
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 1

Computer Organization and Architecture

2. Instruction Level Parallelism:
Pipelining Processor and Branch Prediction

Ver. 2025-12-11aFiscal Year 2025

Course number: CSC.T440
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/coa/
Room No. M-112(H117), Lecture (Face-to-face)
Thr 13:30-15:10

Kenji Kise, Department of Computer Science
kise[at]comp.isct.ac.jp

2CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Typical five steps in processing an instruction

• IF: Instruction Fetch
fetch an instruction from instruction memory or instruction
cache

• ID: Instruction Decode
decode an instruction and read input operands from register file

• EX: Execution
perform operation, calculate an address of lw/sw

• MEM: Memory Access
access data memory or data cache for lw/sw

• WB: Write Back
write operation result and loaded data to register file

2

3CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Single-cycle implementation of processors

• Single-cycle implementation also called single clock cycle
implementation is the implementation in which an instruction is
executed in one clock cycle.
While easy to understand, it is too slow to be practical.
It is useful as a baseline for lectures.

4CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Exercise 1

• Draw the main datapath of the processor m_rvcore and write the bit-
width and valid values on wires when the processor is executing the
third instruction

0x00 addi x1, x0, 3 # x1 = 3

0x04 addi x2, x1, 4 # x2 = 3 + 4 = 7

0x08 add x5, x1, x2 # x5 = 3 + 7 = 10

m_regfile

regfile1

w_rs1

m_imem

imem1
r_pc

w_rs2

w_rrs1

w_rrs2_t

w
_

rr
s2

M
u
x

w_rslt

w_imm

w_rd

m_alu

alu1

M
u
x

m
_
d
ec

o
d
er

d
ec
o
d
er
1

+

4

R-typefunct7 rs2 rs1 funct3 rd opcode

add x5, x1, x2

5CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

m_rvcore (RV32I, single-cycle processor)

• around 40MHz operating frequency for Arty A7 FPGA board

• lb, lbu, lh, lhu, sb, sh are not supported

m_regfile

regfile1

(32bit x 32)

w_rs1

m_imem

imem1

(32bit x 1024)

m_dmem

dmem1

(32bit x 8K)

r_pc

32

+

w_rs2

w_rslt

m_decoder

decoder1 5 w_rrs1

w_rrs2_t

w_rrs2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

w_ldd

M
u
x

w_rslt

D_OUT

w_rrs1

w_imm

w_rrs2

w_rrs1

w_rrs2

w_rrs1

w_imm

D_WE

r_pc

32

5

5

32

32

1

32

32

32

32

32

32

32

m_rvcore1
(proc1.v)

w_rd

r_pc

w_ir
m_alu

alu1

m_bru

bru1

M
u
x

w_itype[`D_S_TYPE]

M
u
x

+ w_tkn_pc

M
u
x

32

+

`START_PC

w_b_rslt, w_rst

w_imm32

32
4

w_itype[`D_LD__IS]

w_jalr

w_op_im

w_jalr

w_op_im
w_itype

w_bru_c

w_alu_c

w_bru_c
w_alu_c

r_pc

w_clk
w_clk

w_clk

w_clk

6CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Critical path of rvcore1 (single-cycle version)

• The critical path is defined as the path between a source register (or
memory) and a destination register with the maximum delay.

• The path for Load Word instruction like lw x5, 8(x7)

m_regfile

regfile1

(32bit x 32)

w_rs1

m_imem

imem1

(32bit x 1024)

m_dmem

dmem1

(32bit x 8K)

r_pc

32

+

w_rs2

w_rslt

m_decoder

decoder1 5 w_rrs1

w_rrs2_t

w_rrs2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

w_ldd

M
u
x

w_rslt

D_OUT

w_imm

w_rrs2

w_rrs1

w_rrs2

w_rrs1

w_imm

D_WE

r_pc

32

5

5

32

32

1

32

32

32

32

32

32

32

rvcore1

w_rd

r_pc

w_ir
m_alu

alu1

m_bru

bru1
M
u
x

w_itype[`D_S_TYPE]

M
u
x

+ w_tkn_pc

M
u
x

32

+

`START_PC

w_b_rslt, w_rst

w_imm32

32
4

w_itype[`D_LD__IS]

w_jalr

w_op_im

w_jalr

w_op_im
w_itype

w_bru_c

w_alu_c

w_bru_c
w_alu_c

r_pc

7CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Single-cycle implementation of laundry

• (A) Ann, (B) Brian, (C) Cathy, and (D) Don each have dirty clothes to be
washed, dried, folded, and put away, each taking 30 minutes.

• The cycle time (the time from the end of one load to the end of the
next one) is 2 hours.

• For four loads, the sequential laundry takes 8 hours.

cycle time

8CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Single-cycle implementation and pipelining

• When the washing of load A is finished at 6:30 p.m., another washing of
load B starts.

• Pipelined laundry takes 3.5 hours just using the same hardware
resources. The cycle time is 30 minutes.

• What is the cycle time
(latency) of each load?

pipeline diagram

9CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Bucket brigade

10CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Clock rate is mainly determined by

• Switching speed of gates (transistors)

• The number of levels of gates

• The maximum number of gates cascaded in series in any
combinational logics.

• In this example, the number of levels of gates is 3.

