (pid==0) ? 1 : 5; /* private variable */

int mymax = (pid==0) ? 4 : 8; /* private variable */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

pthread_mutex_lock(&m);

diff = diff + mydiff;

pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier); // Barrier 1

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier); // Barrier 2

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

pthread_barrier_wait(&barrier); // Barrier 3

}

}

(1) load diff
(2) add
(3) store diff

These operations must be executed
atomically

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

19CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Parallel program after orchestration

void solve_pp (void *p) {

int pid = *(int *)p;

int i, done = 0; /* private variables */

int mymin = 1 + (pid * N/ncores); /* private variable */

int mymax = mymin + N/ncores - 1; /* private variable */

while (!done) {

float mydiff = 0.0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

pthread_mutex_lock(&m);

diff = diff + mydiff;

pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier);

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier);

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

pthread_barrier_wait(&barrier);

}

}

#include <stdio.h>

#include <math.h>

#include <pthread.h>

#define N 8 /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable in shared memory */

int ncores = 2;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_barrier_t barrier;

int main(){

pthread_t t1, t2;

int pid0 = 0;

int pid1 = 1;

for (int i=1; i<N-1; i++) A[i] = 100+i*i;

pthread_barrier_init(&barrier, NULL, ncores);

pthread_create(&t1, NULL, (void *)solve_pp, (void*)&pid0);

pthread_create(&t2, NULL, (void *)solve_pp, (void*)&pid1);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

for (int i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("\n");

return 0;

}

main7.c parallel program

% gcc main7.c –O0 –lpthread –lm –o a.out7

20CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput and low
latency

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware
mechanism to support
thread synchronization
(lock, unlock, barrier)

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Shared memory many-core architecture

21CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput and low
latency

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware
mechanism to support
thread synchronization
(lock, unlock, barrier)

Shared memory many-core architecture

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

22CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

On-Chip Interconnection network requirements

• Connecting many modules on a chip achieving high
throughput and low latency
• Topology

• the number of ports, links, switches (HW resources)

• bus, ring bus, tree, fat-tree, crossbar, mesh, torus

• Circuit switching / packet switching
• Centralized control / distributed control with FIFO and flow

control (scalability)

• Routing
• deadlock free, livelock free

• in-order data delivery / out-of-order delivery

• adaptive routing, XY-dimension order routing

• Network-on-chip (NoC) router architecture

23CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Performance metrics of interconnection network

• Network cost
• number of links on a switch to connect to the network (plus

one link to connect to the processor)

• width in bits per link, length of link

• Network bandwidth (NB)
• represents the best case

• bandwidth of each link x number of links

• Bisection bandwidth (BB)
• represents the worst case

• divide the machine in two parts, each with half the nodes and
sum the bandwidth of the links that cross the dividing line

24CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Bus Network

• N cores (), N switch (), 1 link (the bus)

• Only 1 simultaneous transfer at a time

• NB (best case) = link (bus) bandwidth x 1

• BB (worst case) = link (bus) bandwidth x 1

• All processors can snoop the bus

Core or
processor node

A B C D E F

A B C D E F

The case where core B sends a packet to someone

25CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Exercise 1

• Bus Network with multiplexer (mux)

• one N-input mux for N cores

• Draw the bus network organization of 4 cores using a 4-
input mux.

C

B

A

D

C

B

A

D

A’s output
port

A’s input
port

26CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Ring Network

• N cores, N switches, 2 links/switch, N links

• N simultaneous transfers

• NB (best case) = link bandwidth x N

• BB (worst case) = link bandwidth x 2

• If a link is as fast as a bus, the ring is only twice as fast as a bus in the
worst case, but is N times faster in the best case

A B C E FD

A B C E FD
The case where
A -> F, B->A, C->B, F->D

27CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Cell Broadband Engine (2005)

• Cell Broadband Engine
• 1 core (PPE, Power Processor Element based on a

general purpose PowerPC core)

• 8 core (SPE, Synergistic Processing Element)

• each SPE has 256KB local memory

• PS3, IBM Roadrunner with 12,960 CBE chips

Diagram created by IBM to promote the CBEP, ©2005 from WIKIPEDIA

Thie photo from PlaySation.com (Japan)

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed

28CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Intel Xeon Phi (2012)

29CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Fat Tree (1)

• Trees are good structures. People in CS use them all the time.

• Any time A wants to send to C, it ties up the upper links, so that
B can't send to D.

• The bisection bandwidth on a tree is horrible just 1 link, at
all times

• The solution is to 'thicken' the upper links.

