Fiscal Year 2025

N

Course number: CSC.T440
School of Computing,
M Graduate major in Computer Science

Computer Organization and Architecture

2. Instruction Level Parallelism:
Pipeliniag Processor and Branch Prediction

&
www.arch.cs.titech.ac.jp/lecture/coa/

Room No. M-112(H117), Lecture (Face-to-face) Kenji Kise, Department of Computer Science
Thr 13:30-15:10 kise[at]comp.isct.ac.jp

CSC.T440 Computer Organization and Architecture, Department of Computer Sciencégpience Tokyo 1

Typical five steps in processing an instruction

« IF: Instruction Fetch
fetch an instruction from instruction memory or instruction
cache

AN
« ID: Instruction Decode

decode an instruction and read input operands from register file

« EX: Execution
perform operation, calculate an address of Iw/sw

« MEM: Memory Access
access data memory or data cache for lw/sw

« WB: Write Back
write operation result and loaded data to register file

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 2

Single-cycle implementation of processors \
\

« Single-cycle implementation also called single clock cycle
implementation is the implementation in which an instruction is

executed in one clock cycle.
While easy to understand, it is too slow to be practical.

It is useful as a baseline for lectures.

m_rvcorel

w_jalr
r_pe
L) ., (procl.v)
w_alu_c w_rrsl g [w_tkn_pe
w_bru_c N +

— ngp_im
w_jalr \l,w_bru_c

4
g
=3

—
32 w.imm t w_tts] —> m bl 1
— w_b_rslt
) w_rrs2] brul
32 w_imm
rpe > w_clk
w b rslt, w_rst m_decoder M . w alu_c W itype['D LD _IS]
l welk 432 ‘l*dk decoderl | 5 w_rsl o wosl
5 o) 32 J-op-im m alu| 32 w_a_rslt
. r pe m_imem w_ir W_IS “ alul
START_FC § £ pe imem1 m regiile | w 2 t [= § 32
x i regfilel e =
(32bit x 1024) 5 wrd g) [
(32bit x 32)| w_imm - w_clk

w_rrsl 32 D ADDR

w_rslt

32
32 B—‘ w_imm 32 n:‘,dmerln
4 Yo mem w_ldd
, w_trs2 D_OUT | (39hit x 8K)

w_itype['D_S TYPE] W

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

w_rslt

Exercise 1

* Draw the main datapath of the processor m_rvcore and write the bit-
width and valid values on wires when the processor is executing the
third instruction

Ox00 addi x1, x0, 3 # x1 = 3
Ox04 addi x2, x1, 4 #x2 =3+4 =7 add x5, x1, x2
Ox08 add x5, x1, x2 # x5 =3+7 =160 funct? rs2 rsi | funct3| rd opcode | R-type
)
w_rsl . w rrs]
—g’E w_1s2
: 52 > m_alu >
>{1_pc rg—> TN >l S 3 X alul =
imem1 g | wr 5| m_regfile |y e t| = —
regfilel | [S] o
\ J w_i :I
4
w_rslt

E CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 4

m_rvcore (RV32I, single-cycle processor)

+ around 40MHz operating frequency for Arty A7 FPGA board
« Ib, Ibu, Ih, lhu, sb, sh are not supported

w jalr m_rvcorel
r_pc
=L 8 (procl.v)
32
w alu ¢ w_1rsl —> < |7 w_tkn_pc
w_bru ¢ +
w_itype >
S N\ W_op_im
w_jalr J,W,bru,c
32 w_imm t w_rrs] >
— w_b_rslt
w_Irs2 3|
32 w_imm -
r_pe — w_clk
w_b rslt, w_rst m_decoder y 3 w_alu_c w_itype['D_LD__IS]
w ek 432 w_clk decoderl | 5 w rsl £ wsl
i \ = 7 .
¥ 5 32 JW-op_im m alu| 32 w_a rslt
. r_pc m_imem Wi w_rs2 >)3, alul 7
START_PC | Z| slp pe imem1 m_regfile | w 2 t |2 =32
X (32bit x 1024) 5 wrd | regfilel — IR w2 x
(32bitx 32)[w_imm B w_clk
N \
32 w_rslt w_rrsl 32 D ADDR
g2 i | w_imm * 32 m_dmem 32
4 ——>|] f dmeml1 w ldd
w_rrs2 D _OUT (32bit x 8K)
w_itype['D_S_TYPE] W
w_rslt

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Critical path of rvcorel (single-cycle version)

« The critical path is defined as the path between a source register (or

memory) and a destination register with the maximum delay.
« The path for Load Word instruction like 1w x5, 8(x7)

jal
r_pe o rvcorel
=| 32
w_alu ¢ w_rrs] — X [w_tkn_pc
w_bru ¢ +
w_itype
m Ww_op_im
w_jalr \l/w_bru_c
32 wimm t worrsh —>
A i w b rslt
w_Irs2 s
32 w_imm
r pc —~>
w_b_rslt, w_rst m_decoder 3 w_alu ¢
l 32 decoderl | 5 w_rsl _ ; wsl
V4 L .
' 5 5 32 W_qp_tm m_alu 3/2 w_a_rslt R
r pc m_imem w_ir y WIS - > alul [7 7]
'START_PC [Z 1 5, >| imem1 m_regfile | w rre2 ¢ |23}
= . 5 d regfilel g
(32bit x 1024) w_r > —| ¥ | W rrs2
(32bitx 32)| w_imm B
0 — w rslt 32 D_ADDR
2) 32
. + ‘ w_imm 32 m_dmem
4—i | f dmem1 w_ldd
w_itype['D_S TYPE] ——————>]

D WE

A

w_itype['D_LD__IS]

<132
c
X

w_rslt

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Single-cycle implementation of laundry

A
* (A) Ann, (B) Brian, (C) Cathy, and (D) Don each have dirty clothes to bex
washed, dried, folded, and put away, each taking 30 minutes.

« The cycle time (the time from the end of one load to the end of the
next one) is 2 hours.

« For four loads, the sequential laundry takes 8 hours.

- 6 PM 7 8 9 10 11 12 1 2AM
R NN e NN BN e NN e B B e B
Task
order
» o=l
B Fﬂo%
2- € OE.
| aE
| D cycle time =

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 7

Single-cycle implementation and pipelining X
\

« When the washing of load A is finished at 6:30 p.m., another washing of
load B starts.

« Pipelined laundry takes 3.5 hours just using the same hardware
resources. The cycle time is 30 minutes.

 What is the CycleTime L PM 7 8 Ty
(latency) of each load? Tk e L e e e e e e e
» Oo=l__
: Jo=M_ _
c Joe=l
. J0=Ml
& PM 7 8 9 10 11 12 1 2 AM

. .
me | | | | I

Task
order

A o=l

s (5=l

c mje= |
: 5=l

@a pipeline diagram |
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 8

Bucket brigade

Here is a picture of an old Bucket Brigade.

Firemen are passing pails of water up to
the fire.

E CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Clock rate is mainly determined by

« Switching speed of gates (transistors)
« The number of levels of gates

<

« The maximum number of gates cascaded in
combinational logics.

\

series in any

* In this example, the number of levels of gates is 3.
* Wiring delay and fanout

I

OR gate _:D_

AND gate

Register B

L OR gate Split a path by placing registers
. Register B
Register A "0 82te I

Register C

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

-

10

Pipelining example: multiply-add operation (1)

« As an example of pipelining, we will see a multiply-add circuit.
* r_b, r_careinput registers and r_y is output register of the circuit.

