
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 1

Computer Organization and Architecture

1. Computer Organization and Architecture

Ver. 2025-12-03aFiscal Year 2025

Course number: CSC.T440
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/coa/
Room No. M-112(H117), Lecture (Face-to-face)
Thr 13:30-15:10

Kenji Kise, Department of Computer Science
kise[at]comp.isct.ac.jp

2CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Syllabus (1/4)

3CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Syllabus (2/4)

4CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Syllabus (3/4)

5CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Syllabus (4/4)

6CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

The birth of microprocessors in 1971

Name Year # of transistors

Intel 4004 1971 2,250

ENIAC, 1940s

7CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Growth in processor performance

8CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Performance Factors

• Performance = F x IPC
• F : frequency (clock rate)

• IPC : executed instructions per cycle (due to architecture advances)

• The performance can be improved
by increasing either F or IPC

9CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Growth in clock rate F of microprocessors

From CAQA 5th edition

Intel 4004 clocked at 740KHz in 1971

10CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

The past, present, and future of the world’s most important device

IEEE Spectrum, December 2022

11CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Moore’s Law

• Moore's law is the observation that the
number of transistors in a dense integrated
circuit doubles about every two years. The
observation is named after Gordon Moore,
the co-founder of Fairchild Semiconductor
and Intel, whose 1965 paper described a
doubling every year in the number of
components per integrated circuit, and
projected this rate of growth would continue
for at least another decade. In 1975, looking
forward to the next decade, he revised the
forecast to doubling every two years. The
period is often quoted as 18 months because
of a prediction by Intel executive David
House (being a combination of the effect of
more transistors and the transistors being
faster).

WIKIPEDIA

12CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Moore’s Law

180nm process 45nm process

13CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Moore’s Law

https://www.intel.com/content/www/us/en/newsroom/opinion/moore-law-now-and-in-the-future.html

14CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Transistor

• In an nMOS transistor, when a positive voltage is applied to the gate terminal
relative to the source terminal, it creates an electric field that attracts
electrons towards the gate. This forms a conductive channel between the source
and drain terminals allowing current to flow through.

turn on
when a positive voltage is applied

nMOS pMOS

Gate terminal

Source terminal Drain termional

current current

turn on
when a negative voltage is applied

Gate terminal

Source terminal Drain termional

15CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Transistor and Gate

NAND gate

a

b
c

a b c
0 0 1
1 0 1
0 1 1
1 1 0

nMOS nMOS

pMOS

pMOS

Truth table of NAND gate

• A logic gate is a device that performs a logical operation on one or
two binary inputs that produces a single binary output

16CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Transistor and Gate

NAND gate

a

b
c

a b c
0 0 1
1 0 1
0 1 1
1 1 0

a

b

c

ab

Gnd
nMOS nMOS

pMOS

pMOS

GND

Vdd
Truth table of NAND gate

• A logic gate is a device that performs a logical operation on one or
two binary inputs that produces a single binary output

17CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Transistor and Gate

NAND gate

a

b
c

a b c
0 0 1
1 0 1
0 1 1
1 1 0

a

b

c

ab

Gnd
nMOS nMOS

pMOS

pMOS

GND

Vdd
Truth table of NAND gate

• A logic gate is a device that performs a logical operation on one or
two binary inputs that produces a single binary output

on on

off

off

0

11

1

10
1

18CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Clock rate F is mainly determined by

• Switching speed of gates (transistors)

• The number of levels of gates

• The maximum number of gates cascaded in series in any
combinational logics.

• In this example, the number of levels of gates is 3.

• Wiring delay and fanout

• fan-out is the number of gate inputs driven by the output of
another single logic gate.

18

Register
Register

NAND gate

OR gate

AND gate

19CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Pollack’s Rule

• Pollack's Rule states that
microprocessor performance increase due to microarchitecture
advances is roughly proportional to the square root of the increase in
complexity. Complexity in this context means processor logic, i.e. the
number of transistors.

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36

20CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Intel Sandy Bridge, January 2011

• 4 core

20

21CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Intel Skylake-X, Core i9-7980XE, 2017

• 18 core

22CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

From single-core, multi-core era to many-core era

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

23CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Two major ISA types: RISC vs CISC

• RISC (Reduced Instruction Set Computer) philosophy

• fixed instruction lengths

• load-store instruction sets

• limited addressing modes

• limited operations

• RISC: MIPS, Alpha, ARM, RISC-V, …

• CISC (Complex Instruction Set Computer) philosophy

• ! fixed instruction lengths

• ! load-store instruction sets

• ! limited addressing modes

• ! limited operations

• CISC : DEC VAX11, Intel 80x86, …

23

An Instruction Set Architecture (ISA) is part of the abstract model of a computer
that defines how the processor is controlled by the software. The ISA acts as an
interface between the hardware and the software.

24CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

MIPS, ARM, and RISC-V

https://riscv.org/

https://en.wikipedia.org/wiki/MIPS_architecture

24

ARM (Advanced RISC Machine)

25CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

RISC-V base and extensions

25

26CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

RISC-V RV32I base and our target instructions

26

We do not support some system
instructions (FENCE, ECALL,
EBREAK) and 8-bit or 16-bit loads
(LB, LH, LBU, LHU) and stores (SB,
SH) of RV32I.

27CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

RISC-V general-purpose registers

27

ABI(Application Binary Interface) name
XLEN = 32
for 32bit ISA

RV32I does not have floating point regesters of f0 - f31.

28CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

RISC-V instruction length encoding

28

We support 32-bit length instructions.
16-bit length instructions called
compressed instructions are used in
some embedded systems.

29CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

RISC-V base instruction format

29

30CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

RISC-V Arithmetic Instructions

• RISC-V assembly language arithmetic statement

◼ Each arithmetic instruction performs only one operation

◼ Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

◼ Operand order is fixed (destination first)

◼ Those operands are all contained in the datapath’s register
file (x0, ..., x31)

30

add x7, x8, x9

sub x7, x8, x9

destination <- source1 op source2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

31CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Exercise 1

• Compiling a C assignment using registers

• The variables f, g, h, i, and j are assigned to the registers
s0, s1, s2, s3, and s4, respectively.
What is the compiled RISC-V code?

f = (g + h) – (i + j);

s0 = (s1 + s2) – (s3 + s4);

t0 = s1 + s2;

t1 = s3 + s4;

s0 = t0 – t1;

32CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

(1) Machine Language - Add instruction (add)

• Instructions are 32 bits long

• Arithmetic Instruction Format (R-type):

opcode 7-bits opcode that specifies the operation

rs1 5-bits register file address of the first source operand

rs2 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

funct3 and funct7 10-bits select the type of operation (function)

32

R-typefunct7 rs2 rs1 funct3 rd opcode

add x7, x8, x9

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

33CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

(2) RISC-V Add immediate instruction (addi)

• Small constants are used often in typical code

• Possible approaches?

• put “typical constants” in memory and load them

• create hard-wired registers (like x0) for constants like 1

• have special instructions that contain constants !

• Machine format (I format):

• The constant is kept inside the instruction itself

• Immediate format limits values to the range +211–1 to -211

addi x7, x8, -2 # x7 = x8 + (-2)

33
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

I-typeimm[11:0] rs1 funct3 rd opcode

34CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

RISC-V Memory Access Instructions

• RISC-V has two basic data transfer instructions for
accessing memory

• lw x5, 24(x7) # load word from memory

• sw x3, 28(x9) # store word to memory

• The data is loaded into (lw) or stored from (sw) a register
in the register file

• The memory address – a 32 bit address – is formed by
adding the contents of the base address register to the
offset value

34
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

35CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

3

(3) Machine Language - Load word instruction (lw)

35

• Load Instruction Format (I-type):

lw x5, 8(x7)

Memory

data address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xffffffff

x7 0x12000000

0x12000008x5

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

I-typeimm[11:0] rs1 funct3 rd opcode

36CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Exercise 2

• Compiling an assignment when an operand is in memory

• Let’s assume that A is an array of 100 words and the compiler has
associated the variable g and h with the registers s1 and s2.
Let’s also assume that the starting address, or base address, of the array
is in s3. Compile this C code.

g = h + A[2];

3

Memory

data address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xffffffff

s3 0x12000000 A[0]

t0
0x12000004 A[1]
0x12000008 A[2]
0x1200000c A[3]
0x12000010 A[4]

t0 = A[2]; # address is s3 + 8

s1 = s2 + t0;

37CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

(4) Machine Language - Store word instruction (sw)

37

• Load Instruction Format (S-type):

sw x5, 8(x7)

S-typeimm[11:5] rs1 funct3 imm[4:0] opcoders2

Memory

data address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xffffffff

x7 0x12000000

0x12000008x5

38CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Exercise 3

• Compiling using load and store

• Assume variable h is associated with register s2 and base
address of the array A is in s3. What is the RISC-V
assembly code for the C program?

