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Instruction
window

Instruction pipeline of OoO execution processor

• Allocating instructions to instruction window is called dispatch

• Issue or fire wakes up instructions and their executions begin  

• In commit stage, the computed values are written back to ROB 
(reorder buffer)

• The last stage is called retire or graduate. 
The completed consecutive instructions can be retired.
The result is written back to register file (architectural register file 
of 32 registers) using a logical register number from x0 to x31.

Instruction 
Fetch

Instruction
Decode

Register
Renaming

Dispatch

Issue
Execute/
Memory

Commit

Retire

In-order front-end

Out-of-order back-end

In-order retirement
RF
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OoO Core

Register dataflow

• In-flight instructions are ones processing in a processor

Instruction window
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Case 1: Register dataflow from a far previous instn

• One source operand of insn I2 is from a retired instruction Ia.

• Because Ia was retired long ago, the physical destination register has been freed. 
The tag of the source register x3 can not be renamed at the renaming stage for 
I2, still having the logical register tag x3.

• Where does the operand x3 of I2 come from?

OoO CoreFront-end Instruction window
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Instructions to be executed

Newer instructions

In-flight instructions

Instruction windowIF ID Renaming
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1 Ib Ia

Retired insns

Ia: add x3,x0,x0
I1: sub p9,x1,x2
I2: add p10,p9,x3
I3: or  p11,x4,x5
I4: and p12,p10,p11

Data dependence
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Case 1: Register dataflow from RF

• One source operand of insn I2 is from a retired instruction Ia.

• Because Ia was retired long ago, the physical destination register has been freed. 
The tag of the source register x3 can not be renamed at the renaming stage for 
I2, still having the logical register tag x3.

• Where does the operand x3 of I2 come from?

OoO CoreFront-end Instruction window

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Instructions to be executed

Newer instructions

In-flight instructions

Instruction windowIF ID Renaming
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Issue
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RF

1 Ib Ia

Retired insns

Ia: add x3,x0,x0
I1: sub p9,x1,x2
I2: add p10,p9,x3
I3: or  p11,x4,x5
I4: and p12,p10,p11

Data dependence
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Example behavior of register renaming and valid bit

• A processor remembers a set of renamed logical registers.

• If x1 is not renamed for in-flight insn, it uses x1 instead of p1.

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or  x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

Register map table

2

5->9

0

1

2

3

4

5

6

7

8

9

10

31

dst = x5
src1 = x1
src2 = x2

dst  = p9
src1 = x1
src2 = p2

I0: sub p9,x1,p2

0

1

1

valid bit
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OoO Core

Case 2: Register dataflow

• Assume that one source operand p10 of insn I5 is from I2 which is not retired. 
The operand is generated a few clock cycles (tens of cycles sometimes) earlier.

• Because I2 is not retired, RF does not have the operand. 
Because I2 is committed, the operand is stored in ROB.

• Where does the operand of I5 come from?

Front-end Instruction window
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Instructions to be executed
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In-flight instructions
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Data dependence
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Ia: add x3,x0,x0
I1: sub p9,x1,x2
I2: add p10,p9,x3
I3: or  p11,x4,x5
I4: and p12,p10,p11
I5: nor p13,p10,p12



8CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

OoO Core

Case 2: Register dataflow from ROB

• Assume that one source operand p10 of insn I5 is from I2 which is not retired. 
The operand is generated a few clock cycles (tens of cycles sometimes) earlier.

• Because I2 is not retired, RF does not have the operand. 
Because I2 is committed, the operand is stored in ROB.

• Where does the operand of I5 come from?

Front-end Instruction window

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed

Newer instructions

In-flight instructions

1

Retired insns

Data dependence

Instruction windowIF ID Renaming
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Ia: add x3,x0,x0
I1: sub p9,x1,x2
I2: add p10,p9,x3
I3: or  p11,x4,x5
I4: and p12,p10,p11
I5: nor p13,p10,p12



9CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Case 3: Register dataflow

• Assume that the other source operand p12 of insn I5 is from I4 which is not 
committed. The operand is generated in the previous clock cycle.