\

 This has two paths named pathl and path2, and pathl is the critical path
to determine the maximum operating frequency.

add

16

(a) Pathi

) 7
32

(b) Path2

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Critical path

7
32

32

VA r‘_y

r_y

11

Pipelining example: multiply-add operation (2) 2\%
\

« By inserting register r_d, the critical path can be divided into Path3
and Path4.

« Asaresult, the new critical path becomes Path3.

« This has the disadvantage that input b and ¢ in the same clock cycle
cannot be processed.

Critical path
3
16 E:ﬁ% rd
" |16
3 (a) Path3
16 X—~7|r d
b —# r_br# 32 =
16 | | 16 ‘_QF;\W g
+—r_y y
C—r cl+ 32 32
32 - | 32 l} r_y
(b) Path4 32

+ r‘_y

_ 7
32

(c) Path2

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 12

Pipelining example: multiply-add operation (3)

« To overcome this drawback, we insert register r_e.

« This realizes a pipeline with stages 1 and 2. A set of registers between

two adjacent stages are called a pipeline register.

stage 1
Critical path

stage 2

C —F4>

32

r_c

(a) original multiply-add circuit

(b) two-stage pipelined circuit

stage 1

32

stage 2

16

C //

16

L

X 3
‘JBZ —

32

r_cr

32

r_e

r_y

32

32

ﬁw pipeline register
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

r_y

32

\

13

rvcore_2s : 2-stage pipelining processor

« The strategy is to separate the instruction fetch (IF) step and other (ID, EX,
MA, WB) steps. The first stage is named IF. The other stage is named EX+.

IF stage P1 EX+ stage
- w_jalr rvcore_2s
_pe -
=| 32
w_alu ¢ w_rrs] —X [~ w_tkn pc
w_bru ¢ +
w_itype
w_op_im
(\ w jalr

\LW,b ru_c

32 w_imm t w_rrsl 5
— w b rslt
w_Irs2 |
32 w_imm a
r pc =
P1
w b rslt &Pl v LT m_decoder - w_alu_c w_itype['D_LD__IS]
l 32 decoderl | 5 w_rsl ; wsl
— 7
4 .
8‘) .E:l 5 wrsd 32 J’W—Op—lm m_alu 3/2 w_a rslt
— r_pc m_imem 2 AR A > 3 alul 7 =| 1
% § r_pc imem1 2| PLir m_regfile w_rrs2_t § S |
78N ks (32bit x 1024) S wrd | regfilel — S| X [w rs2
\) (32bitx 32)[-
32 pi> w_rrsl —>) %2 D_ADDR7
gz . w_rslt w_imm N J 32 m_dmem 32
40 I Y | dmeml w_ldd
w_rs2 P-OUT | (32bit x 8K)
?|PLyv > itype[D_S_TYPE] & Pl v ——————>
w b rslt &Pl v w_itype[D_S_TYPE] & P1v D WE .
W_IS

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 14

rvcore_2s : 2-stage pipelining processor

‘START PC

IF stage Pl EX+ stage
P1 pe w_jalr rvcore_2s
2| 32
w alu ¢ w_arsl X |—7—| w_tkn pe
w_bru_c +
w_itype
/—\ w_op_im
Lak> ¢\V7blU7C
32 w_imm_t w_trsl —>|
5 w_b_rslt
32 w_imm S
I_pc ; S
P1_pcl-—e-> .
w_b rslt& Pl v m_decoder w alu ¢ w_itype['D_LD__IS]
32 decoderl | 5 w sl 32 worsl \‘/j -
= w_op_im
. 5 5 W_rs2 32 \l« m alu] 32 w_a_rslt
r_pc m_imem z 32 alul z(3
§ r pc imem1 —|PLir m_regfile w_rrs2_t § h S
2 (32bit x 1024) 5, wrd | regfilen — & [ws2 *
\) (32bitx 32)| W-rmm
32 P_I—V N w_rrsl 32 p ADDR
7 .] w_rslt w_imm 32 m_dmem 32
4| H dmem1 w_ldd
| w_rrs2 D ouT (32bit x 8K)
Pl itvpel Pl v
w b rslt &Pl y v w_itype[D S TYPE] & P1 v —)D)VE
w_rslt
(a) rvcore_2s: 2-stage pipelining processor
. cCl1 CC2 cc3 cC4 CC5 Time
Instructions >
3200 addi x1,x0,3
32°h4 addi x2,x1,4 EX+
32°h8 addi x10,x2,5 EX+
32’hc addi x30,x10,0
v

(b) pipeline diagram of rvcore_2s
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

15

Why do branch instructions degrade IPC?

« The branch taken / untaken (branch result) is determined in the EX+

stage of the branch.

« The conservative approach is stalling instruction fetch until the branch

direction is determined.

addi
addi
bne

addi
addi
addi
addi

NoohswN e

two-stage pipelining processor executing instruction sequence with a branch (bne)

ccl cc2 «cc3 cc4 | cc5 cc6 cc7 cc8 cc9
| IF | EX+ |
| IF | Ex+
[IF [EX+ | control dependency
stall{ IF | EX+ |
| IF | Ex+ |
| IF | EX+ |

| IF | EX+ |

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

\

16

Why do branch instructions degrade IPC?

« Another approach is fetching the following instruction (an instruction

at the next address) when a branch (bne) is fetched.

« When a branch (08 bne) is taken to address 0x30, the wrong
instruction fetched (Oc addi) must be flushed.

ccl cc2 cc3

00 addi |_IF | Ex+ |

cc4

cc5 cc6 cc?7

04 addi [IF [Ex+

08 bne [IF | Ex+

Oc addi IF | Ex+ |

10 addi IF | Ex+ |

14 addi | IF | EX+ |
18 addi

(a) branch untaken case

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

ccl cc2 cc3

00 addi| IF | EX+ |

cc4

\

cc5 cc6 cc?7

04 addi | IF | EX+

O8 bne [IF | EX+ | Flush the wrong insn.
Oc addi TF_[EX-]

30 add Control dependency\ IF | EX+ |

34 add | IF | Ex+ |
38 add

(b) branch taken case

17

rvcore_3s : 3-stage pipelining processor

« The strategy is to separate the instruction fetch (IF) step, instruction decode (ID) step,
and other (EX, MA, WB) steps. The first stage is named IF. The second stage is hamed ID.
The last stage is named EX-+.