• Wiring delay and fanout

10

Register A

Register B

NAND gate

OR gate

AND gate

Register A

Register B
NAND gate

OR gate

Register C

Split a path by placing registers

11CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Pipelining example: multiply-add operation (1)

• As an example of pipelining, we will see a multiply-add circuit.

• r_b, r_c are input registers and r_y is output register of the circuit.

• This has two paths named path1 and path2, and path1 is the critical path
to determine the maximum operating frequency.

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c

3 r_b
16

×
32

+ r_y
32

+
r_c

32

r_y
32

(a) Path1

(b) Path2

Critical path

multiply

add

12CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Pipelining example: multiply-add operation (2)

• By inserting register r_d, the critical path can be divided into Path3
and Path4.

• As a result, the new critical path becomes Path3.

• This has the disadvantage that input b and c in the same clock cycle
cannot be processed.

16

16 16

×
32

+
r_c

32 32

r_y
32 32

b

c
y

3

r_d

16

16

×
32

3

r_d

+ r_y
32

r_d

+
r_c

32

r_y
32

(b) Path4

(c) Path2

(a) Path3

r_b

r_b

Critical path

13CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Pipelining example: multiply-add operation (3)

• To overcome this drawback, we insert register r_e.

• This realizes a pipeline with stages 1 and 2. A set of registers between
two adjacent stages are called a pipeline register.

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c
y

3

r_e

32

32

stage 1 stage 2

r_d

pipeline register

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c
y

3

r_e

32

32

stage 1 stage 2

r_d

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c

3

(a) original multiply-add circuit (b) two-stage pipelined circuit

Critical path

14CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

rvcore_2s : 2-stage pipelining processor

• The strategy is to separate the instruction fetch (IF) step and other (ID, EX,
MA, WB) steps. The first stage is named IF. The other stage is named EX+.

m_regfile

regfile1

(32bit x 32)

w_rs1

m_imem

imem1

(32bit x 1024)

m_dmem

dmem1

(32bit x 8K)

r_pc

32

+

w_rs2

w_rslt

m_decoder

decoder1 5 w_rrs1

w_rrs2_t

w_rrs2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

w_ldd

M
u
x

w_rslt

D_OUT

w_rrs1

w_imm

w_rrs2

w_rrs1

w_rrs2

w_rrs1

w_imm

D_WE

P1_pc

32

5

5

32

32

1

32

32

32

32

32

32

32

rvcore_2s

w_rd

r_pc

w
_

ir m_alu

alu1

m_bru

bru1
M
u
x

w_itype[`D_S_TYPE] & P1_v

M
u
x

+ w_tkn_pc

M
u
x

32

+

`S
T

A
R

T
_

P
C

w_b_rslt & P1_v

w_imm32

32
4

w_itype[`D_LD__IS]

w_jalr

w_op_im

w_jalr

w_op_im
w_itype

w_bru_c

w_alu_c

w_bru_c
w_alu_c

r_pc

P1_pc

P1_ir

P1_v

P1

P1_v

w_b_rslt & P1_v

IF stage EX+ stage

15CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

rvcore_2s : 2-stage pipelining processor

CC1 CC2 CC3 CC4 CC5

IF EX+

IF EX+

IF EX+

32’h0 addi x1,x0,3

32’h4 addi x2,x1,4

32’h8 addi x10,x2,5

32’hc addi x30,x10,0

Time
Instructions

EX+

(a) rvcore_2s: 2-stage pipelining processor

(b) pipeline diagram of rvcore_2s

IF

16CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Why do branch instructions degrade IPC?

• The branch taken / untaken (branch result) is determined in the EX+
stage of the branch.

• The conservative approach is stalling instruction fetch until the branch
direction is determined.

IF EX+

IF EX+

IF EX+

IF EX+

IF EX+

IF EX+

IF EX+

1. addi

2. addi

3. bne

4. addi

5. addi

6. addi

7. addi

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9

Control dependency

two-stage pipelining processor executing instruction sequence with a branch (bne)

stall

17CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Why do branch instructions degrade IPC?

• Another approach is fetching the following instruction (an instruction
at the next address) when a branch (bne) is fetched.

• When a branch (08 bne) is taken to address 0x30, the wrong
instruction fetched (0c addi) must be flushed.

IF EX+

IF EX+

IF EX+

IF EX+

IF EX+

IF

IF EX+

00 addi

04 addi

08 bne

0c addi

10 addi

14 addi

18 addi

cc1 cc2 cc3 cc4 cc5 cc6 cc7

IF EX+

IF EX+

IF EX+

IF EX+

IF EX+

IF

IF EX+

00 addi

04 addi

08 bne

0c addi

30 add

34 add

38 add

cc1 cc2 cc3 cc4 cc5 cc6 cc7

(a) branch untaken case (b) branch taken case

Control dependency

Flush the wrong insn.

18CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

rvcore_3s : 3-stage pipelining processor

• The strategy is to separate the instruction fetch (IF) step, instruction decode (ID) step,
and other (EX, MA, WB) steps. The first stage is named IF. The second stage is named ID.
The last stage is named EX+.

m_regfile

regfile1

(bypass)

w_rs1

m_imem

imem1

m_dmem

dmem1

r_pc

32

+

w_rs2

w_rslt

5 w_rrs1

w_rrs2_t

w
_

rr
s2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

w_ldd

M
u
x

w_rslt

D_OUT

P2_rrs1

P2_imm

P2_rrs2

P2_rrs1

P2_rrs2

P2_rrs1

w_imm

D_WE

P1_pc

32

5

5

32

32

1

32

32

32

32

32

32

32

w_rd

r_pc

w
_

ir

m_alu

alu1

m_bru

bru1

M
u
x

P2_itype[`D_S_TYPE] & P2_v

M
u
x

+ w_tkn_pc

M
u
x

32

+

w_b_rslt

& P2_v

w_imm32

32
4

P2_itype[`D_LD__IS]

P2_jalr

w_op_im

w_jalr

w_op_im
w_itype

P2_bru_c

P2_alu_c

w_bru_c
w_alu_c

P1

P2_v

!(w_b_rslt & P2_v)

IF stage ID stage EX+ stage

P2_rd

`S
T

A
R

T
_

P
C

m
_
d
ec

o
d
er

d
ec
o
d
er
1

P2

P1_pc

P1_ir

P1_v

P2_

rrs2

P2_

rrs1

P2_pc

P2_

imm_t

P2_

imm

P2_v

19CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Exercise 2

• Draw the main datapath of the processor rvcore_3s and write the valid
values on wires when the processor is executing these three
instructions

0x00 addi x1, x0, 3 # x1 = 3

0x04 addi x2, x1, 4 # x2 = 3 + 4 = 7

0x08 add x5, x1, x2 # x5 = 3 + 7 = 10

addi x1, x0, 3addi x2, x1, 4add x5, x1, x2

m_regfile

regfile1

(bypass)

w_rs1

m_imem

imem1
r_pc

w_rs2

w_rrs1

w_rrs2_t

w
_

rr
s2

M
u
x

w_rslt

w_imm

w_rd

m_alu

alu1

M
u
x

P2_rd

m
_
d
ec

o
d
er

d
ec
o
d
er
1

P1_ir

P2_

rrs2

P2_

rrs1

IF stage ID stage EX+ stage

20CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Why do branch instructions degrade IPC?

• Another approach is fetching the following instructions (0c addi, 10
addi) after a branch (bne) is fetched.

• When a branch (08 bne) is taken, the wrong instructions fetched
(0c addi, 10 addi) must be flushed.

IF ID EX+

IF ID EX+

IF ID EX+

IF ID EX+

IF ID EX+

IF ID EX+

IF ID EX+

00 addi

04 addi

08 bne

0c addi

10 addi

30 add

34 add

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9 cc10

Control dependency

three-stage pipelining processor executing instruction sequence with a taken branch

Flush these wrong instructions

21CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

rvcore_4s : 4-stage pipelining processor

• The strategy is to separate the instruction fetch (IF) step, instruction decode (ID) step,
and write back(WB) step, and other (EX, MA) steps. The first stage is named IF. The
second stage is named ID. The third stage is named EX+. The last stage is named WB.

m_regfile

regfile1

(bypass)

w_rs1

m_imem

imem1
r_pc

32

+

w_rs2

w_rslt

5 w_rrs1

w_rrs2_t

w
_

rr
s2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

M
u
x

w_rslt

D_OUT

w_exrrs1

P2_imm

w_exrrs2

w_exrrs1

w_exrrs2

w_exrrs1

w_imm

D_WE

P1_pc

32

5

5

32

32

1

32

32

32

32

32

32

32

w_rd

r_pc

w
_

ir m_alu

alu1

m_bru

bru1

M
u
x

P2_itype[`D_S_TYPE] & P2_v

M
u
x

+ w
_

tk
n
_

p
c

M
u
x

32

+

w_b_rslt

& P2_v

w_imm32

32
4

P
3

_
it

y
p

e[
`D

_
L

D
_

_
IS

]

P2_jalr

w_op_im

w_jalr

w_op_im
w_itype

P2_bru_c

P2_alu_c

w_bru_c
w_alu_c

P1

P3_v

w_b_rslt & P2_v

IF stage ID stage EX+ stage

P3_rd

`S
T

A
R

T
_

P
C

m
_
d
ec

o
d
er

d
ec
o
d
er
1

P2

P1_pc

P1_ir

P1_v

P2_

rrs2

P2_

rrs1

P2_pc

P2_

imm_t

P2_

imm

P2_v

WB stage

P3_

ldd

P3_v

P3

M
u
x

M
u
x

w_exrrs1

w_exrrs2

m_dmem

dmem1

P3_

a_rslt

d
at

a
fo

rw
ar

d
in

g

22CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

rvcore_4s : 4-stage pipelining processor

• Critical path

• deley(register read) + delay(mux) + delay(mux) + delay(adder) + delay(dmem read)

m_regfile

regfile1

(bypass)

w_rs1

m_imem

imem1
r_pc

32

+

w_rs2

w_rslt

5 w_rrs1

w_rrs2_t

w
_

rr
s2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

M
u
x

w_rslt

D_OUT
P2_imm

w_exrrs2

w_exrrs1

w_exrrs2

w_exrrs1

w_imm

D_WE

P1_pc

32

5

5

32

32

1

32

32

32

32

32

w_rd

r_pc

w
_

ir m_alu

alu1

m_bru

bru1

M
u
x

P2_itype[`D_S_TYPE] & P2_v

M
u
x

+ w
_

tk
n
_

p
c

M
u
x

32

+

w_imm32

32
4

P
3

_
it

y
p

e[
`D

_
L

D
_

_
IS

]