• Because I4 is not retired, RF does not have the operand. 
Because I4 is not committed, ROB does not have the operand.

• Where does the operand of I5 come from?

OoO CoreFront-end Instruction window
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Instructions to be executed
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In-flight instructions
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Data dependence
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Ia: add x3,x0,x0
I1: sub p9,x1,x2
I2: add p10,p9,x3
I3: or  p11,x4,x5
I4: and p12,p10,p11
I5: nor p13,p10,p12
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Case 3: Register dataflow from ALUs

• Assume that the other source operand p12 of insn I5 is from I4 which is not 
committed. The operand is generated in the previous clock cycle.

• Because I4 is not retired, RF does not have the operand. 
Because I4 is not committed, ROB does not have the operand.

• Where does the operand of I5 come from?

OoO CoreFront-end Instruction window

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed

Newer instructions

In-flight instructions
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Retired insns

Data dependence
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Ia: add x3,x0,x0
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I2: add p10,p9,x3
I3: or  p11,x4,x5
I4: and p12,p10,p11
I5: nor p13,p10,p12
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Reorder buffer (ROB)

• Each ROB entry has following fields

• entry valid bit, data valid bit, data, target register number, etc.

• ROB provides the large physical registers for renaming

• in fact, physical register number is ROB entry number

• The value of a physical register may come from a matching ROB entry

32-bit DataIndex
Data 
Valid 

Entry 
Valid

0

1

2

.

.

49

target reg number

1      0             - x10      

I10: add p10,p3,p8 (add x10,x5,x6)
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1      1     Computed data of I1      x3      

1      1     Computed data of I3      x5      
1      0             - x4      RF
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Retire
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1      0                              x6      
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Datapath of OoO execution processor

Instruction cacheInstruction cache

Data cacheData cache

Integer

BranchBranch FP ALUFP ALU

Floating-point Memory

Reorder buffer (ROB)
Store
queue

Adr gen.Adr gen.Adr gen.Adr gen.ALUALU ALUALU

Register fileRegister file

RS

Branch handlerBranch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decodeInstruction decode

DispatchDispatch

RenamingRenaming

Instruction fetchInstruction fetch

Reservation station (RS)

Instruction window
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Instruction fetch unit of 2-way super-scalar

• High-bandwidth instruction delivery using branch prediction, and 
speculation

Instruction memory (cache)

PC

(2) Target address

Pipeline registers

Next PC generator (mux)

Branch predictor

PC, branch history (1) Branch Target PC 
for recovery

IF stage ID, EX+, WB
stage

+

Taken/
Untaken

(3) PC + 8
8

BTB
(Branch Target Buffer)

BTB 
hit/miss

two insns

prediction miss
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Datapath of OoO execution processor (partially)

Instruction cacheInstruction cache

Branch handlerBranch handler

Instruction flow

Instruction decodeInstruction decode

RenamingRenaming

Instruction fetchInstruction fetch
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Renaming two instructions per cycle for n-way superscalar

• Renaming instruction I0 and I1 (n = 2)

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or  x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table (4R, 2W)

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

A_dst = x5
A_src1 = x1
A_src2 = x2

A_dst = p9
A_src1 = p1
A_src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4 

B_dst = x9
B_src1 = x5
B_src2 = x4

B_dst = p10
B_src1 = p9

B_src2 = p4

M
u
x

If B_src1==A_dst, use tag from free tag bufferI0

I1

M
u
x

If B_src2==A_dst, use tag from free tag buffer
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Instruction window

Instruction window

Aside: What is a window?