IF stage Pl ID stage P2 EX+ stage
P2 jalr
P1 pc
2|P2 pc 2| 3
wﬁgluﬁc P2 rrs]l —> = |~ w_tkn pc
w_bru ¢ +
w_itype
A W_Oop 1m
wjjarl); J P2 bru ¢
— P2 ¥
32 wimm t imm _t|| P2_rrsl—>
—— S m _bru| 1
T — w_b_rslt
P2 rrs2 —s| Prul T
' e o 32 w_imm P2 -
— L S o
w b rslt P >IP1 pe 35 [7 7l imm .
&P2 v § S P2 alu ¢ P2 itype['D LD _IS]
l 32 Fcl é 5/ W_I‘Sl 32 W_ITSI
= 7 >
g = 5 2 W_op_im - 32w a rslt
i\ . B| W, W_I1S 1 \1, rrsl m_alu ”; _a | 5|
m_Iimem 1§ . <32
E g P imem1 i 5 wrd | m_regfile [alul s
@ A—> regfilel |W_ITs2_t = |32 P2
P2 rd (bypass) —_ x I‘I'SE
imm 3 P2 r1rsl
3/ 2 ~— P2 v A z:l —> 32D ADDR
B P2 imm|+
473'2—> y W—rSlt\ - 32D ouT | m_dmem 2
” | dmeml | w_ldd
—> 1S — s P2 rrs2 D_WE
(w b rslt&P2v) (| = . .
o N P2 itype[[D S TYPE] & P2 v w rslt

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

18

Exercise 2

« Draw the main datapath of the processor rvcore_3s and write the valid
values on wires when the processor is executing these three
instructions

Ox00 addi x1, x0, 3 # x1 = 3
ox04 addi x2, x1, 4 # x2 =3+4=17
Oox08 add x5, x1, x2 # x5 =3+7 =10
add x5, x1, x2 addi x2, x1, 4 addi x1, x@, 3
IF stage ID stage EX+ stage
)
_% 5 w_rsl S w sl I
28| wrs2 rrsl >
) Elg > m_alu =
| m_imem 1§ .
r_pc > imeml 2| P1 ir w_rd m_regfile - ? . alul g
__/ regfilel |W_ITS2_ § P2 >
(bypass) | ——1>[o T| mms2
w_imm Z
P2 rd —> Bl

w_rslt

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 19

Why do branch instructions degrade IPC?

« Another approach is fetching the following instructions (Oc addi, 10

\

addi) after a branch (bne) is fetched.

« When a branch (08 bne) is taken, the wrong instructions fetched
(Oc addi, 10 addi) must be flushed.

00 addi
04 addi
08 bne
Oc addi
10 addi
30 add
34 add

ccl cc2 cc3 cc4d

| IF | ID | EX+ |

cch

| IF | ID | EX+

cc6 cc7 cc8 cc9 «cclo

| IF | ID | EX+
| IF | ID | EX+ |
\ Flush these wrong instructions
IF\| ID | EX+ |
Control dependlency

IF | ID | EX+ |

| IF | ID | EX+ |

three-stage pipelining processor executing instruction sequence with a taken branch

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

20

rvcore_4s : 4-stage pipelining processor

« The strategy is to separate the instruction fetch (IF) step, instruction decode (ID) step,

and write back(WB) step, and other (EX, MA) steps. The first stage is named IF. The
second stage is hamed ID. The third stage is named EX+. The last stage is hamed WB.

IF stage Pl ID stage P2 EX+ stage P3 WB stage
P2 jalr
P1 _pc %
21P2 pc g
w alu ¢ w_exrrsl g '
w_bru ¢ +
w_itype
— w_op_im
w_jalr J F2_ bru ¢ w_b_rslt
P2 a
32 w_imm_t imm_t " exrt&) |
imm| 1§ = m bru| 1 5
> |
' o w_exrrs2 .| brul A
r pe b 3/2 w_imm BZIE é
w_b_rslt S{P1 pc 2 517 imm g P2 alu ¢ =
&P2 v 33 S M) S
32 S 3 5 w rsl 32w sl s>z | w_exrrsl
g= 7 - RN l
8‘ = 5/ w182 Wioplllm rrs] U m_alu 3/2 w_a rslt p3
& m imem| 5 (| . 7 32 o) alul 7 M a_rsit 32
g_> g B imem1 =" 5 word | m_regfile —~ = n_exrrsd — g
2 ——> regfilel V-T2 630 || py x
P3 rd [(bypass — rrs2 ~
0 \ / —> Appee) W imm ol w_exrrsl 3,2 P3
2 P3 v - 2 —> 32D ADDR 72 14d
7 —> I .
32 + It B P2 imm| +
4—p—> w_rs —> 32 D OUT|m_dmem
ﬁ dmem1
! W_exrrs2 D WE
Y RN —2| P2 vI> - —2(P3 v>
whorst&P2 v |F = = e — -
- - P2 itype[[D S TYPE] & P2 v w rslt

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

21

rvcore_4s : 4-stage pipelining processor

« Critical path
« deley(register read) + delay(mux) + delay(mux) + delay(adder) + delay(dmem read)

P1 P2 P3
P2 _jalr
P1 pc &
>P2_pc 12| 32 £
w_alu ¢ W_eXl'il9 S 3'
w_bru ¢ +
w_itype
—— W op im
w_jalr J P2 bru_c w_ b rslt
e - v 2
. = w_exrrsl |
32w imm t imm ¢ > mbru] 1 -
? — |
. . W_exrrs2 | brul A
r po 5= o w_imm 3 P2 §
5IP1 pc 2 = imm P2 alu ¢ =)
o2 N\ 1 ~
o @ o~
32 <, g |5 worsl 32w sl 1 > = [W_exrrsl
£ 7 7| P2 NE l
8‘ ;;l 5/ W rs2 W,Oplllm sl _ m_alu 3/2 w_a_rslt U p
- : z 7 32 (M) alul [7 1
e m_imem 3 . > a
§_>§ pe imem1 Pl 5 word | m_regfile | s M exrrs? _ ‘E
o EVARS regfilel W_ITS2_t § 32 P2 > <
P3_I'd (bypass) —_— x ~ rrs2 ~
\ J —) mm
32 P3 v W £ —> 32D _ADDR —>
~ > —_— | . —
32 + It z P2 imm
4 w_rsit —> 32 D ouT|m_dmem
: > ﬁ dmem1
W_exrrs2 D WE
—_— IFN —>| P2 vi> - —2(P3 vI>
whbrslt&p2 v | - - P — -
- = - P2_itype[[D_S_TYPE] & P2 v w rslt

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

22

Exercise 3
\

* Draw the main datapath of the processor rvcore_4s and write the valid
values on wires when the processor is executing these three
instructions in ID, EX+, and WB stages

Ox00 addi x1, x0, 3 # x1 = 3
ox04 addi x2, x1, 4 # X2 =3+4=17
ox08 add x5, x1, x2 # x5 =3+7 =10
add x5, x1, x2 addi x2, x1, 4 addi x1, x0, 3
)
-
9
= v— l Z S
%l § wors2 rrsl —/ m_alu P3_
. = > N\ alul a rslt z
./ m_imem 1§ . =
r_pc > imeml 2l P1 ir w_rd m_regfile N z > =
\ > regfilel [W_ITs2_t = P2 S
P3 rd — | (bypass) Wm) =3 % 1rs2 U
P3_ v ——> B 2!
w_rslt

“‘
N CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 23

Why do branch instructions degrade IPC?

« Another approach is fetching the following instructions (Oc addi, 10
addi) after a branch (bne) is fetched.

« When a branch (08 bne) is taken, the wrong instructions fetched
(Oc addi, 10 addi) are flushed.