P2_jalr

w_op_im

w_jalr

w_op_im
w_itype

P2_bru_c

P2_alu_c

w_bru_c
w_alu_c

P1

P3_v

w_b_rslt & P2_v

P3_rd

`S
T

A
R

T
_

P
C

m
_
d
ec

o
d
er

d
ec
o
d
er
1

P2

P1_pc

P1_ir

P1_v

P2_

rrs2

P2_

rrs1

P2_pc

P2_

imm_t

P2_

imm

P2_v

P3_

ldd

P3_v

P3

M
u
x

M
u
x

w_exrrs1

w_exrrs2

m_dmem

dmem1

P3_

a_rslt

23CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Exercise 3

• Draw the main datapath of the processor rvcore_4s and write the valid
values on wires when the processor is executing these three
instructions in ID, EX+, and WB stages

0x00 addi x1, x0, 3 # x1 = 3

0x04 addi x2, x1, 4 # x2 = 3 + 4 = 7

0x08 add x5, x1, x2 # x5 = 3 + 7 = 10

addi x1, x0, 3addi x2, x1, 4add x5, x1, x2

m_regfile

regfile1

(bypass)

w_rs1

m_imem

imem1
r_pc

w_rs2

w_rrs1

w_rrs2_t
w

_
rr

s2

M
u
x

w_rslt

w_imm

w_rd

m_alu

alu1

M
u
x

P3_v

P3_rd

m
_
d
ec

o
d
er

d
ec
o
d
er
1

P1_ir

P2_

rrs2

P2_

rrs1 P3_

a_rslt

M
u
x

M
u
x

24CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Why do branch instructions degrade IPC?

• Another approach is fetching the following instructions (0c addi, 10
addi) after a branch (bne) is fetched.

• When a branch (08 bne) is taken, the wrong instructions fetched
(0c addi, 10 addi) are flushed.

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

00 addi

04 addi

08 bne

0c addi

10 addi

30 add

34 add

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9 cc10

Control dependency

four-stage pipelining processor executing instruction sequence with a taken branch

Flush the wrong insn.

25CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Comparison of critical path between rvcore1 and rvcore_4s

(a) the critical path of rvcore_1s

deley(register read) + delay(imem read) + delay(decode)
+ delay(regfile read) + delay(adder) + delay(dmem read)
+ delay(mux)

(b) the critical path of rvcore_4s

deley(register read) + delay(mux) + delay(mux)
+ delay(adder) + delay(dmem read)

26CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Recommended Reading

• Increasing Processor Performance by Implementing Deeper Pipelines

• Eric Sprangle , Doug Carmean (Intel Corporation)

• ISCA-2002 pp. 25-34 (2002)

27CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Why do branch instructions degrade IPC?

• Another approach is fetching the instruction with branch prediction
when a branch (bne) is fetched.

• Predict the branch outcome (taken / untaken), and taken PC.

• When a preciction is miss, the wrong instructions fetched are flushed.

IF EX+

IF EX+

IF EX+

IF EX+

IF EX+

IF

IF EX+

00 addi

04 addi

08 bne

0c addi

10 addi

14 addi

18 addi

cc1 cc2 cc3 cc4 cc5 cc6 cc7

IF EX+

IF EX+

IF EX+

00 addi

04 addi

08 bne

30 add

34 add

38 add

3c add

cc1 cc2 cc3 cc4 cc5 cc6 cc7

(a) branch prediction as untaken and hit (b) branch prediction as taken and hit

Flush the wrong insn.

IF EX+

IF EX+

IF

IF EX+

28CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Hardware branch predictor

• A branch predictor is a digital circuit that tries to guess or predict
which way (taken or untaken) a branch will go before this is known
definitively.

• A random predictor will achieve about a 50% hit rate because the
prediction output is 1 (taken) or 0 (untaken).

• Let’s guess the accuracy.
What is the accuracy of typical branch predictors for high-
performance commercial processors?

29CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Sample program: vector add (function v_add)

#define VSIZE 4
void v_add(int *A, int *B, int *C){
for(i=0; i<VSIZE; i++)
C[i] += (A[i] + B[i]);

}

int main(){
for(int i=0; i<N; i++) v_add(A, B, C);

}

*C = *C + (*A + *B)
i++
A++
B++
C++
i < 4

return

False True

B1

B2

B3

i = 0

Control flow graph

B1 B2 B2 B2 B2 B3

B3 B3 B3 B2

Not Taken (0) Not Taken (0) Not Taken (0) Taken (1)

Taken (1) Taken (1) Taken (1) Not Taken (0)

Instruction sequence

Predicting the branch outcome sequence of 1110 1110 1110 1110 1110 …

Time

Basic block contains a sequence of statement.
The flow of control enters at the beginning of the
statement and leave at the end.

30CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Simple branch predictor: 2-bit counter (2BC)

• It uses two bit register as a saturating counter.

• How to update the register

• If the branch outcome is taken and the value is not 3, then increment the register.

• If the branch outcome is untaken and the value is not 0, then decrement the register.

• Hot to predict

• It predicts as 1 if the MSB of the register is one, otherwise predicts as 0.

