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Course overview and goals

This course aims to provide students with cutting-edge technologies and future trends in computer architecture, with a focus on the

microprocessor, which plays a crucial role in the downsizing, personalization, and improvement of performance and power

consumption in computer systems such as PCs, personal mobile devices, and embedded systems.
In this course, students will first learn about instruction set architectures and mechanisms for extracting instruction-level parallelism
used in out-of-order superscalar processors. After that, students will learn mechanisms for exploiting thread level parallelism adopted

in multi-processors and multi-core processors.

Course description and aims

By taking this course, students will learn:
(1) Organization and architecture for today's high-performance processors
(2) Mechanisms for extracting instruction level parallelism used in high-performance microprocessors

(3) Methods for exploiting thread level parallelism adopted in multi-processors and multi-core processors

Keywords

Computer Organization, Computer Architecture, RISC-V, Instruction Level Parallelism, Thread Level Parallelism, Multi-processors, Multi-

core Processors, Memory Consistency Model, Interconnection Network
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Course schedule/Objectives

Course schedule

Objectives

Class 1

Computer Organization and Architecture

Understand the basics of the computer system, pipelining, instruction

level parallelism, and multi-core processors

Class2

Instruction Level Parallelism: Memory System,

Instruction Fetch, and Branch Prediction

Understand the organization of memory systems, instruction fetch,

and branch predictions to exploit instruction level parallelism

Class3

Instruction Level Parallelism: Register Renaming

and Dynamic Scheduling

Understand the register renaming and the dynamic scheduling to

exploit instruction level parallelism

Class 4

Instruction Level Parallelism: Multiple Issue,

Speculation, and Out-of-order Execution

Understand the multiple issue mechanism, speculation, and out-of-

order execution to exploit instruction level parallelism

Class5

Thread Level Parallelism: Coherence and

Synchronization

Understand the coherence and synchronization for thread level

parallelism

Class 6

Thread Level Parallelism: Memory Consistency
Model

Understand the memory consistency model for thread level

parallelism

Class 7

Thread Level Parallelism: Interconnection

Network and Many-core Processors

Understand the interconnection network and many-core processors

for thread level parallelism

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo




Syllabus (3/4)

Study advice (preparation and review)

To enhance effective learning, students are encouraged to spend approximately 100 minutes preparing for class and another 100
minutes reviewing class content afterwards (including assignments) for each class.

They should do so by referring to textbooks and other course material.

Textbook(s)

John L. Hennessy, David A. Patterson, Christos Kozyrakis. Computer Architecture A Quantitative Approach, 7th Edition. Morgan
Kaufmann Publishers Inc., 2025

Reference books, course materials, etc.

William James Dally, Brian Patrick Towles. Principles and Practices of Interconnection Networks. Morgan Kaufman Publishers Inc., 2004.

Evaluation methods and criteria

Students will be assessed on their understanding of computer architectures that utilize instruction-level parallelism and thread-level
parallelism.

Students' course scores are based on the final report (60%) and assignments (40%).
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Related courses

e CSCT363 : Computer Architecture
e (CSC.T341 : Computer Logic Design

Prerequisites

Students who have already earned credit for CSC.T433 Advanced Computer Architecture are not eligible to take this course.

Enrollment in the related courses is desirable.

Contact information (e-mail and phone) Notice : Please replace from ”[at]” to ”@” (half-width
character).

Keniji Kise: kise[at]comp.isct.ac.jp

Office hours

Contact by e-mail in advance to schedule an appointment.

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo



The birth of microprocessors in 1971

\__,m — —

Name Year # of transistors

ﬁn Intel 4004 1971 2,250
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Growth in processor performance
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Performance Factors x
\

 Performance = F x IPC
« F: frequency (clock rate)
« TIPC: executed instructions per cycle (due to architecture advances)

» The performance can be improved
by increasing either F or IPC
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Clock rate (MHz)

Growth in clock rate F of microprocessors
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Intel 4004 clocked at 740KHz in 1971
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13th Generation Intel® Core™ i9 Processors