00 addi
04 addi
08 bne
Oc addi
10 addi
30 add
34 add

four-stage pipelining processor executing instruction sequence with a taken branch

ccl cc2 «cc3 ccad

ccS

| IF | ID | EX+ | wB

cc6 cc7 cc8 cc9 «cclo

| IF | ID | EX+ | WB
[IF [1> | Ex+ | W8 |
| IF Iﬁ\ EX+ | e |Flush the wrong insn.
IF\[ID | Ex+ | WB |
Control dependency

IF | ID | Ex+ | WB |

| IF | ID | Ex+ | WB |

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

24

Comparison of critical path between rvcorel and rvcore_4s

w_ b rslt, w_rst

|

"START PC ' >{r pe

)

r pc
m_decoder
32 decoderl
r_pe m_imem w_ir
imeml >
(32bit x 1024)

w_alu_¢
w_bru_c
w_itype
w_op im
w_jalr

32 w_imm_t

32 w_imm

5 worsl

5 w_rs2

S word

4 ——

by

(b) the critical path of rvcore_4s

deley(register read) + delay(mux) + delay(mux)
+ delay(adder) + delay(dmem read)

<

w_rslt

m_regfile | w

regfilel

(32bit x 32)

w_jalr
r_pe - rvcorel
g
w_rrsl * [N w_tkn_pc
\L\\'_bm_c
worrsl —
- m bru| 1
— w_b_rslt
w_rrs2 brul
3 | w_itype['D_LD__IS]
W_ITS

woalu ¢
m
m_aluf 32

w_a_rslt

B

w_rrsl

w_imm

i

32 p_ADDR
12

w_rrs2 D ouT

w_itype['D_S_TYPE] ———————>1

m_dmem
dmeml
(32bit x 8K)

D_WE

(a) the critical path of rvcore_1s

deley(register read) + delay(imem read) + delay(decode)
+ delay(regfile read) + delay(adder) + delay(dmem read)
+ delay(mux)

"START_PC

I
_) I_pC 4>

P1 P2
— P2_jalr
Pl _pe

P2 _pc z| 12

w_alu_c w_exrrsl (%

w_bru_c — >

w_itype

A~ w_op._im 1
w_jalr P2 bru ¢ w_b rslt
5 L _b_|

T pe
Pl pc
32

w_ir

m_imem
imem1

32
32 +
4——

— ;
w b rslt & P2 v

decoderl

m_decoder

P2
32 w_imm_t imm_t|
32w imm P2
imm
5 wo_rsl 32 w_msl
P2
5 w rsz w_op_1m T
32 v
5 w_rd m_regfile
> regfilel |W_11S2.t =30 P2
P3 rd (bypass) ws2
— b
P3 v w_imm 2
SN 1
w_rslt 2
=22 v>

w_exrrsl
1
w_exrrs2

< z w_exrrsl

32 w_a_rslt

2 W _exrrs2
> &

w_exrrs2

P2 itype['D S

L 32p ADDR
P2 imm
—> 32DouT

m_dmem
dmem1

D WE

TYPE] & P2 v

P3

=
a
a
z
-
s

— |

w_rslt

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

\

Recommended Reading
\

« Increasing Processor Performance by Implementing Deeper Pipelines

« Eric Sprangle , Doug Carmean (Intel Corporation)
. ISCA-2002 pp. 25-34 (2002)

This paper will show that the branch misprediction
latency is the single largest contributor to performance 3.0
degradation as pipelines are stretched, and therefore
branch prediction and fast branch recovery will continue —=-Frequency
to increase in importance. We will also show that higher ' - Performance
performance cores, implemented with longer pipelines for
example, will put more pressure on the memory system,
and therefore require larger on-chip caches. Finally, we
will show that in the same process technology, designing
deeper pipelines can increase the processor frequency by
100%, which, when combined with larger on-chip caches
can yield performance improvements of 35% to 90% over
a Pentium® 4 like processor.

—|PC

Relative Metric

Basic Pentium® lll Processor Misprediction Pipeline

1 2 3 4 | s 6 | 7 8 9 10
Fetch Fetch |Demde Decode | Decede Rename|ROBRd Rdy/Sch |Dispatch| Exec 0.0 T T T T T T T

20 30 40 50 60 70 80 90 100
Basic Pentium® 4 Processor Misprediction Pipeline Branch Miss Pipeline Depth

10, 11 12
Sch | Sch | Sch

13
Disp

14
Disp

15
RF

1 | z]alals
TCNetIP | TCFatch [Drive

E CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 26

6
Alloe

7| B

Rename

9
Que

16 |17 |18 | 19 |20
RF | Ex |Figs Bn:l:ibﬂw

Why do branch instructions degrade IPC?

« Another approach is fetching the instruction with branch prediction

when a branch (bne) is fetched.

* Predict the branch outcome (taken / untaken), and taken PC.

\

« When a preciction is miss, the wrong instructions fetched are flushed.

ccl cc2 cc3 | cc4d | cc5 cc6 cc?
00 addi| IF [Ex+ |
04 addi [IF [Ex+
08 bne [IF | Ex+
Oc addi IF | EX+ |
10 addi IF | EX+ |
14 addi [IF [Ex+ |
18 addi

(a) branch prediction as untaken and hit

ccl cc2 cc3 | cc4| cc5 cc6 cc?
00 addi| IF | Ex+ |
04 addi [IF | EX+
O8 bne [IF | EX+ | Flush the wrong insn.
30 add IF |6x]
34 add & Tee]
38 add [IF [Ex+ |
3¢ add

(b) branch prediction as taken and hit

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

27

Hardware branch predictor X
\

« A branch predictor is a digital circuit that tries to guess or predict
which way (taken or untaken) a branch will go before this is known
definitively.

« A random predictor will achieve about a 50% hit rate because the
prediction output is 1 (taken) or O (untaken).

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 28

Sample program: vector add (function v_add)

\

#tdefine VSIZE 4

void v_add(int *A, int *B, int *C){ Bl [i=0]
for(i=0; i<VSIZE; i++) v
C[i] += (A[i] + B[i]); B2 (© scoxce(ra+rp))
} 1++
A++
int main(){ E**
for(int i=@; i<N; i++) v_add(A, B, C); 9 i<++4 y
}
, , False True
Basic block contains a sequence of statement. l

The flow of control enters at the beginning of the g3
statement and leave at the end. [

return]

Control flow graph
Time

»
»

B3 — B3 — B3 — B2 —>
Instruction sequence /Nof Taken (0) /No'r Taken (0)/ Not Taken (0)/ Taken (1)
Bl B2 B2 B2 B2 B3
Taken (1) Taken (1) Taken(1) Not Taken (0)

Predicting the branch outcome sequence of 1116 1116 1116 1110 1110 ..

P CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 29

Simple branch predictor: 2-bit counter (2BC)

- Tt uses two bit register as a saturating counter.

* How to update the register

<

If the branch outcome is taken and the value is not 3, then increment the register.

\

If the branch outcome is untaken and the value is not O, then decrement the register.
* Hot to predict

It predicts as 1 if the MSB of the register is one, otherwise predicts as O.

Taken Taken
Strongly ‘: Weakly
2 bit Taken (3) Untaken Taken (2) ﬁ,;;iBs‘?:rTizeone
—— e Taken
,«’umm@n
o MSB of the

Weakly <a_en Strongly register is zero

Prediction Untaken (1) / = = = *> _Untaken (0) \
Hniaken *< _ 7 Untaken

Predicting the sequence of 1110 1110 1110 1110 1110 ...

-

State of the counter 2333 2333 2333 2333 2333 ...
Prediction 1111 1111 1111 11171 1111 ...
Hit/Miss of the pred. HHHM HHHM HHHM HHHM HHHM

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

30

Sample program: vector add with two branches

o (o
#define VSIZE 4
void v_add(int *A, int *B, int *C){

for(i=0; i<VSIZE; i++) { B4£ Error check

if(A[i]<@) error_routine(); Ali] < O
C[i] += (A[i] + B[i]); v —
} BZ[*C=*C+(*A+*B)
} i<4
False True

We add a branch for error checking.