A[1] = h + A[2];

t0 = A[2]; # address is s3 + 8

t1 = s2 + t0;

A[1] = t1; # address is s3 + 4

39CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

(5) RISC-V branch if not equal instructions (bne)

39

• RISC-V conditional branch instructions
(bne, branch if not equal) :
bne x4, x5, Lbl # go to Lbl if x4!=x5

if (i==j) h = i + j;

bne x4, x5, Lbl1 # if (i!=j) goto Lbl1
add x6, x4, x5 # h = i + j;

Lbl1: ...

• Instruction Format (B-type):

• How is the branch destination address specified?

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

40CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Exercise 4

• Compiling using add, addi, and bne

• What is the RISC-V assembly code for the C program?

void main(){

int i, sum=0;

for(i=1; i!=10; i++) sum = sum + i;

}

void main(){

int t0, t1=10, t3=0;

for(t0=1; t0!=t1; t0++) t3 = t3 + t0;

}

41CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Typical five steps in processing an instruction

• IF: Instruction Fetch
fetch an instruction from instruction memory or instruction
cache

• ID: Instruction Decode
decode an instruction and read input operands from register file

• EX: Execution
perform operation, calculate an address of lw/sw

• MEM: Memory Access
access data memory or data cache for lw/sw

• WB: Write Back
write operation result and loaded data to register file

41

42CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Single-cycle implementation of processors

• Single-cycle implementation also called single clock cycle
implementation is the implementation in which an instruction is
executed in one clock cycle.
While easy to understand, it is too slow to be practical.
It is useful as a baseline for lectures.

43CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

m_rvcore (RV32I, single-cycle processor)

• around 40MHz operating frequency for Arty A7 FPGA board

• lb, lbu, lh, lhu, sb, sh are not supported

m_regfile

regfile1

(32bit x 32)

w_rs1

m_imem

imem1

(32bit x 1024)

m_dmem

dmem1

(32bit x 8K)

r_pc

32

+

w_rs2

w_rslt

m_decoder

decoder1 5 w_rrs1

w_rrs2_t

w_rrs2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

w_ldd

M
u
x

w_rslt

D_OUT

w_rrs1

w_imm

w_rrs2

w_rrs1

w_rrs2

w_rrs1

w_imm

D_WE

r_pc

32

5

5

32

32

1

32

32

32

32

32

32

32

m_rvcore1
(proc1.v)

w_rd

r_pc

w_ir
m_alu

alu1

m_bru

bru1

M
u
x

w_itype[`D_S_TYPE]

M
u
x

+ w_tkn_pc

M
u
x

32

+

`START_PC

w_b_rslt, w_rst

w_imm32

32
4

w_itype[`D_LD__IS]

w_jalr

w_op_im

w_jalr

w_op_im
w_itype

w_bru_c

w_alu_c

w_bru_c
w_alu_c

r_pc

w_clk
w_clk

w_clk

w_clk

44CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Sample assembly code in RISC-V

• sample assembly code in the instruction memory

• the leftmost number is the instruction memory address where
the instruction is stored

• the first register x0 is zero register with hardwiring 0

0x00 L1: addi x5, x0, 2 # x5 = 2

0x04 addi x6, x0, 3 # x6 = 3

0x08 add x7, x5, x6 # x7 = x5 + x6 = 5

0x0c sw x7, 32(x0) # mem[0 + 32] = x7 = 5

0x10 lw x8, 32(x0) # x8 = mem[0 + 32]

0x14 add x9, x8, x5 # x9 = x8 + x5 = 7

0x18 bne x5, x6, L1 # go to L1 if x5!=x6

0x00200293

0x00300313

0x006283B3

0x02702023

0x02002403

0x005404B3

0xFE6294E3

45CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2 # x5 = 2

0x04 addi x6, x0, 3 # x6 = 3

0x08 add x7, x5, x6 # x7 = x5 + x6 = 5

0x0c sw x7, 32(x0) # mem[0 + 32] = x7 = 5

0x10 lw x8, 32(x0) # x8 = mem[0 + 32]

