Fiscal Year 2025

N

Course number: CSC.T440
School of Computing,
M Graduate major in Computer Science

Computer Organization and Architecture

4. Instruction Level Parallelism:
Multiple'Tssue, Speculation, and Out-of-order

Execution f
www.arcm

Room No. M-112(H117), Lecture (Face-to-face) Kenji Kise, Department of Computer Science
Thr 13:30-15:10 kise[at]comp.isct.ac.jp

CSC.T440 Computer Organization and Architecture, Department of Computer Sciencégpience Tokyo 1

Instruction pipeline of OoO execution processor

3
* Allocating instructions to instruction window is called dispatch 2%
« Issue or fire wakes up instructions and their executions begin

« Incommit stage, the computed values are written back to ROB
(reorder buffer)

« The last stage is called retire or graduate.
The completed consecutive instructions can be retired.
The result is written back to register file (architectural register file
of 32 registers) using a logical register number from x0 to x31.

Instruction
window
eteh | Decode ::r?;fr:rii; Dl Out-of-order back-end
In-order front-end Issue E&‘Z;‘ffy/ Commit
I
ROB[[[[T [T T [T T[] NAlC

ﬁ’ In-order retirement [
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 2

Register dataflow

« In-flight instructions are ones processing in a processor

Cycle 8

\

@) @

Y@

Data flow graph
IF ID Renaming Instruction window Issue | Execute | Commit Retire
(1t | _J[8][6][5] > [2]
(1201 | |__J[10][9 [7] 1| »] | |
RoB| | Jo]o|8f7]6]5]4]3[2]1]
Front-end Back-end
- o~ g N —
Instructions to be executed for an application Instruction window 000 Core Retired insns
| | | |16]15]14]13|12|11|10|9]|8|7]6]|B[4[3]2]1] |]

Af_a'

Newer instructions

—

In-flight instructions

P CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Case 1: Register dataflow from a far previous instn

* One source operand of insn I2 is from a retired instruction Ia. \

« Because Ia was retired long ago, the physical destination register has been freed.
The tag of the source register x3 can not be renamed at the renaming stage for
I2, still having the logical register tag x3.

Ia: add x3,x0,x0

« Where does the operand x3 of I2 come from? I1: sub pNZ

I2: add plo,p9,x3

I3: or pl1,x4,x5
I4: and pl2,plo,pll

Cycle 8 IF ID Renaming Instruction window Issue | Execute | Commit Retire
(1) L J[8lle][5] = L

(2] | [[o][o][7z]| [»[] L

roe[] [10[9]8]7]6]5 48] 2]1]

Instructions to be executed

Newer instructions

Retired insns
Ib|Ia| | |

000 Core
41321

Instruction window
10/9/8|7]|6]|5

Front-end
1615|1413 [12] 11

—

In-flight instructions

Data dependence

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 4

Case 1: Register dataflow from RF

* One source operand of insn I2 is from a retired instruction Ia. \

« Because Ia was retired long ago, the physical destination register has been freed.
The tag of the source register x3 can not be renamed at the renaming stage for
T2, still having the logical register tag x3.

Ia: add x3,x0,x0
« Where does the operand x3 of I2 come from? I1: sub pNZ
I2: add plo,p9,x3
I3: or pl1,x4,x5
I4: and pl2,plo,pll

Cycle 8 IF ID Renaming Instruction window Issue | Execute | Commit Retire
Lul | L 8]lellsp—=> A L
[2]] | [Jlof[o][7z) | [» [L

roB[| Jwofo[s]7]e]5]4]3]2]1] RF

Instructions to be executed Front-end Instruction window Qo0 Core Retired insns

L] 1T | | lwe|s|14|13]12]11|10|9|8|7]6]|5][4]3|2]1]1b|1a] | |
Newer instructions)

—

In-flight instructions

ﬁj Data dependence
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 5

Example behavior of register renaming and valid bit

« A processor remembers a set of renamed logical registers.
« If x1is not renamed for in-flight insn, it uses x1 instead of pl.

Cycle 1

10:
I1:
I12:
I3:

sub
add
or

and

x5,x1,x2
X9,x5,x4
x5, x5,x2
X2,X%X9,x1

Free tag buffer

13

12

11

10| 9

s

<

dst
srcl
src2

Register map table yqlid bit

X5

x1l —
X2

0

\

1

31

3
aQ
"
+
I
<
O

n
)
N
=
]
X
=

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

v
wn
)
(@]
N

Il
©
N

I0: sub p9,x1,p2

Case 2: Register dataflow

« Assume that one source operand pl10 of insn I5 is from I2 which is not retired. \
The operand is generated a few clock cycles (tens of cycles sometimes) earlier.

« Because I? is not retired, RF does not have the operand.