We assume that this error rarely occurs. B3

Control flow graph

B3 —> B3 — B3 L5 B2 L,

Executed instruction sequence / /‘ /‘ /
B1 B4/ |B2 B4/ |B2 B4| |B2 B4/ |B2 B3

0 1 0 1 0 1 0 O

Predicting the sequence of 01010100 01010100 01010100 ...

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

\

31

Sample program: vector add with two branches

B3 — B3| — B3| — B2| —»
Executed instruction sequence / /‘ /‘ /‘
B1 B4 |s2 B4 |s2 g4l [e2 B4l [e2 B3
o 1 o 1 o 1 0O O

Predicting the branch outcome sequence

01010100 01010100 01010100 ...

The B4’s sequence 01010100 01010100 0101010

The B2’s sequence 1010100 01010100 01010100 ...

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

\

32

Simple branch predictor: bimodal

* Program has many static branch instructions. The behavior may depend on

each branch. Use plenty of counters (PHT) and assign a counter for a branch

instruction.
* How to predict

« Select a 2-bit counter using PC, and it predicts 1 for taken if the MSB of
the register is one; otherwise, it predicts O for untaken.

* How to update

« Select a counter using PC, then update the counter in the same way as 2-

bit counter.

Pattern History Table (PHT)

Program
Counter

2" entry

—>

H_J

&’ 2 bit
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

n . Prediction

Taken

Taken
Strongly ‘: Weakly
Taken (3) Untaken Taken (2)

Taken

»”
Weakly
Untaken (1)

-

~
-~
- Untaken
-~

— Strongly
—_———
Untaken Untaken (Oz \

~ /
Untaken

\

33

Simple branch predictor:

##define N 1024 // Number of PHT entries

int pht[N]; // pattern history table

int idx; // index of PHT
/**/

void init_predictor()

{
}

/**/

int make_prediction(unsigned int pc)

{

for(int i=@; i<N; i++) pht[i] = 2;

idx = (pc>>2) % N;
return (pht[idx] & @x2) ? 1 : 0;
}

/**/

void train_predictor(unsigned int pc, int outcome)

{
if(outcome==1 && pht[idx]<3) pht[idx]++;
if(outcome==0 && pht[idx]>@) pht[idx]--;
¥
/**/
int main()
{
int pred; // branch prediction
int outcome; // branch outcome (taken/untaken)
init_predictor();
int pc = 0x20;
for(int i=1; i<25; i++) {
pred = make_prediction(pc); /***** prediction *****/
outcome = (i % 4) ? 1 : @; /***** pranch outcome: 111011101110... ****x*/
printf("%4d: pc=%3x, idx=%d, cnt=%d, pred=%d, outcome=%d ",
i, pc, idx, pht[idx], pred, outcome);
train_predictor(pc, outcome); /***** tpaining *****/
if(pred==outcome) printf("hit\n"); else printf("miss\n");
b
return 0;
s
D

bimodal

Pattern History Table (PHT) Taken
Program N ent T Weakly
Counter enry Untaken Taken (2)
(I e
. Untaken
n : Prediction a”
: > Weakly P T Strongly
_——
Untaken (1) Untaken UnTuken(Ol\ ;
2 bit Untaken ~

Predicting the branch outcome sequence
1110 1110 1110 1110 1110 ..

1: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
2: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
3: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
4: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
5: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
6: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
7: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
8: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
9: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
10: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
11: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
12: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
13: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
14: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
15: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
16: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
17: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
18: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
19: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
20: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
21: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
22: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
23: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
24: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

34

Simple branch predictor: bimodal

Predicting the sequence

The B4’s sequence
State of the counter
Prediction

Hit/Miss or the pred.

The B2’s sequence
State of the counter
Prediction

Hit/Miss or the pred.

Pattern History Table (PHT)
2" entry

Program
Counter

Prediction

—

\\3

Y

L

2 bit

0101010

=< =N

100
000
H H H

10101
2 33
111
HHH

L WO

01010100 01010160

0101010

I o0

00 0
00 0
H H H

10101
2 33
111
HHH

=R, WO

0101010
0101010

© 000
0000
HHHH

10101
2 33
111
HHH

0 ...

=<k WO

Taken
Strongly
Taken (3)
»”
Weakly
Untaken (1)

Taken

”

Taken

G——

N Weakly
Taken (2)

Untaken

Taken

G—

Strongly
—_——
Untoken Untaken (0) \

”~
e “~ Untaken

o _/
Untaken

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

\

35

Taken

° ° ° b Pattern History Table (PHT) 5 ; Taken T
rogram n tron N — eal
. Counter 2nentry T
A e -
n
——

-
Taken ,’/ Untaken
-

Prediction -

Weakly < & Strongly
Untaken (1) IJ'_?J(;; Unfakzn(Oz ;
2 bit Untaken ~

/**/

int make_prediction(unsigned int pc) Predicting the sequence 01010100 01010100 01010100
idx = (pc>>2) % N; The B4’s sequence 01010100 01010100 01010100 ...
return (pht[idx] & ex2) ? 1 : o; State of the counter 2 100 0000 @000 ...

} Prediction 1000 OO0 000006 ...

[HRFEFKAAAAAA A KKK KA AAAAA KA KKK AAAAK A KA KKK AAAAA KKK KA AAAAA KKK KA AAAAA KK KKK AAAA KKK Hlt/MlSS or the pr'ed_ MHHH HHHH HHHH .

void train_predictor(unsigned int pc, int outcome)

{ The B2’s sequence 1010100 21010100 01010100 ...
if(outcome==1 & pht[idx]<3) pht[idx]++; State of the counter 2333 2333 2333...
1f(outcome==0 & pht[idx]>6) pht[idx]--; Prediction 1111 1111 1111 ...

¥ . .

Hit/Miss or the pred. HHHM HHHM HHHM...

/**/

int main() 1: pc= 10, idx=4, cnt=2, pred=1, outcome=0 miss

{ 2: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
int pred; // branch prediction 3: pc= 10, idx=4, cnt=1, pred=0, outcome=0 hit
int outcome; // branch outcome (taken/untaken) 4: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
init_predictor(); 5: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
int pes 6: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
for(?n',c i=1; 1¢25; i++) { 7: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit

if(i&1) { pc = ox10; } else { pc = @x20;} 8: pc= 20, ?dx=8, cnt=3, pred=1, outcome=0 m%ss

9: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit

pred = make_prediction(pc); /***** prediction *****/ 10: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit

11: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit

if(pc==6x10) { 12: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit

outcome = @; 13: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit

ilse{ 14: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit

outcome = (i/2 % 4) ? 1 : @; /***** outcome: 111011101110... ****x/ 1653 pe= ;g’ %3)(::’ CnE=2, pr‘e3=2, ochome=g h],'t

} : pc= , 1dx=8, cnt=3, pred=1, outcome=0 miss

17: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit

printf("%4d: pc=%3x, idx=%d, cnt=%d, pred=%d, outcome=%d ", 18: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit

i, pc, idx, pht[idx], pred, outcome); 19: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit

)) 20: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit

train_predictor(pc, outcome); /***** training ***xx/ 21: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit

if(pred==outcome) printf("hit\n"); else printf("miss\n"); ;; Egi ig’ ijiii’ E:Ei;’ E::gi;’ gzzzgm:i; :iz
. =) =9 =Y =Y, =

r}.etum 0; 24: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss

}

ﬂ CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 36

Accuracy of simple predictors with 8KB HW budget

\

100
%0 8KB hardware budget O Branch Always
O 2bit counter
80 I] M Bimodal I
= 710 _ 1 _—
£ 60 | I
a'd
2 50 1 s
.0
= | _
'_6 40 1N I | | 1] 7__ | K = | |
e - -
2 30 | I | T
2
20 | | U
. k IE L A Gl
0 L] | _L | | | |
— ™)
| | o0
al > ©
s : :
n <