Prediction

Weakly
Taken (2)

Weakly
Untaken (1)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (3)

Taken

Strongly
Untaken (0)

Untaken

2 bit

Predicting the sequence of 1110 1110 1110 1110 1110 ...
State of the counter 2333 2333 2333 2333 2333 ...
Prediction 1111 1111 1111 1111 1111 ...
Hit/Miss of the pred. HHHM HHHM HHHM HHHM HHHM

MSB of the
register is one

MSB of the
register is zero

31CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Sample program: vector add with two branches

#define VSIZE 4
void v_add(int *A, int *B, int *C){
for(i=0; i<VSIZE; i++) {
if(A[i]<0) error_routine();
C[i] += (A[i] + B[i]);

}
}

B1 B4 B2 B4 B2 B4 B2 B4 B2 B3

B3 B3 B3 B2

0 1 0 1 0 1 0 0

Executed instruction sequence

i = 0

*C = *C + (*A + *B)
i < 4

return

False True

B1

B4

B3

Error check
A[i] < 0

B2

Control flow graph

Predicting the sequence of 01010100 01010100 01010100 ...

We add a branch for error checking.
We assume that this error rarely occurs.

32CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Sample program: vector add with two branches

B1 B4 B2 B4 B2 B4 B2 B4 B2 B3

B3 B3 B3 B2

0 1 0 1 0 1 0 0

Executed instruction sequence

Predicting the branch outcome sequence
01010100 01010100 01010100 ...

The B4’s sequence 01010100 01010100 01010100 ...

The B2’s sequence 01010100 01010100 01010100 ...

33CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Simple branch predictor: bimodal

• Program has many static branch instructions. The behavior may depend on
each branch. Use plenty of counters (PHT) and assign a counter for a branch
instruction.

• How to predict

• Select a 2-bit counter using PC, and it predicts 1 for taken if the MSB of
the register is one; otherwise, it predicts 0 for untaken.

• How to update

• Select a counter using PC, then update the counter in the same way as 2-
bit counter.

Pattern History Table (PHT)
Program
Counter

…

2n entry

Predictionn

Weakly
Taken (2)

Weakly
Untaken (1)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (3)

Taken

Strongly
Untaken (0)

Untaken
2 bit

34CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

#define N 1024 // Number of PHT entries
int pht[N]; // pattern history table
int idx; // index of PHT
/**/
void init_predictor()
{

for(int i=0; i<N; i++) pht[i] = 2;
}

/**/
int make_prediction(unsigned int pc)
{

idx = (pc>>2) % N;
return (pht[idx] & 0x2) ? 1 : 0;

}

/**/
void train_predictor(unsigned int pc, int outcome)
{

if(outcome==1 && pht[idx]<3) pht[idx]++;
if(outcome==0 && pht[idx]>0) pht[idx]--;

}

/**/
int main()
{

int pred; // branch prediction
int outcome; // branch outcome (taken/untaken)
init_predictor();

int pc = 0x20;
for(int i=1; i<25; i++) {

pred = make_prediction(pc); /***** prediction *****/

outcome = (i % 4) ? 1 : 0; /***** branch outcome: 111011101110... *****/

printf("%4d: pc=%3x, idx=%d, cnt=%d, pred=%d, outcome=%d ",
i, pc, idx, pht[idx], pred, outcome);

train_predictor(pc, outcome); /***** training *****/

if(pred==outcome) printf("hit\n"); else printf("miss\n");
}
return 0;

}

Simple branch predictor: bimodal

1: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
2: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
3: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
4: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
5: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
6: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
7: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
8: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
9: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit

10: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
11: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
12: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
13: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
14: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
15: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
16: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
17: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
18: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
19: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
20: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
21: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
22: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
23: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
24: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss

Predicting the branch outcome sequence
1110 1110 1110 1110 1110 …

35CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Simple branch predictor: bimodal

Pattern History Table (PHT)
Program
Counter

…

2n entry

Predictionn

Weakly
Taken (2)

Weakly
Untaken (1)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (3)

Taken

Strongly
Untaken (0)

Untaken
2 bit

Predicting the sequence 01010100 01010100 01010100 ...

The B4’s sequence 01010100 01010100 01010100 ...
State of the counter 2 1 0 0 0 0 0 0 0 0 0 0 ...
Prediction 1 0 0 0 0 0 0 0 0 0 0 0 ...
Hit/Miss or the pred. M H H H H H H H H H H H ...

The B2’s sequence 01010100 01010100 01010100 ...
State of the counter 2 3 3 3 2 3 3 3 2 3 3 3 ...
Prediction 1 1 1 1 1 1 1 1 1 1 1 1 ...
Hit/Miss or the pred. H H H M H H H M H H H M ...

36CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

/**/
int make_prediction(unsigned int pc)
{

idx = (pc>>2) % N;
return (pht[idx] & 0x2) ? 1 : 0;

}

/**/
void train_predictor(unsigned int pc, int outcome)
{

if(outcome==1 && pht[idx]<3) pht[idx]++;
if(outcome==0 && pht[idx]>0) pht[idx]--;

}

/**/
int main()
{

int pred; // branch prediction
int outcome; // branch outcome (taken/untaken)
init_predictor();

int pc;
for(int i=1; i<25; i++) {

if(i&1) { pc = 0x10; } else { pc = 0x20;}

pred = make_prediction(pc); /***** prediction *****/

if(pc==0x10) {
outcome = 0;