Because I2 is committed, the operand is stored in ROB. Ia: add x3,x0,Xx8
I1: sub p9,x1,x2

* Where does the operand of I5 come from? I2: add p1@,p9,x3
I3: or pI\,x4,x5
I4: and pl2,840,pll
I5: nor pl3,pl0,pl2
Cycle 9 IF ID Renaming Instruction window Issue | Execute | Commit Retire
(3] | L J[8[z2][11] B >[4
(4]} | [J[10][9][7] [l 1| [|
RoB[12|11/10[{9[8|7]6|5|4f3]2] |
Instructions to be executed Front-end Instruction window 000 Core Retired insns

Newer instructions

18[17]16]15][14[13|12]11]10[9[8[7

elslal3[2[1] [[|

-~

S
In-flight instructions

A=
~@ Data dependence
P CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 7

Case 2: Register dataflow from ROB

« Assume that one source operand pl10 of insn I5 is from I2 which is not retired. \
The operand is generated a few clock cycles (tens of cycles sometimes) earlier.

« Because I? is not retired, RF does not have the operand.

Because I2 is committed, the operand is stored in ROB. Ia: add x3,x0,Xx8
I1: sub p9,x1,x2

* Where does the operand of I5 come from? I2: add p1@,p9,x3
I3: or pI\,x4,x5
I4: and pl2,840,pll
I5: nor pl3,pl0,pl2
Cycle 9 IF ID Renaming Instruction window Issue | Execute | Commit Retire
()] | LIl]l2][1n]r— 1| » [4]
(4]} | [J[10][9][7] [l 1| [|
RoB[12|11/10[9 |8 |F[6|5]4f3]2] |
Instructions to be executed Front-end Instruction window 000 Core Retired insns

Newer instructions

18[17]16]15][14[13|12]11]10[9[8[7

elslal3[2[1] [[|

-~

S
In-flight instructions

A=
~@ Data dependence
P CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 8

Case 3: Register dataflow

« Assume that the other source operand pl12 of insn I5 is from I4 which is not \
committed. The operand is generated in the previous clock cycle.

« Because I4 is not retired, RF does not have the operand.

Because T4 is not committed, ROB does nhot have the operand. 1a: add x3,xe,xe
I1: sub p9,x1,x2
* Where does the operand of I5 come from? I2: add p10,p9,x3
I3: or pl1,x4,x5
I4: and pl12,pl0,pll
I5: nor pl3,plo,pl2

Cycle 9 IF ID Renaming Instruction window Issue | Execute | Commit Retire
(3]] | [|[8]{12][11] B >[4
(4]} | [J[10][9][7] (] 1] [|
Roe[12[11[10] 98] 7] 6 5] 4[3]2] |
Instructions to be executed Front-end Instruction window 000 Core Retired insns

[| | | [18]17]|1e]15]14|13]12]11]10| 9876|543]2]1] | | |
Newer instructions)

S
In-flight instructions

A=
~@ Data dependence
P CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 9

Case 3: Register dataflow from ALUs

« Assume that the other source operand pl12 of insn I5 is from I4 which is not

committed. The operand is generated in the previous clock cycle.

« Because I4 is not retired, RF does not have the operand.

Cycle 9

Because T4 is not committed, ROB does nhot have the operand. 1a: add x3,xe,xe
I1: sub p9,x1,x2
* Where does the operand of I5 come from? I2- add El@,p9,x3
I3: or pl1,x4,x5
I4: and pl12,pl0,pll
I5: nor pl13,pl0,pl2
IF ID Renaming Instruction window Issue | Execute | Commit Retire
3] | [l][2][u] | T 4]
(4] |][]l 9][7] [e]] P11 [||
roe[12[11]10] 98] 7] b 5] 4 [3|[2] |
Instructions to be executed Front-end Instruction window 000 Core Retired insns

Af_a'

P CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Newer instructions

18[17]16 15|14 |13

12[11]10]9]8]7

] []]

6|5]4[3]2

—

In-flight instructions

Data dependence

\

10

Reorder buffer (ROB)

« Each ROB entry has following fields
« entry valid bit, data valid bit, data, target register number, etc.
« ROB provides the large physical registers for renaming
 in fact, physical register number is ROB entry number

« The value of a physical register may come from a matching ROB entry

Cycle

<

Entry Data

H Index valid Valid 32-bit Data target reg number
Sall 0
| head —— 1 1 1 Computed data of I1 - 3
— 2 1 0 - x4 > f
Y 1 1 Computed data of I3 X5 Retire
= 1 0 X6
—1 tal ——>10 1) x10
S ['
% o
B 49
L 110: add plo,p3,p8 (add x10,x5,x6)
8 IF ID Renaming Instruction window Issue | Execute | Commit Retire
[fi | [I[8][6][5] > [2]]
[12]| | [|[10][9][7] (1] »[] |
RoB| | |10|9[8[7]6[5|4[3[2]1]

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

11

Datapath of OoO execution processor

Instruction cache

f

\ 4

Instruction fetch

Branch handler

A

v

Instruction decode

Instruction flow

™

»,

Register dataflow

Memory dataflow

Instruction window

Renaming
» Register file > Dispatch
Integer Floating-point | Memory
RS | I I I I I
L Z L 2 L Z L Z L Z L 2
[TI11] [TI111] [III1] [CII11] [T111] [ITI11]
v v v v
| A | | AU | | Branch | FP ALU | Adrgen. | | Adrgen. |
\ 4 A 4 ¢ \
A 4 A 4
NSNS EEEEEEEE LI T T TT T[]
v Store ! !
Reorder buffer (ROB) queue h bata cache
v v

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo Reservation station (RS)