SERV-5 oo

ﬁ, Benchmark for CBP(2004) by Intel MRL and TEEE TC uARCH.
c

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 37

An innovation in branch predictors in 1993

 Using branch history
* global branch history

 2-level branch predictor and gshare

« Assume predicting the sequence 1110 1110 1110 1110 1110 ...

pred

adr
1110111 © 500
11161110 °? 001
111011101 ? 212
1119111011 ? o0
11101110111 °? 101
111911101110 ? 116

111

@’ Use the recent branch history as an address of a table.
C

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

\

Recommended Reading
\

« Combining Branch Predictors
« Scott McFarling, Digital Western Research Laboratory
« WRL Technical Note TN-36, 1993

* A quote:
"In this paper, we have presented two new methods for improving
branch prediction performance. First, we showed that using the bit-
wise exclusive OR of the global branch history and the branch address
to access predictor counters results in better performance for a given

counter array size."

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 39

Gshare (TR-DEC 1993)
* How Yo predict x

« Using the exclusive OR of the global branch history and PC to access PHT,
then MSB of the selected counter is the prediction.

« How to update

 Shifting BHR one bit left and update LSB by branch outcome in IF stage.
« Update the used counter in the same way as 2BC in WB stage.

Program 1110111011 (shift register)

Counter
\ /Br'anch History
| | | Register (BHR)
n m Taken
8 Pattern History Table (PHT) Taken
2n entry Strongly . Weakly
XOR (D Taken (3) Untaken Taken (2)
e
feen -~ Untaken
n ' Prediction o
/ . Taken
' . | Weakl — Strongl
Y gly
I Untaken (1) _——— Untaken (0) \
\) Untaken - y
&7 2 bit Untaken =~
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 40

Bi-Mode (MICRO 1997)
A\

« A choice predictor (bimodal) is used as a meta-predictor

* How to predict
 Like gshare, both of Taken PHT and Untaken PHT make two
predictions.
« Select one among them by the choice predictor which tracks the
global bias of a branch.

e How tou BHR Program Counter
pdate |
« The used PHT is updated
in the same way as 2BC. 14 ‘
XORP g]

« Choice predictor is updated
in the same way as bimodal.

Choice predittor

> <«
Taken PHT | ‘ Untaken PHT
Prediction

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 41

To go beyond gshare X
\

« Using branch history
* global branch history
 2-level branch predictor and gshare
« Assume predicting the sequence 1110 1110 1110 1110 1110 ...

adr | pred
1110111 ©
11101110 ? o 11101110 ? 11101110 ?
111@111@1.:, 010 111011101 ? 111011101 ?
' o11| 1 1110111011 ? 1110111011 ?

1119111011 ? 100
11101110111 ? 101 1

111011101110 ? 9] 1
111} © Use long branch history and weights

Gshare: use the recent branch (importance) of each history bit

history as an address of a table.
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 42

11101110111 » 11101110111 °?
111011101110 ? 111011101110 °?

Recommended Reading

« Dynamic branch prediction with perceptrons

* Daniel A. Jimenez, Calvin Lin (The University of Texas at Austin)
« HPCA-7, pp. 197-206 (2001)

Hardware ‘budget History Length
in kilobytes gshare | bi-mode | perceptron
1 6 7 12
2 8 9 22 E
4 8 11 28 E
8 11 13 34 é
16 14 14 36 E .
2 —-o—- Gshare
32 15 15 59 &] - -=—- Bi-Mode
64 15 16 59 —s— Perceptron
128 16 17 62 5 ---a-- Hybrid Perceptron + Gshare
256 17 17 62
512 18 19 62
1 : : ; T B o
Hardware Budget, Kilobytes
Table 1: Best History Lengths. This table shows the best amount Perceptron vs. other techniges, Harmonic Mean

of global history to keep for each of the branch prediction schemes.
Figure 3: Hardware Budget vs. Prediction Rate on SPEC 2000.
The perceptron predictor is more accurate than the two PHT methods

at all hardware budgets over one kilobyte.
K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Perceptron (HPCA 2001)
\

* How to predict

« Select one perceptron by PC B n @

. Compute y using the equation. Tt = "7 ;“) AN -
predicts 1 if y>=0, predicts O if y<O /n: ’8

« X is branch history. xi is either -1,

.) Perceptron Model
meaning not taken or 1, meaning
taken

« How to UPdGTC Program Counter Branch History (x)

* Train the weights of used | |
perceptron when the prediction

miss or |y| < T (Threshold)
> > Computey
. - Selected Y
1f sign(Yout) # tor |Yout| < @ then Perceptron
fori:=0tondo
w; = w; + tx; Prediction
| end for ,)
end 1f 8 bit weight x 29 = 232 bit

= +
ﬁ T=193n+14 Table of Perceptrons (w)
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 44

Perceptron (HPCA 2001)

How to predict

y = wo + Tiw;.
« Select one perceptron by PC ;

° CompuTe y US|n9 'l'he equa'l'lon IT Number of weights (without bias) of perceptron: 4
. . . . Theta: 21.720

pr'edlc’rs 1if Y>:O, pr'edlcTs Oif Y<O 1: Wn-We = © © © © 0: bhr=00e0: y= 0, p=1 : out=1 : hit
2: Wn-We = -1 -1 -1 -1 1 : bhr=0001: y= 3, p=1 : out=1 : hit
. . . o . 3: Wn-We = -2 -2 -2 0 2 : bhr=0011: y= 4, p=1 : out=1 : hit
° X IS br'ClnCh hISTOI"y X1 1S elTher' -1, 4: Wn-Wo = -3 -3 -1 1 3 : bhr=0111: y= 3, p=1 : out=0 : miss
. . 5: Wn-We = -2 -4 -2 0 2 : bhr=1110: y= -6, p=0 : out=1 : miss
mednlng nOT Taken or 1, meanlng 6: Wn-w@ = -1 -3 -1 -1 3 : bhr=1101: y= -1, p=0 : out=1 : miss
7: Wn-W@ = © -2 -2 © 4 : bhr=1011: y= 4, p=1 : out=1 : hit
Taken 8: Wn-Wo = 1 -3 -1 1 5 : bhr=0111: y= 1, p=1 : out=@ : miss
9: Wn-Wo = 2 -4 -2 © 4 : bhr=1110: y= 0, p=1 : out=1 : hit
10: Wn-Wo = 3 -3 -1 -1 5 : bhr=1101: y= 5, p=1 : out=1 : hit
HOW TO updaTe 11: Wn-W@ = 4 -2 -2 @ 6 : bhr=1011: y= 10, p=1 : out=1 : hit
. . 12: Wn-We = 5 -3 -1 1 7 : bhr=0111: y= -1, p=0 : out=0 : hit
e Train the We|9h1's of used 13: Wn-We = 6 -4 -2 @ 6 : bhr=1118: y= 6, p=1 : out=1 : hit
. . 14: Wn-Wwe = 7 -3 -1 -1 7 : bhr=1101: y= 11, p=1 : out=1 : hit
per‘cep‘fr‘on when the pr‘ed|c1'|on 15: Wn-We = 8 -2 -2 @ 8 : bhr=1011: y= 16, p=1 : out=1 : hit
. 16: Wn-Wwe = 9 -3 -1 1 9 : bhr=0111: y= -3, p=0 : out=0 : hit
miss or |y| < T (Thr‘eshold) 17: Wn-We = 10 -4 -2 @ 8 : bhr=1110: y= 12, p=1 : out=1 : hit
18: Wn-We = 11 -3 -1 -1 9 : bhr=1101: y= 17, p=1 : out=1 : hit
19: Wn-We = 12 -2 -2 @ 10 : bhr=1011: y= 22, p=1 : out=1 : hit
. . 20: Wn-We = 12 -2 -2 © 10 : bhr=0111: y= -6, p=0 : out=0 : hit
1f Slgn(yﬁ.ut} # tor |yﬂut| < f then 21: Wn-We = 13 -3 -3 -1 9 : bhr=1110: y= 17, p=1 : out=1 : hit
. - 22: Wn-We = 14 -2 -2 -2 10 : bhr=1101: y= 22, p=1 : out=1 : hit
fori:=0tondo 23: Wn-W@ = 14 -2 -2 -2 1@ : bhr=1011: y= 22, p=1 : out=1 : hit
24: Wn-We = 14 -2 -2 -2 10 : bhr=0111: y=-10, p=0 : out=0 : hit
wy = wy -+ f,.l‘.i.: 25: Wn-W@ = 15 -3 -3 -3 9 : bhr=1110: y= 21, p=1 : out=1 : hit
26: Wn-We = 16 -2 -2 -4 10 : bhr=1101: y= 22, p=1 : out=1 : hit
end for 27: Wn-W@ = 16 -2 -2 -4 1@ : bhr=1011: y= 22, p=1 : out=1 : hit
. 28: Wn-We = 16 -2 -2 -4 10 : bhr=0111: y=-14, p=0 : out=0 : hit
end 1f 29: Wn-We = 17 -3 -3 -5 9 : bhr=1110: y= 25, p=1 : out=1 : hit