}
else {

outcome = (i/2 % 4) ? 1 : 0; /***** outcome: 111011101110... *****/
}

printf("%4d: pc=%3x, idx=%d, cnt=%d, pred=%d, outcome=%d ",
i, pc, idx, pht[idx], pred, outcome);

train_predictor(pc, outcome); /***** training *****/

if(pred==outcome) printf("hit\n"); else printf("miss\n");
}
return 0;

}

Simple branch predictor: bimodal

1: pc= 10, idx=4, cnt=2, pred=1, outcome=0 miss
2: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
3: pc= 10, idx=4, cnt=1, pred=0, outcome=0 hit
4: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
5: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
6: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
7: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
8: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
9: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit

10: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
11: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
12: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
13: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
14: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
15: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
16: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
17: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
18: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
19: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
20: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
21: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
22: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
23: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
24: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss

37CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Accuracy of simple predictors with 8KB HW budget

0

10

20

30

40

50

60

70

80

90

100

F
P

-1

F
P

-2

F
P

-3

F
P

-4

F
P

-5

IN
T
-1

IN
T
-2

IN
T
-3

IN
T
-4

IN
T
-5

M
M

-1

M
M

-2

M
M

-3

M
M

-4

M
M

-5

S
E
R

V
-1

S
E
R

V
-2

S
E
R

V
-3

S
E
R

V
-4

S
E
R

V
-5

A
ve

ra
ge

M
is

pr
ed

ic
ti
on

s
R

at
e

(%
)

Branch Always

2bit counter

Bimodal

8KB hardware budget

Benchmark for CBP(2004) by Intel MRL and IEEE TC uARCH.

38CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

An innovation in branch predictors in 1993

• Using branch history

• global branch history

• local branch history

• 2-level branch predictor and gshare

• Assume predicting the sequence 1110 1110 1110 1110 1110 ...

1110111 0

11101110 ?

111011101 ?

1110111011 ?

11101110111 ?

111011101110 ?

adr pred

000

001

010

011 1

100

101 1

110 1

111 0

Use the recent branch history as an address of a table.

39CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Recommended Reading

• Combining Branch Predictors

• Scott McFarling, Digital Western Research Laboratory

• WRL Technical Note TN-36, 1993

• A quote:
“In this paper, we have presented two new methods for improving
branch prediction performance. First, we showed that using the bit-
wise exclusive OR of the global branch history and the branch address
to access predictor counters results in better performance for a given
counter array size.”

40CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Gshare (TR-DEC 1993)

• How to predict
• Using the exclusive OR of the global branch history and PC to access PHT,

then MSB of the selected counter is the prediction.

• How to update

• Shifting BHR one bit left and update LSB by branch outcome in IF stage.

• Update the used counter in the same way as 2BC in WB stage.

Program
Counter

XOR

n

n m

Pattern History Table (PHT)

…

2n entry

Prediction

Weakly
Taken (2)

Weakly
Untaken (1)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (3)

Taken

Strongly
Untaken (0)

Untaken2 bit

1110111011 （shift register）

Branch History
Register (BHR)

41CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Bi-Mode (MICRO 1997)

• A choice predictor (bimodal) is used as a meta-predictor

• How to predict

• Like gshare, both of Taken PHT and Untaken PHT make two
predictions.

• Select one among them by the choice predictor which tracks the
global bias of a branch.

• How to update

• The used PHT is updated
in the same way as 2BC.

• Choice predictor is updated
in the same way as bimodal.

Untaken PHTTaken PHT

…

Prediction

Choice predictor

…

Program Counter

XOR

BHR
…

42CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

To go beyond gshare

• Using branch history

• global branch history

• local branch history

• 2-level branch predictor and gshare

• Assume predicting the sequence 1110 1110 1110 1110 1110 ...

1110111 0

11101110 ?

111011101 ?

1110111011 ?

11101110111 ?

111011101110 ?

adr pred

000

001

010

011 1

100

101 1

110 1

111 0

Gshare: use the recent branch
history as an address of a table.

11101110 ?

111011101 ?

1110111011 ?

11101110111 ?

111011101110 ?

11101110 ?

111011101 ?

1110111011 ?

11101110111 ?

111011101110 ?

Use long branch history and weights
(importance) of each history bit

43CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Recommended Reading

• Dynamic branch prediction with perceptrons
• Daniel A. Jimenez, Calvin Lin (The University of Texas at Austin)

• HPCA-7, pp. 197-206 (2001)

44CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Perceptron (HPCA 2001)

• How to predict

• Select one perceptron by PC

• Compute y using the equation. It
predicts 1 if y>=0, predicts 0 if y<0

• x is branch history. xi is either -1,
meaning not taken or 1, meaning
taken

• How to update

• Train the weights of used
perceptron when the prediction
miss or |y| < T (Threshold)

Perceptron Model

w1 w2w0 wn

...

y

1 x1 xnx2

Table of Perceptrons (w)

Program Counter

…

Branch History (x)

Selected
Perceptron

Compute y

Prediction

y

8 bit weight x 29 = 232 bit

n = 28

T = 1.93n + 14

45CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Number of weights (without bias) of perceptron: 4
Theta: 21.720