12

Instruction fetch unit of 2-way super-scalar

A
« High-bandwidth instruction delivery using branch prediction, and
speculation |
IF stage 'ID, EX+, WB

Next PC generator (mux)

‘stage

prediction miss

(2) Target address

VYy

Taken/
Untaken

lPC' branch history

(1) Branch Target PC
 for recovery

~ Pipeline registers

(Branch Target Buffer)

PC Branch predictor
Ei-::?miss (3) PC+8
two insns
< @ >
BTB ‘ Instruction memory (cache)

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

v

o
»

13

Datapath of 00O execution processor (partially)

Instruction cache

f

Branch handler

\ 4

A

Instruction fetch

v

Instruction decode

Renaming

Instruction flow

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

\

14

Renaming two instructions per cycle for n-way superscalar

« Renaming instruction I0 and I1 (n = 2)

\

plo
po

p4

Cycle 1 Register map table (4R, 2W)
I0: sub x5,x1,x2 0 0
I1: add x9,x5,x4 1 1
I2: or x5,x5,x2) 2
I3: and x2,x9,x1 3 3 | e , A dst =
e M S > A 1 =
Free tag buffer 4 | 4 g > A_src
................ » A src2 =
I s s b 5-5>9
13|12(11]10| 9™ 6 6
A s B o e e Bdst -
v S N e e v {g— B_src1 -
I@ A det e | 9 § _>1@ If B_srcl==A_dst, use tag from free tag buffer
_ SR I I I B A S e B_src2 =
A_srcl = x1 100 | e ——» °—
A_SPCZ = X2 If B_src2==A_dst, use tag from free tag buffer
T1 B_dst = x9 I10: sub p9,pl1,p2
B_srcl = X5 I1: add p10,p9,ps
B_SF‘CZ = X4 — 31

<

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

15

Aside: What is a window?

« A window is a space in the wall of a building or in the side of a vehicle,

A

which has glass in it so that light can come in and you can see out. (Collins)

Instruction window
| J[8][6][5]
L L el 7]

(a) Instruction window Instructions to be executed for an application

Large instruction window

I O I O A

(C) Instruction window Instruction window

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

16

Datapath of 00O execution processor (partially)

Instruction cache

f

\ 4

A

Branch handler

Instruction fetch

v

Instruction decode

Instruction flow

Renaming
» Register file > Dispatch
RS Integer Floating-point | Memory
¥ § ¥ ¥ ¥ §
Lty ety ity il f] HEEEEp RN
NN EEEEEE
Reorder buffer (ROB)

<

Register dataflow

Instruction window

Reservation station (RS)

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

\

17

Reservation station (RS)

« To simplify the wakeup and select logic at issue stage, each functional
unit (ALU) has own instruction window, an entry for such an instruction
window is called reservation station (RS).

 Each reservation station has

 valid bit, srcl tag, srcl data, srcl ready, src2 tag, src2 data, src2 ready,
destination physical register number (dst), operation, ...

« The computed data (outcome) with its dst as tag is broadcasted to all RSs.

instruction window for ALU1 and ALU2 IW for ALU1 IW for ALU1
NN NN FI\
ISsue ‘1' ISsue v & Reservation station
ALU1 ALUZ2
(a) Centralized instruction window (b) Distributed instruction window using RS
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation

&’ For operand srcl For operand src2
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 18

Datapath of 00O execution processor (partially)

\

Instruction flow

Instruction cache

f A 4
Branch handler [« Instruction fetch
v
Instruction decode
Renaming
» Register file > Dispatch
Integer Floating-point |
= I I I I — .
I e 1 o Instruction window
v v v v
| AU | | ALU | | Branch | | FPALU
A A \ 4 ¢
[T I T I I I ITTTITITTTT] Broadcast
Reorder buffer (ROB)
— Register dataflow
~@ Reservation station (RS)
P CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 19

Example behavior of reservation stations

CYCI@ 0 diSpCl‘I'ChA\l:B c‘llb I1: sub p9,Xx1,x2
dispatch I1, I2 IW for ALV % |I_72|¢:| IW for ALU1 g add p19,p9,x3
Issue I4:
v I5: nor pl3,pl0,pl2
dispatch at most two instructions, one to A or B and the other to C or D
valid srcl tag srcl data srclready src2 tag src2 data src2 ready dst operation
RS_A |1| «xi value of x1 1 I x2 value of x2 1 p9 | Il:sub
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_B [
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS C 1 p9 0 I x3 value of x3 1 pl0 | I2:add
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation

RS_D |

=

For operand srcl

For operand src2

)

P CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

20

Example behavior of reservation stations

Cycle 1

dispatch I3, T4
issue Il

IW for ALU1
A B

I1|I3
issue : T1(p9)

IW for ALU1 I1

C D

I2 | T4

\ 4

I3:
I14:

: sub p9\kxA1,x2

I2: add pl19,p9,x3

I5: nor pl3,plo,pl2

dispatch at most two instructions, one to A or B and the other to C or D

\

=

valid srcl tag srcl data srclready src2 tag src2 data src2 ready dst operation
RS_A +e x1 vatue-of-xt 1 I X2 vatueof-x2 1 p9 Tt-sub——
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_B 1| x4 value of x4 1 I x5 value of x5 1 pll | I3:or
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS C 1 p9 0) I x3 value of x3 1 pl0 | I2:add
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_D [1]| pio o] p11 o] pt2 |14 and