T=193n+14

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Perceptron (HPCA 2001)

/**/

/* perceptron based branch predictor Version v2024-12-26a */
/* Copyright (c) 2024 Archlab. Science Tokyo &
/* Released under the MIT license https://opensource.org/licenses/mit */

/**/
#include <stdio.h>

#tdefine N 4 // Number of weights of perceptron, default 28
#tdefine BitsInWeight 8 // Number of bits in a weight

#tdefine MAXVAL 127 // max value of a weight

#tdefine MINVAL -128 // min value of a weight

#tdefine NPerceptron (1024) // the number of perceptrons

#tdefine ThetaMax (N * 1.93 + 14) // Threshold max value
#tdefine ThetaMin (-1 * ThetaMax) // Threshold min value

int perceptron[NPerceptron][N+1]; // perceptron table

int bhr; // global branch history register
int idx; // index of perceptron table

int y; // weighted sum with bias

int prediction; // prediction of taken/untaken

/**/

void init_predictor()

{
for(int i=@; i<NPerceptron; i++){
for(int j=0 ; j<=N ; j++){
perceptron[i][j] = ©;
X
X
bhr = 0;
X

/**/

int make_prediction(unsigned int pc)

{
idx = (pc>>2) % NPerceptron;
y = perceptron[idx][0];
for(int i=1; i<=N; i++){
if((bhr >> (i-1)) & 1) y += perceptron[idx][i];
else y -= perceptron[idx][i];
¥
prediction = (y >=0) 2 1 : 0;
return prediction;
}

void train_predictor(unsigned int pc, int outcome)
if(outcome != prediction || ((y < ThetaMax) && (y > ThetaMin))){

int *bias = &perceptron[idx][0];
if(outcome==1 && (*bias < MAXVAL)) *bias = *bias + 1;
if(outcome==0 && (*bias > MINVAL)) *bias = *bias - 1;

for(int i=1; i <=N; i++){
if(((bhr >> (i-1)) & 1)==outcome){
if (perceptron[idx][i] < MAXVAL) perceptron[idx][i]++;

}
else{
if (perceptron[idx][i] > MINVAL) perceptron[idx][i]--;
}
}
bhr = (bhr << 1) | outcome;
}
/**/
int main()
{
int pred; // branch prediction
int outcome; // branch outcome (taken/untaken)
init_predictor();
printf("Number of weights (without bias) of perceptron: %d\n", N);
printf("Theta: %7.3f\n", ThetaMax);
int pc = 0x2000;
for(int i=1; i<30; i++) {
pred = make_prediction(pc); /***** prediction *****/
printf("%4d: Wn-Wwe = ", i);
for(int i=N; i>=0; i--) printf("%3d ", perceptron[idx][i]);
outcome = (i % 4) ? 1 : @; /***** ppranch outcome: 11101110111@... ***¥**/
printf(": bhr=");
for(int j=N-1; j>=0; j--){
printf("%d", ((bhr>>j) & 1));
}
printf(": y=%3d, p=%d : out=%d : ", y, pred, outcome);
train_predictor(pc, outcome); /***** tpaining ****x*/
if(pred==outcome) printf("hit\n"); else printf("miss\n");
}
return 0;
}

—
\$ CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

46

Perceptron (HPCA 2001)

The Neural Network in Your CPU

Sun, Aug 6, 2017

Machine learning and artificial intelligence are the current hype (again). In their new
Ryzen processors, AMD advertises the Neural Net Prediction. It turns out this is was
already used in their older (2012) Piledriver architecture used for example in the
AMD A10-4600M. It is also present in recent Samsung processors such as the one
powering the Galaxy S7.What is it really?

The basic idea can be traced to a paper from Daniel Jimenez and Calvin Lin
“Dynamic Branch Prediction with Perceptrons”, more precisely described in the
subsequent paper “Neural methods for dynamic branch prediction”. Branches
typically occur in if-then-else statements. Branch prediction consists in
guessing which code branch,the then orthe =1se ,the code will execute, thus
allowing to precompute the branch in parallel for faster evaluation.

Jimenez and Lin rely on a simple single-layer perceptron neural network whose
input are the branch outcome (global or hybrid local and global) histories and the
output predicts which branch will be taken. In realitv. because there is a sinale laver.

AND Ryzen 2016-12-13 Slide Deck Back to Post

Neural Net Prediction_ * ‘,A
|

Scary Smart Prediction

Atrue artificial network inside every “Zen”
processor

Builds a model of the decisions driven by
software code execution

Anticipates future decisions, pre-load
instructions, choose the best path
through the CPU

AMDD | ZEN

https://www.anandtech.com/Gallery/Album/5197#18

https://chasethedevil.github.io/post/the_neural network_ _in_your cpu/

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 47

Branch predictors based on pattern matching

\
« Find the longest matching pattern (green rectangle) \
« Select the proper matching length or long matching pattern (blue rectangle)

« Count the number of O and the number of 1 after the long matting patterns
(red rectangle), then predict by majority vote.