Products formerly Raptor Lake
Desktop

i9-13900K

Launched

Q4'22

Intel 7

$589.00 - $599.00

CPU Specifications

Total Cores @ 24

# of Performance-cores 8

# of Efficient-cores 16

Total Threads @ 32

Max Turbo Frequency ® 5.80 GHz
Intel® Thermal Velocity Boost Frequency @ 5.80 GHz
Intel® Turbo Boost Max Technology 3.0 Frequency te 5.70 GHz
Performance-core Max Turbo Frequency @ 5.40 GHz
Efficient-core Max Turbo Frequency @ 4.30 GHz
Performance-core Base Frequency 3.00 GHz
Efficient-core Base Frequency 2.20 GHz
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The past, present, and future of the world's most important device
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IEEE Spectrum

| EDITOR'S NOTE

'The Device

Everything

/ Transistors are civilization’s
| invisible infrastructure

The Past, Present,

and Future of [
the World’s Most
Important Device

was roaming around the JEEE Spectrum office
a couple of months ago, looking at the display
cases the IEEE History Center has installed in
the corridor that runs along the conference
rooms at 3 Park. They feature photos of illustrious
engineers, plaques for IEEE milestones, and a
handful of vintage electronics and memorabilia
including an original Sony Walkman, an Edison
Mazda lightbulb, and an RCA Radiotron vacuum
tube. And, to my utter surprise and delight, a
replica of the first point-contact transistor
invented by John Bardeen, Walter Brattain, and
William Shockley 75 years ago this month.

I dashed over to our photography director,
Randi Klett, and startled her with my excitement,
which, when she saw my discovery, she under-
stood: We needed a picture of that replica, which
she expertly shot and now accompanies this

column.

What amazed me most besides the fact that
the very thing this issue is devoted to was here
with us? I'd passed by it countless times and
never noticed it, even though it is tens of billions
times the size of one of today’s transistors. In fact,
each of us is surrounded by billions, if not trillions
of transistors, none of which are visible to the
naked eye. It is a testament to imagination and
i ity of three i f el ics engi-
neers who took the (by today’s standards) mam-
moth point-contact transistor and shrunk it
down to the point where transistors are so ubig-
uitous that civilization as we know it would not
exist without them.

IEEE Spectrum, December 2022

‘That Changed

The best
explanation
of the point-

| contact

transistoris
in Bardeen’s
1956 Nobel
Prize lecture,
but even
that left out
important
details.
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iginal point-contact

This replica of the or

(ransis‘i".or is on display outside IEEE Spectrum's
conference rooms.

Of course, this wouldn’t be a Spectrum specia]
issue if we didn’t tell you how the origina]
point-contact transistor worked, _something that
even the inventors seemed a little fuzzy op,
According to our editorial director for content
development, Glenn Zorpette, the best explana-
tion of the point-contact transistor is in Bardeen’s
1956 Nobel Prize lecture, but even that left out
important details, which Zorpette explores in clas-
sic Spectrum style in “The First Transistor and
How It Worked,” on page 24.

And while we're celebrating this historic
accomplishment, Senior Editor Samuel K. Moore,
who covers semiconductors for Spectrum and
curated this special issue, looks at what the tran-
sistor might be like when it turns 100. For “The
Transistor of 2047” [p. 38], Moore talked to the
leading lights of semiconductor engineering, many
of them IEEE Fellows, to get a glimpse of a future
where transistors are stacked on top of each other
and are made of increasingly exotic 2D materials,
evenas the OG of transistor materials, germanium,
is poised for a comeback.

When I was talking to Moore a few weeks ago
about this issue, he mentioned that he's attending

his favorite conference just as this issue comes

out, the 68th edition of IEEE’s Inter national Elec-
tron Devices Meeting, in San Fr co. The
mind-bending advances that emer ge from that
conference always get him excited about the engi-
neering feats occurring in today’s labs and on
tomorrow's production lines. This ye s he's most
excited about new devices that corm e comput=
ing capability with memory to s
learning, Who knows, maybe the (1,
will make its debut there, too, &

1 machine
itor of 2047

PORTAALT BY SERGIO ALBIAC: RANDI KLETT
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Moore's Law
\_-7 ~\.’—-\ R e SRS gy

* Moore's law is the observation that the
number of fransistors in a dense integrated
circuit doubles about every two years. The
observation is named after Gordon Moore,
the co-founder of Fairchild Semiconductor
and Intel, whose 1965 paper described a
doubling every year in the number of
components per integrated circuit, and
projected this rate of growth would continue
for at least another decade. In 1975, looking
forward to the next decade, he revised the
forecast to doubling every two years. The
period is often quoted as 18 months because
of a prediction by Intel executive David
House (being a combination of the effect of
more transistors and the ftransistors being
faster).