For operand srcl

For operand src2

)

P CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

21

Example behavior of reservation stations

Cycle 2

dispatch I5
issue I2, I3
execute Il

IW for ALU1
A B

I5|I3
issue : I3(pll)

Execute: I1 (p9)

IW for ALU1 I1

C D

12|14 g
i : I2(p10 :
issue (p10) T4,

\ 4

: sub p9\kxA1,x2

add p10,p9,x3

I5: nor pl3,plo,pl2

dispatch at most two instructions, one to A or B and the other to C or D

\

=

valid srcl tag srcl data srclready src2 tag src2 data src2 ready dst operation
RS_A [1] »pt0 o | 12 01 p13 |15 nor
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_ B ++1+—4 value-of x4 1 I—x5——vn+ue—o+—x-5 1 pH—F3+or
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS C 1 pS vatue-ofp9 1 I X3 vatue-of-x3 1 pl0—F2+add
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_D [1]| pio o] p11 o] pt2 |14 and

For operand srcl

For operand src2

)

P CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

22

Exercise 1
N\

« Example behavior of reservation stations
I1: sub p9,x1,x2

I2: add ployp9, x3

diapatch |, J

A B

issue I_

\ " 4

téﬁﬂ 18: or pl6,pl5,x1
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 23

Exercise 1
Cycle 1

ll diapatch \L

A B ¢ D

Cycle 3

l, diapatch \1,

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_A I
RS_B I

valid srcl tag srcl data srclready src2tag src2 data src2ready dst operation
RS_C I
RS_D I

valid srcl tag srcl data srclready src2tag src2 data src2ready dst operation
RS_A I
RS_B I

valid srcl tag srcl data srclready src2tag src2 data src2ready dst operation
RS_C I
RS_D I

valid srcl tag srcl data srclready src2tag src2 data src2ready dst operation
RS_A I
RS_B I

valid srcl tag srcl data srclready src2 tag src2 data src2ready dst operation
RS_C

Cycle O dispatch I1,I2

RS_D

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Exercise 1
Cycle 1

ll diapatch \L

A B

I1 I2
issue
I1

Cycle 3

l, diapatch \1,

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_A 1 s vt .C % | 1 I Vo] vatieoaf D 1 el Tl
4 Al vaidae vUj I\J. 1 AL vUidc Ul Ac 1 P7 Ll OoUL
RS_B I
valid srcl tag srcl data srclready src2tag src2 data src2ready dst operation
RS_C | 1| p9 0 I X3 value of x3 1 pl0 | I2:add
RS_D I
valid srcl tag srcl data srclready src2tag src2 data src2ready dst operation
RS_A I
RS_B I
valid srcl tag srcl data srclready src2tag src2 data src2ready dst operation
RS_C I
RS_D I
valid srcl tag srcl data srclready src2tag src2 data src2ready dst operation
RS_A I
RS_B I
valid srcl tag srcl data srclready src2 tag src2 data src2ready dst operation
RS_C

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Cycle O dispatch I1,I2

RS_D

Exercise 1
Cycle 1

diapatch
l’ I3,14 ‘1’
A B ¢ D
I1|I3 I2 | T4

Cycle 3

l, diapatch \1,

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_A 1 s ali s .C % | 1 I vatieoaf D 1 el Tl
4 Al vu1 < Ul I\J. 1 vUidc Ul Ac 1 P7 Ll OoUL
RS_B | 1| po 0 I value of x4 1 | pit | I3or
valid srcl tag srcl data srclready src2tag src2 data src2ready dst operation
RS_C | 1| p9 0 I X3 value of x3 1 pl0 | I2:add
RS D | 1 x5 value of x5 1 I x6 value of x6 1 p12 T4:and
valid srcl tag srcl data srclready src2tag src2 data src2ready dst operation
RS_A I
RS_B I
valid srcl tag srcl data srclready src2tag src2 data src2ready dst operation
RS_C I
RS_D I
valid srcl tag srcl data srclready src2tag src2 data src2ready dst operation
RS_A I
RS_B I
valid srcl tag srcl data srclready src2 tag src2 data src2ready dst operation
RS_C

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Cycle O dispatch I1,I2

RS_D

Exercise 1
Cycle 1

diapatch
l’ I3,14 ‘1’
A B ¢ D
I1|I3 I2 | T4

diapatch
Voo
¢ D
I5|1I3 I2 T4

diapatch
ll 16,17 \1,
c D
I5|1I6 I7|14

issue

I4

.., W

ex 12(p10)

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation

RS_A 1 s vatite—af .1 1 I Vo] vatieoaf D 1 el T1- ol
4 Al vaird Ul Al 1 AL vaird UVl AG 1 P7 Ll OoUL