1: Wn-W0 = 0 0 0 0 0 : bhr=0000: y= 0, p=1 : out=1 : hit
2: Wn-W0 = -1 -1 -1 -1 1 : bhr=0001: y= 3, p=1 : out=1 : hit
3: Wn-W0 = -2 -2 -2 0 2 : bhr=0011: y= 4, p=1 : out=1 : hit
4: Wn-W0 = -3 -3 -1 1 3 : bhr=0111: y= 3, p=1 : out=0 : miss
5: Wn-W0 = -2 -4 -2 0 2 : bhr=1110: y= -6, p=0 : out=1 : miss
6: Wn-W0 = -1 -3 -1 -1 3 : bhr=1101: y= -1, p=0 : out=1 : miss
7: Wn-W0 = 0 -2 -2 0 4 : bhr=1011: y= 4, p=1 : out=1 : hit
8: Wn-W0 = 1 -3 -1 1 5 : bhr=0111: y= 1, p=1 : out=0 : miss
9: Wn-W0 = 2 -4 -2 0 4 : bhr=1110: y= 0, p=1 : out=1 : hit

10: Wn-W0 = 3 -3 -1 -1 5 : bhr=1101: y= 5, p=1 : out=1 : hit
11: Wn-W0 = 4 -2 -2 0 6 : bhr=1011: y= 10, p=1 : out=1 : hit
12: Wn-W0 = 5 -3 -1 1 7 : bhr=0111: y= -1, p=0 : out=0 : hit
13: Wn-W0 = 6 -4 -2 0 6 : bhr=1110: y= 6, p=1 : out=1 : hit
14: Wn-W0 = 7 -3 -1 -1 7 : bhr=1101: y= 11, p=1 : out=1 : hit
15: Wn-W0 = 8 -2 -2 0 8 : bhr=1011: y= 16, p=1 : out=1 : hit
16: Wn-W0 = 9 -3 -1 1 9 : bhr=0111: y= -3, p=0 : out=0 : hit
17: Wn-W0 = 10 -4 -2 0 8 : bhr=1110: y= 12, p=1 : out=1 : hit
18: Wn-W0 = 11 -3 -1 -1 9 : bhr=1101: y= 17, p=1 : out=1 : hit
19: Wn-W0 = 12 -2 -2 0 10 : bhr=1011: y= 22, p=1 : out=1 : hit
20: Wn-W0 = 12 -2 -2 0 10 : bhr=0111: y= -6, p=0 : out=0 : hit
21: Wn-W0 = 13 -3 -3 -1 9 : bhr=1110: y= 17, p=1 : out=1 : hit
22: Wn-W0 = 14 -2 -2 -2 10 : bhr=1101: y= 22, p=1 : out=1 : hit
23: Wn-W0 = 14 -2 -2 -2 10 : bhr=1011: y= 22, p=1 : out=1 : hit
24: Wn-W0 = 14 -2 -2 -2 10 : bhr=0111: y=-10, p=0 : out=0 : hit
25: Wn-W0 = 15 -3 -3 -3 9 : bhr=1110: y= 21, p=1 : out=1 : hit
26: Wn-W0 = 16 -2 -2 -4 10 : bhr=1101: y= 22, p=1 : out=1 : hit
27: Wn-W0 = 16 -2 -2 -4 10 : bhr=1011: y= 22, p=1 : out=1 : hit
28: Wn-W0 = 16 -2 -2 -4 10 : bhr=0111: y=-14, p=0 : out=0 : hit
29: Wn-W0 = 17 -3 -3 -5 9 : bhr=1110: y= 25, p=1 : out=1 : hit

Perceptron (HPCA 2001)

• How to predict

• Select one perceptron by PC

• Compute y using the equation. It
predicts 1 if y>=0, predicts 0 if y<0

• x is branch history. xi is either -1,
meaning not taken or 1, meaning
taken

• How to update

• Train the weights of used
perceptron when the prediction
miss or |y| < T (Threshold)

T = 1.93n + 14

46CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

/**/
/* perceptron based branch predictor Version v2024-12-26a */
/* Copyright (c) 2024 Archlab. Science Tokyo */
/* Released under the MIT license https://opensource.org/licenses/mit */
/**/
#include <stdio.h>

#define N 4 // Number of weights of perceptron, default 28
#define BitsInWeight 8 // Number of bits in a weight
#define MAXVAL 127 // max value of a weight
#define MINVAL -128 // min value of a weight
#define NPerceptron (1024) // the number of perceptrons
#define ThetaMax (N * 1.93 + 14) // Threshold max value
#define ThetaMin (-1 * ThetaMax) // Threshold min value

int perceptron[NPerceptron][N+1]; // perceptron table
int bhr; // global branch history register
int idx; // index of perceptron table
int y; // weighted sum with bias
int prediction; // prediction of taken/untaken

/**/
void init_predictor()
{

for(int i=0; i<NPerceptron; i++){
for(int j=0 ; j<=N ; j++){

perceptron[i][j] = 0;
}

}
bhr = 0;

}

/**/
int make_prediction(unsigned int pc)
{

idx = (pc>>2) % NPerceptron;

y = perceptron[idx][0];
for(int i=1; i<=N; i++){

if((bhr >> (i-1)) & 1) y += perceptron[idx][i];
else y -= perceptron[idx][i];

}

prediction = (y >= 0) ? 1 : 0;
return prediction;