0x14 add x9, x8, x5 # x9 = x8 + x5 = 7

0x18 bne x5, x6, L1 # go to L1 if x5!=x6

• cycle count 0 (cc0) at 50nsec

0x0

0, 1

0
x
0

46CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2 # x5 = 2

0x04 addi x6, x0, 3 # x6 = 3

0x08 add x7, x5, x6 # x7 = x5 + x6 = 5

0x0c sw x7, 32(x0) # mem[0 + 32] = x7 = 5

0x10 lw x8, 32(x0) # x8 = mem[0 + 32]

0x14 add x9, x8, x5 # x9 = x8 + x5 = 7

0x18 bne x5, x6, L1 # go to L1 if x5!=x6

• cycle count 1 (cc1) at 150nsec

• executing
addi x5, x0, 2
of address 0x00

0x0

0x00200293
0x0

0x4

0

5

0

2

2

2

2

2

2

0x4

0

0, 0

47CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2 # x5 = 2

0x04 addi x6, x0, 3 # x6 = 3

0x08 add x7, x5, x6 # x7 = x5 + x6 = 5

0x0c sw x7, 32(x0) # mem[0 + 32] = x7 = 5

0x10 lw x8, 32(x0) # x8 = mem[0 + 32]

0x14 add x9, x8, x5 # x9 = x8 + x5 = 7

0x18 bne x5, x6, L1 # go to L1 if x5!=x6

• cycle count 2 (cc2) at 250nsec

• executing
addi x6, x0, 3
of address 0x04

0x4

0x00300313
0x4

0x8

0

6

0

3

3

3

3

3

3

0x8

0

0, 0

48CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2 # x5 = 2

0x04 addi x6, x0, 3 # x6 = 3

0x08 add x7, x5, x6 # x7 = x5 + x6 = 5

0x0c sw x7, 32(x0) # mem[0 + 32] = x7 = 5

0x10 lw x8, 32(x0) # x8 = mem[0 + 32]

0x14 add x9, x8, x5 # x9 = x8 + x5 = 7

0x18 bne x5, x6, L1 # go to L1 if x5!=x6

• cycle count 3 (cc3) at 350nsec

• executing
add x7, x5, x6
of address 0x08

0x8

0x006283B3
0x8

0xc

5

7

2

6 3
3

5

5

5

0xc

0

0, 0

49CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2 # x5 = 2

0x04 addi x6, x0, 3 # x6 = 3

0x08 add x7, x5, x6 # x7 = x5 + x6 = 5

0x0c sw x7, 32(x0) # mem[0 + 32] = x7 = 5

0x10 lw x8, 32(x0) # x8 = mem[0 + 32]

0x14 add x9, x8, x5 # x9 = x8 + x5 = 7

0x18 bne x5, x6, L1 # go to L1 if x5!=x6

• cycle count 4 (cc4) at 450nsec

• executing
sw x7, 32(x0)
of address 0x0c

0xc

0x02702023
0xc

0x10

0

0

0

7 5

0x10
0

32

32

32

5

5

1

0, 0

50CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2 # x5 = 2

0x04 addi x6, x0, 3 # x6 = 3

0x08 add x7, x5, x6 # x7 = x5 + x6 = 5

0x0c sw x7, 32(x0) # mem[0 + 32] = x7 = 5

0x10 lw x8, 32(x0) # x8 = mem[0 + 32]

0x14 add x9, x8, x5 # x9 = x8 + x5 = 7

0x18 bne x5, x6, L1 # go to L1 if x5!=x6

• cycle count 5 (cc5) at 550nsec

• executing
lw x8, 32(x0)
of address 0x10

0x10

0x02002403
0x10

0x14

0

8

0

0x14
0

32

32

32

5

0

5

5

0, 0

51CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2 # x5 = 2

0x04 addi x6, x0, 3 # x6 = 3

0x08 add x7, x5, x6 # x7 = x5 + x6 = 5

0x0c sw x7, 32(x0) # mem[0 + 32] = x7 = 5

0x10 lw x8, 32(x0) # x8 = mem[0 + 32]

0x14 add x9, x8, x5 # x9 = x8 + x5 = 7

0x18 bne x5, x6, L1 # go to L1 if x5!=x6

• cycle count 6 (cc6) at 650nsec

• executing
add x9, x8, x5
of address 0x14

0x14

0x005404B3
0x14

0x18

5

9

2

0x18

0

7

7

8 5 7

5

0, 0

52CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2 # x5 = 2

0x04 addi x6, x0, 3 # x6 = 3

0x08 add x7, x5, x6 # x7 = x5 + x6 = 5

0x0c sw x7, 32(x0) # mem[0 + 32] = x7 = 5

0x10 lw x8, 32(x0) # x8 = mem[0 + 32]