RSB | 1| po 0 I x4 value of x4 1| p1i1 | I3or

valid srcl tag srcl data srclready src2tag src2 data src2ready dst operation
RS_C | 1| p9 0 I X3 value of x3 1 pl0 | I2:add
RS D | 1 x5 value of x5 1 I x6 value of x6 1 p12 T4:and

valid srcl tag srcl data srclready src2tag src2 data src2ready dst operation
RS_A | 1| pu 0 I p12 o p13 | I5inor
RS—B 1 x5 valteof-x5 1 I x6 valueof-x6 1 'p11 I3+or

valid srcl tag srcl data srclready src2tag src2 data src2ready dst operation
RS—C 1 'p9 vatueof 'p9 1 I X3 vatue-of-x3 1 PIO T2:add
RS D |1 x5 value of x5 1 I x6 value of x6 1 pl2 T4:.and

valid srcl tag srcl data srclready src2tag src2 data src2ready dst operation
RS_A I
RS_B I

valid srcl tag srcl data srclready src2 tag src2 data src2ready dst operation
RS_C I
RS_D

Cycle O dispatch I1,I2

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Datapath of OoO execution processor

Instruction cache

f

\ 4

Instruction fetch

Branch handler

A

v

Instruction decode

Instruction flow

™

»,

Register dataflow

Memory dataflow

Instruction window

Renaming
» Register file > Dispatch
Integer Floating-point | Memory
RS | I I I I I
L Z L 2 L Z L Z L Z L 2
[TI11] [TI111] [III1] [CII11] [T111] [ITI11]
v v v v
| A | | AU | | Branch | FP ALU | Adrgen. | | Adrgen. |
\ 4 A 4 ¢ \
A 4 A 4
NSNS EEEEEEEE LI T T TT T[]
v Store ! !
Reorder buffer (ROB) queue h bata cache
v v

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo Reservation station (RS)

28

Exploiting Instruction Level parallelism (ILP) x
\

* A superscalar has to handle some flows efficiently to exploit ILP

« Control flow (control dependence)

« To execute ninstructions per clock cycle, the processor has to

fetch at least n instructions per cycle.

« The main obstacles are branch instruction (BNE, BEQ, ...)

* Branch prediction
« Another obstacle is instruction cache

 Register data flow (data dependence)

« Qut-of-order execution (1)

* Register renaming g;

« Dynamic scheduling (4)

* Memory data flow (3)
 Out-of-order execution g;

* Another obstacle is data cache (4)

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

add
add
1w

add

1w

add
add
add

x5,x1,x2
x9,x5,x3
x4, 4(x7)
X8, x9, x4

x4, 4(x7)
x5,x1,x2
x9,x5,x3
x8,x9,x4

29

Instruction Level Parallelism (ILP) X
\
1w X5, 0(x2) (1)

addi x6, x5, 4 (2)

(o
sw X6, 0(x3) (3) @

? true data
dependency

lw X7, 0(x4) (4) 0
?
@ ambiguous
data dependency

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 30

Memory dataflow and branches x
\

e The update of a data cache cannot be recovered easily.
So, cache update is done at the retire stage in-order manner by
using store queue.
Because of the ambiguous memory dependency, load and store
instructions can be executed in-order manner.

« About 30% (or less) of executed instructions are load and stores.
« Even if they are executed in-order, IPC of 3 can be achieved.
* Branch instructions can be executed in-order manner.

« About 20% (or less) of executed instructions are jump and branch
instructions.

« Out-or-order branch execution and aggressive miss recovery may
cause false recovery (recovery by a branch on the false control
path).

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 31

Datapath of OoO execution processor

Instruction cache

f

\ 4

Instruction fetch

Branch handler

A

v

Instruction decode

Instruction flow

™

»,

Register dataflow

Memory dataflow

Instruction window

Renaming
» Register file > Dispatch
Integer Floating-point | Memory
RS | I I I I I
L Z L 2 L Z L Z L Z v
[T111] [TI111] [III1] [CIII11] [T111] [T
v v v v
| A | | AU | | Branch | FP ALU | Adrgen. | | Adrgen. |
\ 4 A 4 ¢ \
A 4 A 4
NSNS EEEEEEEE LI T T TT T[]
v Store ! !
Reorder buffer (ROB) queue h bata cache
v v

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo Reservation station (RS)

32

The Memory System's Fact and Goal

* Fact:

\

Large memories are slow, and fast memories are small
* How do we create a memory that gives the illusion of being

large, fast, and cheap?
« Cache memories

« Temporal locality (Locality in Time):

« Keep most recently accessed data items closer to the processor

« Spatial locality (Locality in Space)

« Move blocks consisting of contiguous words to the upper levels

To Processor Upper Level
Memory

Block X

From Processor -

Lower Level
Memory

Block Y

A

[~

~ word

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

33

Direct Mapped Cache Example

« One word/block, cache size = 1K words (4KB)

31 30 1312 11 210 Byte
— offset
Hit Tag | 20 10
1 Index
Index Valid Tag Data
0
1
2
— ? | ¢ 1
1ozi
1022
1023
120 32

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Data

34

Example Behavior of 4-entry Direct Mapped Cache

\
» Consider the main memory word reference string (word 2%
addresses) O12 3 4 3 4 15

Start with an empty cache - all blocks initially marked as not valid

Tag 0 miss 1 miss 2 miss 3 miss

00 | Mem(0) 00 |Mem(0) 00 | Mem(0) 00 | Mem(0)