• More links as the tree gets thicker increases the bisection
bandwidth

C DA B

Tree, N = 4

30CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Fat Tree (2)

• N cores, log(N-1) x logN switches, 2 up + 4 down = 6
links/switch, N x logN links

• N simultaneous transfers

• NB = link bandwidth x N log N

• BB = link bandwidth x 4

Fat Tree, N = 4 Fat Tree, N = 8

31CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Crossbar (Xbar) Network

• N cores, N2 switches (unidirectional), 2 links/switch,
N2 links

• N simultaneous transfers

• NB = link bandwidth x N (best case)

• BB = link bandwidth x N (worst case)

D

C

B

A

Wikipedia

32CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Exercise 2

• Crossbar Network with multiplexer (mux)

• N N-input mux for N cores

• Draw the crossbar network organization of 4 cores using
four 4-input muxs.

C

B

A

D

C

B

A

D
A symbol of Xbar

33CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Mesh Network

• N cores, N switches, 5 links/switch

• N simultaneous transfers

• NB = link bandwidth x N (best case)

• BB = link bandwidth x N1/2 (worst case)

N = 16N = 4

34CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

2D and 3D Mesh / Torus Network

2D Mesh

Torus3D Mesh

35CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Intel Single-Chip Cloud Computer (2009)

• To research multi-core processors and parallel processing.

Intel Single-Chip Cloud Computer (48 Core)

36CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Epiphany-V: A 1024 core 64-bit RISC SoC (2016)

37CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Intel Skylake-X, Core i9-7980XE (2017)

• 18 core

• 2D mesh topology

38CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Intel Xeon Scalable Processor

39CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Bus vs. Networks on Chip (NoC) of mesh topology

intersection

40CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Typical NoC architecture of mesh topology

• NoC requirements: low latency, high throughput, low cost

• Packet based data transmission via NoC routers and
XY-dimension order routing

PM: Processing Module or Core,
R: Router

Packet
(tag + data)

RR

PM
0, 2

RR

PM
1, 2

RR

PM
2, 2

RR

PM
3, 2

RR

PM
0, 1

RR

PM
1, 1

RR

PM
2, 1

RR

PM
3, 1

RR

PM
0, 0

RR

PM
1, 0

RR

PM
2, 0

RR

PM
3, 0

RR

PM
0, 3

RR

PM
1, 3

RR

PM
2, 3

RR

PM
3, 3

x

y

41CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Packet organization (Flit encoding)

• A flit (flow control unit or flow control digit) is a link-level
atomic piece that forms a network packet.

• A packet has one head flit and some body flits.

• Each flit has typical three fields:

• payload(data) or route information(tag)

• flit type : head, body, tail, etc.

• virtual channel identifier

VC Type Route info

VC Type Payload

Head flit

Body flit

Head and body flit formats

Packet (tag + data)

Head flit

Body flit

Body flit

Body flit

Head flit

Body flit

Body flit

Tail flit

42CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Packet organization (Flit encoding)

• A flit (flow control unit or flow control digit) is a link-level
atomic piece that forms a network packet.

• A packet has one head flit and some body flits.

• For simplicity, assume that a packet has only one flit.

• Each flit has typical three fields:

• Payload (data)

• Route information

• Virtual channel identifier (VC)

VCRoute infoFlit Payload

Packet (tag + data)

43CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Routing

• XY dimension order routing (XY DOR), and YX DOR

x

y

44CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Simple NoC router architecture

• Routing computation for XY-dimension order

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

N

E

S

W

Node (3, 3)

Packet from
node (1, 3) to
node (3, 1)

NoC router

Node (3, 3)

dest (3, 1)

45CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Simple NoC router architecture

• Buffering and arbitration
• time stamp based, round robin, etc.

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

N

E

S

W

N

S

E

W

FIFO

NoC router

46CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Simple NoC router architecture

• Flow control (back pressure)
• When the destination router's input buffer

is full, the packet cannot be sent.

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

N

E

S

W

N (Y-)

South router

FIFO full?

NoC router

47CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Simple NoC router architecture

• Problem: Head-of-line (HOL) blocking
• The first (head) packet in the same buffer

blocks the movement of subsequent packets.

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

N

E

S

W

N (Y-)

South router

FIFO full?

FIFO

NoC router

48CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Two (physical) networks to mitigate HOL ?