• A window is a space in the wall of a building or in the side of a vehicle, 
which has glass in it so that light can come in and you can see out. (Collins)

Instructions to be executed for an application 

Large instruction window

Instruction window

(a)

(b)

(c)

Instruction window

8 5

7

6

4
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Datapath of OoO execution processor (partially)

Instruction cacheInstruction cache

Integer Floating-point Memory

Reorder buffer (ROB)

Register fileRegister file

RS

Branch handlerBranch handler

Register dataflow

Instruction flow

Instruction decodeInstruction decode

DispatchDispatch

RenamingRenaming

Instruction fetchInstruction fetch

Reservation station (RS)

Instruction window
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Reservation station (RS)

• To simplify the wakeup and select logic at issue stage, each functional 
unit (ALU) has own instruction window, an entry for such an instruction 
window is called reservation station (RS).

• Each reservation station has

• valid bit, src1 tag, src1 data, src1 ready,  src2 tag, src2 data, src2 ready, 
destination physical register number (dst), operation, …

• The computed data (outcome) with its dst as tag is broadcasted to all RSs. 

issue

(a) Centralized instruction window (b) Distributed instruction window using RS

issue

ALU1 ALU2

instruction window for ALU1 and ALU2 IW for ALU1 IW for ALU1

Reservation station

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

For operand src1 For operand src2
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Datapath of OoO execution processor (partially)

Instruction cacheInstruction cache

Integer

BranchBranch FP ALUFP ALU

Floating-point

Reorder buffer (ROB)

ALUALU ALUALU

Register fileRegister file

RS

Branch handlerBranch handler

Register dataflow

Instruction flow

Instruction decodeInstruction decode

DispatchDispatch

RenamingRenaming

Instruction fetchInstruction fetch

Reservation station (RS)

Instruction window

Broadcast
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Example behavior of reservation stations

I1 I2

issue

IW for ALU1 IW for ALU1

I1: sub p9,x1,x2
I2: add p10,p9,x3
I3: or  p11,x4,x5
I4: and p12,p10,p11
I5: nor p13,p10,p12

Cycle 0

dispatch at most two instructions, one to A or B and the other to C or D 

dispatch

dispatch I1, I2

A    B C    D

1 x1 value of x1

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

1 x2 value of x2 1 p9 I1: sub

For operand src1 For operand src2

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

For operand src1 For operand src2

1 p9

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

0 x3 value of x3 1 p10 I2: add

For operand src1 For operand src2

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

For operand src1 For operand src2

RS_A

RS_B

RS_C

RS_D
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Example behavior of reservation stations

I1 I3 I2 I4

IW for ALU1 IW for ALU1 I1: sub p9,x1,x2
I2: add p10,p9,x3
I3: or  p11,x4,x5
I4: and p12,p10,p11
I5: nor p13,p10,p12

dispatch at most two instructions, one to A or B and the other to C or D 

Cycle 1
dispatch I3, I4
issue I1

A    B C    D

issue : I1(p9)

0 x1 value of x1

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

1 x2 value of x2 1 p9 I1: sub

For operand src1 For operand src2

1 x4 value of x4

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

1 x5 value of x5 1 p11 I3: or

For operand src1 For operand src2

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

1 p10

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

0 p11 0 p12 I4: and

For operand src1 For operand src2

RS_A

RS_B

RS_C

RS_D

1 p9 0 x3 value of x3 1 p10 I2: add

For operand src1 For operand src2
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Example behavior of reservation stations

I5 I3 I2 I4

1 p10

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

0 p12 0 p13 I5: nor

For operand src1 For operand src2

1 x4 value of x4

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

1 x5 value of x5 1 p11 I3: or

For operand src1 For operand src2

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

1 p10

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

0 p11 0 p12 I4: and

For operand src1 For operand src2

RS_A

RS_B

RS_C

RS_D

I1: sub p9,x1,x2
I2: add p10,p9,x3
I3: or  p11,x4,x5
I4: and p12,p10,p11
I5: nor p13,p10,p12

dispatch at most two instructions, one to A or B and the other to C or D 

1 p9 value of p9 1 x3 value of x3 1 p10 I2: add

For operand src1 For operand src2

Execute: I1 (p9)