00 |Mem(1) 00 | Mem(1) 00 | Mem(1)

00 | Mem(2) 00 [Mem(2)

00 | Mem(3)

4 Miss 3 hit 4 hit 15 miss

Olm Mem(0)- 01 | Mem(4) 01 | Mem(4) 01 | Mem(4)

00 | Mem(1) 00 | Mem(1) 00 | Mem(1) 00 | Mem(1)

00 | Mem(2) 00 | Mem(2) 00 | Mem(2) 00 | Mem(2)
00 | Mem(3) 00 | Mem(3) 00 | Mem(3) | 14000 [Mem(3) s

ﬁ, = 8 requests, 6 misses
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 35

Multiword Block Direct Mapped Cache

* Four words/block, cache size = 1K words
Byte

Data

4

i 3130 ... 1312 11 ... 43210
Hit — offset
Tag ~20 438 Block _offset
Index
Index Valid Tag < Data (4 word) >
0
1
2

> e

253
254
255

420

; A\ 4 \ 4 A\ 4 A\ 4

J N

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

~
32

36

Taking Advantage of Spatial Locality

« Let cache block hold more than one word (two words/block)

\

. O12 3 4 3 4 15
0 miss 1 hit 2 MIss
00 [Mem(1) |Mem(0) 00 |[Mem(1) |Mem(0) 00 |Mem(1) [Mem(0)
00 |Mem(3) |Mem(2)
3 hit 01 4 miss) 3hit
00 |Mem(1) |[Mem(0) 08 Mem‘(‘&5 Mem(0)%~| |01 [Mem(5) |Mem(4)
00 |Mem(3) |Mem(2) 00 [Mem(3) [Mem(2) 00 [Mem(3) |Mem(2)
4 hit 15 miss
01 |Mem(5) |Mem(4) 1401 {Mem(5), [Mem(4) |,
00 [Mem(3) [Mem(2) 08 |Mem(3) "|Mem(
@ = 8 requests, 4 misses
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 37

Two-Way Set Associative Cache

« One word/block, 28 = 256 sets where each with three ways (each with one block

219 Byte offset

3130 ... 1312 11
X
Tag ~\22 \\8
Index
IndexV Tag Data V Tag Data
0 0
1 1
2 2
e ° ®)
253 253
254 254
255 255
> _) > _

\X2x1 select

‘ Data

\

38

Three-Way Set Associative Cache

« One word/block, 28 = 256 sets where each with three ways (each with one block

3130 1312 11 21 O/Byte oﬂ’set
X

Index

IndexV Tag Data V Tag Data V Tag Data
0 0 0
1 1 1
2 2 2

—Vl o ®) ® ® ® ®
253 253 253
254 254 254
255 255 255
) o o

~_3x1 select

‘ Data

\

39

Four-Way Set Associative Cache

« One word/block, 28 = 256 sets where each with four ways (each with one block)

\

3130 1312 11 21 O/Byte Oﬂ:set
X
Tag +22 .38
Index
IndexV Tag V Tag V Tag Data V Tag Data
0 0 0 0
1 1 1 1
2 2 2 2
—p ? * ° ? * ?
253 253 253 253
254 254 254 254
255 255 255 255
(—) > —) :’:\ —
J U
|

> 4x1 select

‘ Data

40

Set Associative Caches X
\

* When a miss occurs, which way’s block do we pick for
replacement ?

 Least Recently Used (LRU):
the block replaced is the one that has been unused for the
longest time

* Must have hardware to keep track of when each way’s block was
used

« For 2-way set associative, fakes one bit per set — set the bit
when a block is referenced
(and reset the other way’s bit)

Random

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 41

Recommended Reading
\
« Emulating Optimal Replacement with a Shepherd Cache 2%

 Kaushik Rajan, Govindarajan Ramaswamy, Indian Ins’ru‘ru’re
of Science

« MICRO-40, pp. 445-454,2007
 Session 8: Cache Replacement Policies

* A quote:
“The inherent temporal locality in memory accesses is filtered out by
the L1 cache. As a consequence, an L2 cache with LRU replacement
incurs significantly higher misses than the optimal replacement policy
(OPT). We propose to harrow this gap through a novel replacement
strategy that mimics the replacement decisions of OPT."

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 42

Memory Hierarchy Design

\ — 4—\ — —
Memory Hierarchy
Fp— L2 and lower caches

@ Objective : Need to reduce expensive
memory accesses

@ Design : Large size, Higher associativity,

CONFLICT - MITENTTY. g
sasses, ([e Complex design
w.‘\-\. f.-'hcmm
INTERACTION |

@ Problem : Do not interact with program
directly and observe filtered temporal locality

@ High Associativity — replacement policy crucial to performance

@ L1 cache services temporal accesses — Lack of temporal
accesses at L2 — LRU replacement inefficient

@ Replacement decisions are taken off the processor critical path

ﬁ Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

\

LRU has room for improvement

LRU vs OPT

Nal- ;r:h O
A ey O Dy
U o0 .
pr T =& [Esizke-ruis B s12kedruFa [256K8-opts [512KB-0pt16
15| TN i
o 713%
—107 I 5. .
o \ A
s -
(i T T T T —— T

aart mcf gee luca swim applr’ﬁﬁjmp twulf‘ vpr-i'_'_-f_ﬁ;:-éﬁrﬁgrid ap%i?:avgzﬁ

MPKI for SPEC2000 suite, Benchmarks with MPKI < 5 not plotted but
count towards average

Huge performance gap between LRU and OPT
OPT at half the size preferable to LRU at double the size

ﬁ MPKI: Miss Per Kilo Instructions Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 44

OPT: Optimal Replacement Policy
T ——— —_— .y, — o

<

The Optimal Replacement Policy

@ Replacement Candidates : On a miss any replacement policy
could either choose to replace any of the lines in the cache or
choose not to place the miss causing line in the cache at all.