Simple NoC router

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X FIFO full

HOL blocking

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

HOL blocking

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X FIFO full

HOL blocking

49CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Datapath of Virtual Channel (VC) NoC router

• To mitigate head-of-line (HOL) blocking, virtual channels are used

N (Y-)

E (X+)

S (Y+)

W (X-)

VC0

VC1

VC2

VC0

VC1

VC2

VC0

VC1

VC2

VC0

VC1

VC2

N (Y-)

E (X+)

S (Y+)

W (X-)

X

VC0

VC1

VC2

PM
(Module)

PM
(Module)

FIFO full

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

FIFO full

HOL blocking

VC NoC routerSimple NoC router

50CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Bus vs. Networks on Chip (NoC) of mesh topology

Virtual Channel

To mitigate
head-of-line (HOL) blocking

51CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Pipelining the NoC router microarchitecture

IBIB

IBIB

IBIB

RCRC

IBIB

SASA

IBIB

IBIB

STST

STST

IBIB IBIB STST

IBIB IBIB STST

OBOB

OBOB

OBOB

OBOB

Head flit

Body flit

Body flit

Body flit

Routing Control Unit

Header
Flit

Forw.Table

C
ro

ss
B
a
r

Crossbar
Control

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Arbitration
Unit

Output
Port #

IB (Input Buffering)IB (Input Buffering) RC (Route Computation)RC (Route Computation)
SA (Switch Arb)
- VCA (VC Arb) -
SA (Switch Arb)
- VCA (VC Arb) -

ST (Switch Traversal)ST (Switch Traversal) OB (Output Buffering)OB (Output Buffering)

Input buffers

Input buffers

D
E
M

U
X

P
h
y
si

ca
l

ch
a
n
n
e
l

L
in

k
C
o
n
tr

o
l

L
in

k
C
o
n
tr

o
l

P
h
y
si

ca
l

ch
a
n
n
e
l

M
U

X

D
E
M

U
X M

U
X

Output buffers

L
in

k
C
o
n
tr

o
l

Output buffers

L
in

k
C
o
n
tr

o
l

P
h
y
si

ca
l

ch
a
n
n
e
l

P
h
y
si

ca
l

ch
a
n
n
e
l

D
E
M

U
X M

U
X

D
E
M

U
X M

U
X

“A Delay Model and Speculative Architecture for Pipelined Routers,” L. S. Peh and W. J. Dally,
Proc. of the 7th Int’l Symposium on High Performance Computer Architecture, January, 2001.

52CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Bus vs. Networks on Chip (NoC) of mesh topology

FIFO

Packet
(tag + data)

Distributed system

intersection

53CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Average packet latency of mesh NoCs

• 5 stage router pipeline

• Uniform traffic (destination nodes are selected randomly)

8x8 NoC 64x64 NoC (4096 nodes)

Thiem Van Chu, Myeonggu Kang, Shi FA and Kenji Kise: Enhanced Long Edge First Routing Algorithm and Evaluation in Large-Scale Networks-on-Chip,
IEEE 11th International Symposium on Embedded Multicore/Many-core Systems-on-Chip, (September 2017).

Saturation

54CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

On-Chip Interconnection network requirements

• Connecting many modules on a chip achieving high
throughput and low latency
• Topology

• the number of ports, links, switches (HW resources)

• bus, ring bus, tree, fat-tree, crossbar, mesh, torus

• Circuit switching / packet switching
• Centralized control / distributed control with FIFO and flow

control (scalability)

• Routing
• deadlock free, livelock free

• in-order data delivery / out-of-order delivery

• adaptive routing, XY-dimension order routing

• Network-on-chip (NoC) router architecture

55CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

56CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Bus Network with multiplexer (mux)

C

B

A

D

C

B

A

D

• One N-input multiplexer for N cores

• Arbitration, node ID, centralized control

The bus network organization of 4 cores using a 4-input mux.

57CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Crossbar (Xbar) Network with mux

C

B

A

A symbol of XbarD

C

B

A

D

• N N-input multiplexers

58CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Program, process, and thread

• A process is an instance of a program that is being executed whereas a thread is part of
a process.

• A process can have more than one thread. All the threads within one process are
interrelated to each other. Threads have some common information, such as code
segment, data segment, heap, etc., that is shared to their threads. But contains its own
stack and registers (PC and x0 – x32 registers).

https://zenn.dev/farstep/articles/process-thread-difference

thread

thread thread
Multiprogramming

Parallel programming

59CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Quiz

• Are these three barriers necessary in the parallel program?

• What happens if we remove Barrier 1?

• What happens if we remove Barrier 2?

• What happens if we remove Barrier 3?

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable in shared memory */

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_barrier_t barrier;

void solve_pp (int pid) {

int i, done = 0; /* private variables */

int mymin = (pid==0) ? 1 : 5; /* private variable */

int mymax = (pid==0) ? 4 : 8; /* private variable */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

pthread_mutex_lock(&m);

diff = diff + mydiff;

pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier); // Barrier 1

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier); // Barrier 2

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

pthread_barrier_wait(&barrier); // Barrier 3

}

}