Cycle 2
dispatch I5
issue I2, I3
execute I1

IW for ALU1 IW for ALU1
A    B C    D

issue : I3(p11) issue : I2(p10)
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Exercise 1

• Example behavior of reservation stations

issue

I1: sub p9,x1,x2

I2: add p10,p9,x3

I3: or  p11,p9,x4

I4: and p12,x5,x6

I5: nor p13,p11,p12

I6: add p14,p10,x7

I7: sub p15,p14,x1

I8: or  p16,p15,x1

diapatch

A    B C    D
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Exercise 1

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

RS_A

RS_B

RS_C

RS_D

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

RS_A

RS_B

RS_C

RS_D

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

RS_A

RS_B

RS_C

RS_D

Cycle 1

Cycle 2

Cycle 3

Cycle 0 dispatch I1, I2

issue

diapatch

A    B C    D

issue

diapatch

A    B C    D

issue

diapatch

A    B C    D

Ex Ex

Ex Ex

Ex Ex
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Exercise 1

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

RS_A

RS_B

RS_C

RS_D

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

RS_A

RS_B

RS_C

RS_D

1 x1 value of x1

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

1 x2 value of x2 1 p9 I1:sub

1 p9

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

0 x3 value of x3 1 p10 I2:add

RS_A

RS_B

RS_C

RS_D

Cycle 1

Cycle 2

Cycle 3

Cycle 0 dispatch I1, I2

I1 I2
issue

diapatch

A    B C    D

issue

diapatch

A    B C    D

issue

diapatch

A    B C    D

Ex Ex

Ex Ex

Ex Ex

I1
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Exercise 1

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

RS_A

RS_B

RS_C

RS_D

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

RS_A

RS_B

RS_C

RS_D

1 x1 value of x1

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

1 x2 value of x2 1 p9 I1:sub

1 p9 0 x4 value of x4 1 p11 I3:or

1 p9

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

0 x3 value of x3 1 p10 I2:add

1 x5 value of x5 1 x6 value of x6 1 p12 I4:and

RS_A

RS_B

RS_C

RS_D

Cycle 1

Cycle 2

Cycle 3

Cycle 0 dispatch I1, I2

I1 I3 I2 I4
issue

diapatch

A    B C    D

issue

diapatch

A    B C    D

issue

diapatch

A    B C    D

Ex Ex

Ex Ex

Ex Ex

I1

I3, I4



27CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Exercise 1

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

RS_A

RS_B

RS_C

RS_D

1 p11

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

0 p12 0 p13 I5:nor

1 x5 value of x5 1 x6 value of x6 1 p11 I3:or

1 p9 value of p9

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

1 x3 value of x3 1 p10 I2:add

1 x5 value of x5 1 x6 value of x6 1 p12 I4:and

RS_A

RS_B

RS_C

RS_D

1 x1 value of x1

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

1 x2 value of x2 1 p9 I1:sub

1 p9 0 x4 value of x4 1 p11 I3:or

1 p9

valid  src1 tag        src1 data   src1 ready  src2 tag       src2 data   src2 ready    dst operation

0 x3 value of x3 1 p10 I2:add

1 x5 value of x5 1 x6 value of x6 1 p12 I4:and

RS_A

RS_B

RS_C

RS_D

Cycle 1

Cycle 2

Cycle 3

Cycle 0 dispatch I1, I2

I1 I3 I2 I4
issue

diapatch

A    B C    D

I5 I3 I2 I4
issue

diapatch

A    B C    D

I5 I6 I7 I4
issue

diapatch

A    B C    D

Ex Ex

Ex Ex

Ex Ex

I1

I3, I4

I5

I3    I2

I1(p9)

I6, I7

I3(p11)
I2(p10)

I4
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Datapath of OoO execution processor

Instruction cacheInstruction cache

Data cacheData cache

Integer

BranchBranch FP ALUFP ALU

Floating-point Memory

Reorder buffer (ROB)
Store
queue

Adr gen.Adr gen.Adr gen.Adr gen.ALUALU ALUALU

Register fileRegister file

RS

Branch handlerBranch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decodeInstruction decode

DispatchDispatch

RenamingRenaming

Instruction fetchInstruction fetch

Reservation station (RS)

Instruction window
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Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to 
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE, BEQ, ...)