}

Perceptron (HPCA 2001)
void train_predictor(unsigned int pc, int outcome)
{

if(outcome != prediction || ((y < ThetaMax) && (y > ThetaMin))){

int *bias = &perceptron[idx][0];
if(outcome==1 && (*bias < MAXVAL)) *bias = *bias + 1;
if(outcome==0 && (*bias > MINVAL)) *bias = *bias - 1;

for(int i=1; i <=N; i++){
if(((bhr >> (i-1)) & 1)==outcome){

if (perceptron[idx][i] < MAXVAL) perceptron[idx][i]++;
}
else{

if (perceptron[idx][i] > MINVAL) perceptron[idx][i]--;
}

}
}
bhr = (bhr << 1) | outcome;

}

/**/
int main()
{

int pred; // branch prediction
int outcome; // branch outcome (taken/untaken)
init_predictor();
printf("Number of weights (without bias) of perceptron: %d\n", N);
printf("Theta: %7.3f\n", ThetaMax);

int pc = 0x2000;
for(int i=1; i<30; i++) {

pred = make_prediction(pc); /***** prediction *****/

printf("%4d: Wn-W0 = ", i);
for(int i=N; i>=0; i--) printf("%3d ", perceptron[idx][i]);

outcome = (i % 4) ? 1 : 0; /***** branch outcome: 111011101110... *****/

printf(": bhr=");
for(int j=N-1; j>=0; j--){

printf("%d", ((bhr>>j) & 1));
}
printf(": y=%3d, p=%d : out=%d : ", y, pred, outcome);

train_predictor(pc, outcome); /***** training *****/

if(pred==outcome) printf("hit\n"); else printf("miss\n");
}
return 0;

}

47CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Perceptron (HPCA 2001)

https://www.anandtech.com/Gallery/Album/5197#18

https://chasethedevil.github.io/post/the_neural_network_in_your_cpu/

48CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Branch predictors based on pattern matching

• Find the longest matching pattern (green rectangle)

• Select the proper matching length or long matching pattern (blue rectangle)

• Count the number of 0 and the number of 1 after the long matting patterns
(red rectangle), then predict by majority vote.

?

?010

The long matching pattern

0

1

0

Prediction

Global branch history Prediction 0 or 1

?

The longest matching pattern

Appearing 0 twice and 1 once, so the prediction will be 0

49CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Partial Pattern Matching, PPM or TAGE (CBP 2004)

3b

ctr
m

3b

ctr
u

8 bit

tag

hash hash

=?

3b

ctr
u

8 bit

tag

hash hash

=?

3b

ctr
u

8 bit

tag

hash hash

=?

3b

ctr
u

8 bit

tag

hash hash

=?

prediction 0/1

pc pc h[0:9] pc h[0:19] pc h[0:39] pc h[0:79]

12

10 10 10 108 8 8 8

8 8 8 8

1
1 1 1 1 1 1 1 1

1

1

1

Table 0Table 1Table 2Table 3Table 4

From CBP2004 presentation slide

50CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Partial Pattern Matching, PPM or TAGE (CBP 2004)

https://www.amd.com/en/technologies/zen-core

51CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Prediction accuracy

• The accuracy of 4KB Gshare is about 93%.

• The accuracy of 4KB PPM is about 97%.

0

2

4

6

8

10

12

14

16

18

20

F
P

-1

F
P

-2

F
P

-3

F
P

-4

F
P

-5

IN
T
-1

IN
T
-2

IN
T
-3

IN
T
-4

IN
T
-5

M
M

-1

M
M

-2

M
M

-3

M
M

-4

M
M

-5

S
E
R

V
-1

S
E
R

V
-2

S
E
R

V
-3

S
E
R

V
-4

S
E
R

V
-5

A
ve

ra
ge

M
is

pr
ed

ic
ti
o
ns

 R
at

e
(%

)

Bimodal

Gshare

Bimode

PPM

8KB hardware budget

52CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Recommended Reading

• Prophet-Critic Hybrid Branch Prediction
• Ayose Falcon, UPC, Jared Stark, Intel, Alex Ramirez, UPC, Konrad

Lai, Intel, Mateo Valero

• ISCA-31 pp. 250-261 (2004)

53CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

A quote from Introduction (1/2)

Conventional predictors are analogous to a taxi with just one driver.

He gets the passenger to the destination using knowledge of the
roads acquired from previous trips; i. e., using history information
stored in the predictor’s memory structures.

When he reaches an intersection, he uses this knowledge to decide
which way to turn.

The driver accesses this knowledge in the context of his current
location.

Modern branch predictors access it in the context of the current
location (the program counter) plus a history of the most recent
decisions that led to the current location.

54CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

A quote from Introduction (2/2)

Prophet/critic hybrids are analogous to a taxi with two drivers: the
front-seat and the back-seat. The front-seat driver has the same role
as the driver in the single-driver taxi. This role is called the prophet.

The back-seat driver has the role of critic. She watches the turns the
prophet makes at intersections. She doesn’t say anything unless she
thinks he’s made a wrong turn. When she thinks he’s made a wrong turn,
she waits until he’s made a few more turns to be certain they are lost.
(Sometimes the prophet makes turns that initially look questionable, but,
after he makes a few more turns, in hindsight appear to be correct.)
Only when she’s certain does she point out the mistake.

To recover, they backtrack to the intersection where she believes the
wrong-turn was made and try a different direction.

55CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Prophet-Critic Hybrid Branch Prediction

56CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Prophet-Critic Hybrid Branch Prediction

16KB perceptron

16KB gshare

16KB gshare (prophet) +
8KB perceptron (critic)

16KB perceptron (prophet) +
8KB gshare (critic)