Q Self Replacement : The latter choice is referred to as a
self-replacement or a cache bypass

Optimal Replacement Policy
On a miss replace the candidate to which an access is least
imminent [Belady 1966 Mattson 1970, McFarling-thesis]

@ Lookahead Window : Window of accesses between miss causing

access and the access to the least imminent replacement
candidate. Single pass simulation of OPT make use of lookahead
windows to identify replacement candidates and modify current

cache state [Sugumar-SIGMETRICS1993]

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

\

Example of Optimal Replacement Policy
T ——— —_— .y, — o

Understanding OPT

AW ‘A IA A JA A A TA A A LA
Access Sequence 5)%1; 6/ 3171 45T 21T s T e g
OPTorderfor Asf" (g ! {1} ioi3iaf | |

i i Lo I i I I I —
DPImﬂmfnr%j Co o223y b4

@ Consider 4 way associative cache with one set initially containing lines
(41,42 43 _44), consider the access stream shown in table
@ Access 45 misses, replacement decision proceeds as follows

& Identify replacement candidates : (4y 45 A3, 44.45)

& Lookahead and gather imminence order - shown in table,
lookahead window circled

) Make replacement decision : A4s replaces A

@ Ag self-replaces, lookahead window and imminence order in table

@3 Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

\

46

Four-Way Set Associative Cache

« One word/block, 28 = 256 sets where each with four ways (each with one block)

\

3130 1312 11 21 O/Byte Oﬂ:set
X
Index
IndexV Tag Data V Tag Data V Tag Data V Tag Data
0 0 0 0
1 1 1 1
2 2 2 2
Ty A [T 221 ¢ T As| 1Az
253 253 253 253
254 254 254 254
255 255 255 255
5 D D
® SR

> 4x1 select

‘ Data

47

Shepherd Cache emulation OPT

S

Emulating OPT with a Shepherd Cache

FPROCESSOR

Shepherd| |
Cache

MEMORY

@ Split the cache into two logical parts

@ Main Cache (MC) for which optimal
replacement is emulated

@ Shepherd Cache (5C) used to provide a
lookahead and guide replacements from MC
towards OPT

@ Operation

& Buffer lines temporarily in SC before moving
them to MC,. SC acts as a FIFO buffer

@ While in SC, gather imminence information and
emulate lookahead

& When forced out of SC, make an MC
replacement based on the gathered imminence
order

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

E CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

\

Shepherd Cache Overview

S

Overview of Shepherd Caching

NV, | NV,

SC,
SC)

MC | Ag

CM

|
|
|
|
|
|
|
|
|
|
|
|
A..j |
|
|
|
|
|
|
|
|
|

lAsa AgAz A Ay
|

|

Ag Ay As A7 AgAg |

Ty, - ——

To emulate MC with 4 ways per set and 2 SC
ways per set

To gather imminence order add a counter
matrix (CM)

CM has one column per SC way to track
imminence order w.r.t to it

CM has one row per SC and MC line as any
of them can be a replacement candidate

Each column has one |[Next Value Counter
(NVC) to track the next value to assign along
column

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

\

Exercise 1

NVC,

SCS

W CE

50,

MC [Ag

M
]-'-"*5,-“1,-"&,-“3,-"‘ 1.4,
AsAgAgsAqAgAg

(a) Initial State

MC (Main Cache)
SC (Schepherd Cache)
CM (Counter Matrix)
NVC (Next Value Counter)
NVC, NVC,,
|
SC, |
SC, l
Ay i
As i
MC | A3 |
Ay |
CM i

A5 Ay Ag Ag Ag Agl

|

NVC, NVC,)

|

|

SCy |
SC, !
1

A :

1

Az |

MC [AS |
3 !

Ay E

CM 1

1

(b} Az inserted
at Sy

NVC, NVC,

|

SCo I

- |
sC

I I

Al I

An I

- I

MC [AS !

|

Ag |

CM i

Ag Ay Ap iz Ayl

|

1

AgAgzAgAqAg Ag

1
NVC, NV
SC,
sC,
Al
Ag
MC |[AS
Ay
CM

As A 'Ag Az A Ay

(c) A1 added w
the optimal order
of S

NVC, NVC!

1

SC, i

= 1
SC

I |

Al i

Ao :

- 1

MC [Ag !