• Branch prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution 

• Register renaming 

• Dynamic scheduling

• Memory data flow

• Out-of-order execution 

• Another obstacle is data cache

(1) add x5,x1,x2
(2) add x9,x5,x3
(3) lw  x4, 4(x7)
(4) add x8,x9,x4

(3) lw  x4, 4(x7)
(1) add x5,x1,x2
(2) add x9,x5,x3
(4) add x8,x9,x4

Data 
dependency
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Instruction Level Parallelism (ILP) 

(1)

(2)

(4)

(3)

lw x5, 0(x2)    (1)

addi  x6, x5, 4    (2)

sw x6, 0(x3)    (3)

lw x7, 0(x4)    (4)

true data 
dependency

?

ambiguous 
data dependency

?
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Memory dataflow and branches

• The update of a data cache cannot be recovered easily. 
So, cache update is done at the retire stage in-order manner by 
using store queue.
Because of the ambiguous memory dependency, load and store 
instructions can be executed in-order manner.

• About 30% (or less) of executed instructions are load and stores.

• Even if they are executed in-order, IPC of 3 can be achieved.

• Branch instructions can be executed in-order manner.

• About 20% (or less) of executed instructions are jump and branch 
instructions.

• Out-or-order branch execution and aggressive miss recovery may 
cause false recovery (recovery by a branch on the false control 
path).
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Datapath of OoO execution processor

Instruction cacheInstruction cache

Data cacheData cache

Integer

BranchBranch FP ALUFP ALU

Floating-point Memory

Reorder buffer (ROB)
Store
queue

Adr gen.Adr gen.Adr gen.Adr gen.ALUALU ALUALU

Register fileRegister file

RS

Branch handlerBranch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decodeInstruction decode

DispatchDispatch

RenamingRenaming

Instruction fetchInstruction fetch

Reservation station (RS)

Instruction window
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The Memory System’s Fact and Goal

• Fact:  
Large memories are slow, and fast memories are small

• How do we create a memory that gives the illusion of being 
large, fast, and cheap?

• Cache memories

• Temporal locality (Locality in Time):

• Keep most recently accessed data items closer to the processor

• Spatial locality (Locality in Space)

• Move blocks consisting of contiguous words to the upper levels 

Lower Level
Memory

Upper Level
Memory

To Processor

From Processor
Block X Block Y

word
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Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)

20Tag 10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

20

Data

32

Hit

31 30       . . .         13 12  11     . . .        2  1  0
Byte 
offset
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Example Behavior of 4-entry Direct Mapped Cache

0 1 2 3

4 3 4 15

• Consider the main memory word reference string (word 
addresses)        0   1   2   3   4   3   4   15

00    Mem(0) 00    Mem(0)

00    Mem(1)

00    Mem(0) 00    Mem(0)

00    Mem(1)

00    Mem(2)

miss miss miss miss

miss misshit hit

00    Mem(0)

00    Mem(1)

00    Mem(2)

00    Mem(3)

01    Mem(4)

00    Mem(1)

00    Mem(2)

00    Mem(3)

01    Mem(4)

00    Mem(1)

00    Mem(2)

00    Mem(3)

01    Mem(4)

00    Mem(1)

00    Mem(2)

00    Mem(3)

01 4

11 15

00    Mem(1)

00    Mem(2)

00    Mem(3)

Start with an empty cache - all blocks initially marked as not valid

◼ 8 requests, 6 misses

Tag
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8

Index

Data ( 4 word )Index TagValid
0

1

2

.

.

.