0x14 add x9, x8, x5 # x9 = x8 + x5 = 7

0x18 bne x5, x6, L1 # go to L1 if x5!=x6

• cycle count 7 (cc7) at 750nsec

• executing
bne x5, x6, L1
of address 0x18

0x18

0xFE6294E3
0x18

0x1c

5 2

0x1c

0

6 3

3

0x18

-0x18

0x0

0x0

2

3

1

1, 0

53CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Single-cycle implementation of processors

• Single-cycle implementation also called single clock cycle
implementation is the implementation in which an instruction is
executed in one clock cycle.
While easy to understand, it is too slow to be practical.
It is useful as a baseline for lectures.

54CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Critical path of rvcore1 (single-cycle version)

• The critical path is defined as the path between a source register (or
memory) and a destination register with the maximum delay.

• This design is too slow to be practical.

m_regfile

regfile1

(32bit x 32)

w_rs1

m_imem

imem1

(32bit x 1024)

m_dmem

dmem1

(32bit x 8K)

r_pc

32

+

w_rs2

w_rslt

m_decoder

decoder1 5 w_rrs1

w_rrs2_t

w_rrs2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

w_ldd

M
u
x

w_rslt

D_OUT

w_imm

w_rrs2

w_rrs1

w_rrs2

w_rrs1

w_imm

D_WE

r_pc

32

5

5

32

32

1

32

32

32

32

32

32

32

rvcore1

w_rd

r_pc

w_ir
m_alu

alu1

m_bru

bru1
M
u
x

w_itype[`D_S_TYPE]

M
u
x

+ w_tkn_pc

M
u
x

32

+

`START_PC

w_b_rslt, w_rst

w_imm32

32
4

w_itype[`D_LD__IS]

w_jalr

w_op_im

w_jalr

w_op_im
w_itype

w_bru_c

w_alu_c

w_bru_c
w_alu_c

r_pc

55CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Single-cycle implementation of laundry

• (A) Ann, (B) Brian, (C) Cathy, and (D) Don each have dirty clothes to be
washed, dried, folded, and put away, each taking 30 minutes.

• The cycle time (the time from the end of one load to the end of the
next one) is 2 hours.

• For four loads, the sequential laundry takes 8 hours.

cycle time

56CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Single-cycle implementation and pipelining

• When the washing of load A is finished at 6:30 p.m., another washing of
load B starts.

• Pipelined laundry takes 3.5 hours just using the same hardware
resources. The cycle time is 30 minutes.

• What is the latency
(execution time) of each load?

57CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Bucket brigade

58CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Clock rate is mainly determined by

• Switching speed of gates (transistors)

• The number of levels of gates

• The maximum number of gates cascaded in series in any
combinational logics.

• In this example, the number of levels of gates is 3.

• Wiring delay and fanout

58

Register A

Register B

NAND gate

OR gate

AND gate

Register A

Register B
NAND gate

OR gate

Register C

Split a path by placing registers

59CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Pipelining example: multiply-add operation (1)

• As an example of pipelining, we will see a multiply-add circuit.

• r_b, r_c are input registers and r_y is output register of the circuit.

• This has two paths named path1 and path2, and path1 is the critical path
to determine the maximum operating frequency.

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c

3 r_b
16

×
32

+ r_y
32

+
r_c

32

r_y
32

(a) Path1

(b) Path2

Critical path

60CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Pipelining example: multiply-add operation (2)

• By inserting register r_d, the critical path can be divided into Path3
and Path4.

• As a result, the new critical path becomes Path3.

• This has the disadvantage that input b and c in the same clock cycle
cannot be processed.

16

16 16

×
32

+
r_c

32 32

r_y
32 32

b

c
y

3

r_d

16

16

×
32

3

r_d

+ r_y
32

r_d

+
r_c

32

r_y
32

(b) Path4

(c) Path2

(a) Path3

r_b

r_b

Critical path

61CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

Pipelining example: multiply-add operation (3)

• To overcome this drawback, we insert register r_e.

• This realizes a pipeline with stages 1 and 2.
A set of registers between two adjacent stages are called a pipeline
register.

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c
y

3

r_e

32

32

stage 1 stage 2

r_d

pipeline register

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c
y

3

r_e

32

32

stage 1 stage 2

r_d

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c

3

(a) original multiply-add circuit (b) two-stage pipelined circuit

Critical path