1

M i

Ag A Ag Az Ay Ayl

1

Access Sequence ASEAlEAGEA3EA15A4EA5EA'&EA55A7EA6E As
— T —~12 added w
OPTorderfor As| i(o{ {11! i2i3i4f | | ! limal order of
1 1 [1 1 1 1 1 1 1 1 [} SC.I
IOPT order for A6 i i E 0 i 1 i 2 E 3 E E i i 4_; 1. 2]

NVC, ’“"C:i

SC,
SC)

A

Az
MC |[As

Ay

M

AsA A Az A Ayl AsA | Agdza) Ay

1 1
AsAsy AgAg Ag Agl Ag Az AsAg Ag Agl As AjAsAg Ag Ag!

(dy Ag insened
at ST

NVC, NVCa:
-1

1

SC, I
SC, I
|

Ay I

A- |

- 1

MC [A3 !
1

CM i

Ag Ay Ag Az iy Ayl
|

1

ij}) As moves
from SC o MC
replacing Aa

(e} Aa added to
the optimal order

of 577,50
1
1
SC, |
sSC, I
1
A i
An :
- 1
MC |[As !
1
CM i
Ag Ay Ap g fg Ayl
1
1

(k) As added to
optimal order

NVC, ’“"C:i
|

SC,
sSC,

A

Az
MC |[As

Ay

M

NVC, NVC,

SC,
sC,

Al

Al
MC [A3

Ay

C

AgAg Ag Az A Ay

(M A1 added 1o
optimal order of
SCa

NVC, NVC,)

|

|

SC, !
SC, i
A :

A, '

I

|

Ay !

LM 1

1

1

1

1

(1} Self Replace-
ment (Ag evicts
itself)

MC

M
ll.‘a.i.‘a. A A A Ay

AgshqAsAgAg Ag

(a) Initial State

MC (Main Cache)

SC (Schepherd Cache)

CM (Counter Matrix)

NVC (Next Value Counter)

NVCs

:

T

sc{ AL 0fe] |
SC_As ele| |
Ay 0l 1]

e Ay ele| i
Az 1|0 i

Ay 202

cM

A A AL AL AL A

(g) A4 added to
optimal order of
5C,5C

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

| 1
W @] e [
- - !
sC) e Ni\s, e i SC
sC| Ag e 1 5C) ?‘*\c SOy
A ! A 1
1 e ! 1 [:

.“"‘-1. F 1 ."I.Jj c 1
MCF—— b omac—— ¥
Ag € i Ag e i
Ay el | Ay el ||
oM M

' :
1

by As
at Sy

inseried

NVCs

|
.

T

s Ag Ole| |
SC Ag 33 :
Ay 0l 1]

Ag ele i

MCF 0] !
Ay 2[2]1

cM i

A Ay Ag Az A Ayl
|

A5AnAgAgAgAg!

(hl Az added to
optimal order of
SC1.5C

increment

Ag A Ap Az A Ay

As Aj Ag Ag Ag Ag : As Ag Asg Ag Ag Ag :

1 1
I nves |2 2]
1 |
| SOAL Ole| i
LoSEyAS ele| !
| A 1
1 1
| r-f{n::ﬁ1 e
i Aj 1o
! Ay ele| !
1 1
CN

| i, |
1 1
1 1
1

1

ic) A1 added o (dy Ag insered {e) Az added to (" A1 added to
the optimal order at S the optimal order optimal order of
of 57 of S5C,5C2 S
oldest (FIFO
() oldest
NWVCs 5|5| i MV Cs |ﬂ 5| i MY Cs .{|-ﬁ- i MYV Cs :
by] bt |
L ! I S b |
sc Ag e E sc\ Ag ele E scf Ag 05 E sc VA Nl e i
SC As K e 01 S5 A e|0 ! scag ele|
Ay of 1] | A el 1] 1 Ay el 1] | A elel |
1 1 I [l
w2l L4 LAS] [el3]r | [AS] [e]3]: A5 lelel
Az 0] Ag €| 0] Az el0] METAS ele| |
Ay 212] Ag el 2] ! Ay HEN Ay cgi
CM i CM i CM i oM |
AsApAgAz A Agl AgA AgAg A Agl Ag Ay Agas a‘].r-t.: -ﬁ-s_r\l_ﬁﬁ_-ﬁ-3_f\l_ﬂ4_i
1 1 1 1
AsAgAsAgAgAgl sAASATRLAR! AsAASATAGRE!l AZA Az A7 AgAR
, | Access Sequence [Agi A TAGAIA A LAGA TASA LA
(i) A2 added to () oi 11 6 3 1 4 5 2 5 7 6
optimal order of fromPPTorderfor As| 1(g: 3¢ 1213140 &+ 10
S0 PSP T order for agl | F feiari2isi 11 T4

creative procrastination

51

Shepherd cache bridges 32 - 52% of the gap

S

Bridging the performance gap

Average MPKI

T

—

m lru=-1s (JB)
¢ sc-12(136E)
¥ sc-8 (92E)
& go-A ([T1E)
B co-4 (488)
4 so-2 [25E)

M opt=16 (=)

S12KB

1MB 2MB

4MB

Avg MPKI over SPEC2000 suite

p —

Ty,

Bridging the LRU-OPT gap
@ SC-4 bridges 32-52%
of gap

@ SC moves closer to
OPT as cache size
increases

MPKT: Miss Per Kilo Instructions

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

E CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

\

52