Global branch history Prediction O or 1
- g
The Ionge;T matching pattern
0 1 0 >
——

The long matching pattern

0 Prediction
l|l———

ﬁ; 0l Appearing O twice and 1 once, so the prediction will be O
C

48

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Partial Pattern Matching, PPM or TAGE (CBP 2004)

Table 4 Table 3 Table 2 Table 1 Table O \

pc pc h[0:9] pc h[0:19] pc h[0:39] pc h[0:79]

12 llzﬁ , \|, ’Iﬁ , \|, ’Iﬁ , \|, :|Z¢
i hash hash hash hash hash hash ash hash

I 3b} 8bit | 3b! 8 b1t : 3b! 8 b1t : 3bi 8 b1t :
3b . : U : e : = : !
. m ctr,. tag | ctr. tag ctr. tag ctr. tag |
ctr . : ' ' '
: 8 8 8 8
i =7 =7 =9 =
A1 A1 A1 A1 A1 A1 A1 A1
1 N4
1 % Vv
1 % W
“1
prediction 0/1

_ Df_a' From CBP2004 presentation slide

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 49

Partial Pattern Matching, PPM or TAGE (CBP 2004)
\

The original launch of the Zen' architecture in the Ryzen 1000 series desktop
processors featured clock speeds up to 4 GHz, and were manufactured on the 14nm
manufacturing node. This was followed the next year with the Ryzen 2000 series
featuring updated ‘Zen+ architecture, which was die-shrunk to the 12nm node and
delivered higher clock speeds with about 3% higher IPC (instructions per clock)
compared to its predecessor. Despite this modest increase, it delivered up to 15%
higher gaming performance due to updates like Precision Boost 2 and XFR 2, thanks in
part to a clock speed increase up to 4.3 GHz.

The Ryzen 3000 series desktop processors benefited from a major core redesign,
doubling up the L3 cache capacity (up to 32MB), floating point throughput (to 256-bit),
OpCache capacity (to 4K), and Infinity Fabric bandwidth (to 512-bit). It also featured a
new branch predictor. All of these improvements contributed to a very
substantial 15% IPC increase, and with these processors benefitting from the new 7nm
manufacturing node, maximum clock speeds climbed to 4.7 GHz."

The next major Zen' revision was Zen3', which debuted in AMD Ryzen 5000 series
desktop processors, This comprehensive design overhaul delivered a further 19% IPC
increase thanks to over 20 major changes, which included: wider and more flexible
execution resources; significantly more load/store bandwidth to feed execution; and a
streamlined front-end to get more threads in flight—and do it faster. It also
transitioned to a new "unified complex" design that brought 8 cores and 32MB of L3
cache into a single group of resources. This dramatically reduced core-to-core and

https://www.amd.com/en/technologies/zen-core
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 50

Prediction accuracy

« The accuracy of 4KB Gshare is about 93%.
« The accuracy of 4KB PPM is about 97%.

<

20 |
18 8KB hardware budget W Bimodal
B Gshare
16 .
0 Bimode
sS4 @PPM
(]
12
04
210
.9
0 g
g
o
a6
=
4
2
0
T Y P Y T Y Yy TYPYY T TR &
[I o N o NN o MR o M RN "R ol ol = S =S s=sSs=sS > > > > > o
L bbbl =222 2sSsS=S===ax0ocooeon o
o o >
N D N DO D <

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Recommended Reading

* Prophet-Critic Hybrid Branch Prediction

Ayose Falcon, UPC, Jared Stark, Intel, Alex Ramirez, UPC, Konrad
Lai, Intel, Mateo Valero

ISCA-31 pp. 250-261 (2004)

Prophet/Critic Hybrid Branch Prediction

Ayose Falcon § Jared Stark § Alex Ramirez § Konrad Lai I Mateo Valero §

§ Computer Architecture Department
Universitat Politecnica de Catalunya
{afalcon, aramirez, mateo} @ac.upc.es

Abstract

This paper introduces the prophet/critic hybrid condi-
tional branch predictor, which has two component pre-
dictors that play the role of either prophet or critic. The
prophet is a conventional predictor that uses branch history

tn nvodict the divertinn nf the curvent hvanch Furtheor ne-

T Microarchitecture Research Lab
Intel Corporation
{jared.w.stark, konrad.lai} @intel.com

frequency (and hence voltage) and still meet its perfor-
mance target, and reduces energy consumption by reduc-
ing the work wasted on misspeculation.

In addition, the branch predictor is not tightly coupled
with the microarchitecture, making it relatively simple to
replace with a better one, so that an improved version of

[P R [RUN - I N B [I ™

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

52

A quote from Introduction (1/2)

\

Conventional predictors are analogous to a taxi with just one driver.

He gets the passenger to the destination using knowledge of the
roads acquired from previous trips; i. e., using history information
stored in the predictor's memory structures.

When he reaches an intersection, he uses this knowledge to decide
which way to turn.

The driver accesses this knowledge in the context of his current
location.

Modern branch predictors access it in the context of the current
location (the program counter) plus a history of the most recent
decisions that led to the current location.

~ =
! 53

P CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

A quote from Introduction (2/2)

\

Prophet/critic hybrids are analogous to a taxi with two drivers: the
front-seat and the back-seat. The front-seat driver has the same role
as the driver in the single-driver taxi. This role is called the prophet.

The back-seat driver has the role of critic. She watches the turns the
prophet makes at intersections. She doesn't say anything unless she
thinks he's made a wrong turn. When she thinks he's made a wrong turn,
she waits until he's made a few more turns to be certain they are lost.
(Sometimes the prophet makes turns that initially look questionable, but,
after he makes a few more turns, in hindsight appear to be correct.)
Only when she's certain does she point out the mistake.

To recover, they backtrack to the intersection where she believes the
wrong-turn was made and try a different direction.

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 54

Prophet-Critic Hybrid Branch Prediction

Critic

Prophet Predictions Predictions

FTQ

Prophet LKJIHGFEDCBAA»H

(C,D,E.F)

4 future bits

Critique of
branch C

Critic

—

I-cache
& Fetch

misp/Kuops

4KB prophet

prophet/critic sizes

16KB prophet

(c) Prophet: perceptron; Critic: tagged gshare
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

— —AVG (all benchmarks)

\

4.00 1+ unzp
—%— premiere
3.50 A —¢—msvc7
—a—flash
—=—facerec
3.00 —a—fpce
2.50
2.00 4
T e e
1.00 1 = i B
0.50 A
O.DD T T T T 1
0 1 4 8 12

Number of Future Bits

Figure 5. Effect of varying the number of fu-
ture bits used by the critic on prediction ac-

curacy for selected benchmarks. (prophet:
8KB perceptron; critic: 8KB tagged gshare)

Prophet-Critic Hybrid Branch Prediction

\

2KB critic | 8KB critic | 32KB critic

16KB prophet

16KB perceptron (prophet) +

8KB gshare (critic)

16KB perceptron

no critic M1 future bit @4 futw\e bits @8 future bitsb 12 future bits|

\

2KB critic ‘ 8KB critic ‘ 32KB critic

4KB prophet

/

16KB gshare (prophet) +
8KB perceptron (critic)

16KB gshare

/

Critic

2KB critic ‘ 8KB critic ‘ 32KB critic

16KB prophet

A, B, C, and D)

Critique

(on branch z,
using 4 future bits:

Brai
Register (BOA)
[ovnxvz [ABEDl—
)
time

ranch Outcome

Prophet

Prophet's
prediction
(on branch p)

Z no critic W1 future bit B4 future bits @8 fyfure bits 0012 future bits|

Branch history
A
\

2KB critic ‘ 8KB critic ‘ 32KB critic

4KB prophet

sdony|/dsiw

prophet/critic sizes

(c) Prophet: perceptron; Critic: tagged gshare

prophet/critic sizes

(b) Prophet: gshare; Critic: filtered perceptron

56

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