253

254

255

31 30   . . .         13 12  11    . . .    4  3 2  1 0
Byte 
offset

20

20Tag

Hit Data

32

Block offset

Multiword Block Direct Mapped Cache

• Four words/block, cache size = 1K words
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Taking Advantage of Spatial Locality 

0

• Let cache block hold more than one word (two words/block)

• 0   1   2   3   4   3   4   15

1 2

3 4 3

4 15

00    Mem(1)    Mem(0)

miss

00    Mem(1)    Mem(0)

hit

00    Mem(3)    Mem(2)

00    Mem(1)    Mem(0)

miss

hit

00    Mem(3)    Mem(2)

00    Mem(1)    Mem(0)

miss

00    Mem(3)    Mem(2)

00    Mem(1)    Mem(0)
01 5 4

hit

00    Mem(3)    Mem(2)

01    Mem(5)    Mem(4)

hit

00    Mem(3)    Mem(2)

01    Mem(5)    Mem(4)

00    Mem(3)    Mem(2)

01    Mem(5)    Mem(4)

miss

11 15 14

◼ 8 requests, 4 misses
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Two-Way Set Associative Cache

• One word/block, 28 = 256 sets where each with three ways (each with one block)
31 30       . . .        13 12  11     . . .        2  1  0 Byte offset

DataTagV
0

1

2

.

.

.

253

254

255

Index DataTagV
0

1

2

.

.

.

253

254

255

8

Index

22Tag

Hit Data

2x1 select
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Three-Way Set Associative Cache

• One word/block, 28 = 256 sets where each with three ways (each with one block)
31 30       . . .        13 12  11     . . .        2  1  0 Byte offset

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

Index DataTagV
0

1

2

.

.

.

253

254

255

8

Index

22Tag

Hit Data

3x1 select
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Four-Way Set Associative Cache

• One word/block, 28 = 256 sets where each with four ways (each with one block)
31 30       . . .        13 12  11     . . .        2  1  0 Byte offset

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

Index DataTagV
0

1

2

.

.

.

253

254

255

8

Index

22Tag

Hit Data

32

4x1 select
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Set Associative Caches

• When a miss occurs, which way’s block do we pick for 
replacement ?
• Least Recently Used (LRU): 

the block replaced is the one that has been unused for the 
longest time
• Must have hardware to keep track of when each way’s block was 

used 
• For 2-way set associative, takes one bit per set → set the bit 

when a block is referenced 
(and reset the other way’s bit)

• Random

• N-way set associative cache costs
• N comparators (delay and area)
• MUX delay (set selection) before data is available
• Data available after set selection and Hit/Miss decision.   
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Recommended Reading

• Emulating Optimal Replacement with a Shepherd Cache

• Kaushik Rajan, Govindarajan Ramaswamy, Indian Institute 
of Science

• MICRO-40,  pp. 445-454, 2007 

• Session 8: Cache Replacement Policies

• A quote:
“The inherent temporal locality in memory accesses is filtered out by 
the L1 cache. As a consequence, an L2 cache with LRU replacement 
incurs significantly higher misses than the optimal replacement policy 
(OPT). We propose to narrow this gap through a novel replacement 
strategy that mimics the replacement decisions of OPT.”
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Memory Hierarchy Design

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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LRU has room for improvement

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007MPKI: Miss Per Kilo Instructions
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OPT: Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Example of Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Four-Way Set Associative Cache

• One word/block, 28 = 256 sets where each with four ways (each with one block)
31 30       . . .        13 12  11     . . .        2  1  0 Byte offset

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

Index DataTagV
0

1

2

.

.

.

253

254

255

8

Index

22Tag

Hit Data

32

4x1 select

A1 A2 A3 A4
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Shepherd Cache emulation OPT

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Shepherd Cache Overview

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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MC (Main Cache)
SC (Schepherd Cache)
CM (Counter Matrix)
NVC (Next Value Counter)

Exercise 1
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empty increment dummy

oldest (FIFO)
oldest

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007 creative procrastination

MC (Main Cache)
SC (Schepherd Cache)
CM (Counter Matrix)
NVC (Next Value Counter)
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Shepherd cache bridges 32 – 52% of the gap

MPKI: Miss Per Kilo Instructions

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007