¢ WIKIPEDIA
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Moore's Law

VISUALIZING PROGRESS

[
| f -t |_E ] | |S | S -t O I_S W e re e O | e If the transistors in 8 microprocessor were represented by people,
the following timeline gives an idea of the pace of Moore’s Law

\"'.\_ \\
I . f}; m e 7
2,300 134,000 32 Million 1.3 Billion
Average music hall capacity Large stadium capacity Population of Tokyo Population of China

1970 1950 2000 2011
Intel 4004 Intel 286 Pentium Il Core i7 Extreme Edition
180nm process 45nm process

Now imagine that those 1.3 billion people could fit onstage in the original music hall. That's the scale of Moore’s Law.

Moore’s Law

Moore's Law states that the transistor density on integrated
circuits doubles about every two years. Moore’s Law has been
amazingly accurate over time. In 1971, the Intel 4004 processor
held 2,300 transistors. In 2005, the Intel® Iltanium® processor
held more than 1 billion transistors. Intel continues to drive
Moore’s Law, increasing functionality and performance, and
helping to bring growth to industries worldwide.
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Moore's Law
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Figure 2: Transistor innovations over time

https://www.intel.com/content/www/us/en/newsroom/opinion/moore-law-now-and-in-the-future.html

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo



Transistor

* TInannMOS transistor, when a positive voltage is applied to the gate terminal \
relative to the source terminal, it creates an electric field that attracts

electrons towards the gate. This forms a conductive channel between the source
and drain terminals allowing current to flow through.

turn on turn on
when a positive voltage is applied when a negative voltage is applied
Gate terminal Gate terminal
Source terminal I | Drain termional Source terminal I | Drain termional
nMOS pMOS

| — T

@ %D current current
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 14




Transistor and Gate

\
* A logic gate is a device that performs a logical operation on one or"%%
two binary inputs that produces a single binary output

NAND gate
a
s
b )‘C pMOS
Truth table of NAND gate —_—r . JL
nMOS nMOS
a b| c S ey T
001 oS
1 01
011
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Transistor and Gate

\
* A logic gate is a device that performs a logical operation on one or"%%
two binary inputs that produces a single binary output

NAND gate

b
D Mj“i

— \/dd
Truth table of NAND gate GND
a b c nMOS nMOS
O O 1 pMOS
1 01 c
011
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Transistor and Gate

\
* A logic gate is a device that performs a logical operation on one or"%%
two binary inputs that produces a single binary output

NAND gate 1 b
a Lors
C 1 b 1 a pMOS
b — 1
on on 1 a Vdd
Truth table of NAND gate GND == = JL
nMOS nMOS
a b|c |
O 0|1 o
| £f
1 01 C ’
011 0
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Clock rate F is mainly determined by x
\

« Switching speed of gates (transistors)
« The number of levels of gates

« The maximum number of gates cascaded in series in any
combinational logics.

« In this example, the number of levels of gates is 3.
* Wiring delay and fanout

* fan-out is the number of gate inputs driven by the output of
another single logic gate.

L :
i Register
Register  nanp gate

OR gate _:D_

AND gate

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 18




Pollack's Rule

* Pollack's Rule states that
microprocessor performance increase due to microarchitecture
advances is roughly proportional o the square root of the increase in
complexity. Complexity in this context means processor logic, i.e. the
number of transistors.

EVE EVE EVE
Ev4
EVE- EV6 EV6 EV6
EVS
EVE EVE EVE EVE
Figure 1. Relative sizes of the cores used in
the study
ﬁ Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

19



Intel Sandy Bridge, January 2011
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Intel Skylake-X, Core i9-7980XE, 2017

18 core

—

CORE i9

X-series
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From single-core, multi-core era to many-core era
e, —— —

<

p —

Many-core Era
Massively parallel
applications
: 100§
Increasing HW
Threads
Per Socket Multi-core Era
104 Scalar and
parallel applications
HT
14 g
[ [ | [ [ [ [ [ [
1 | 1 1 1 1 1 1
2003 2005 2007 2009 2011

2013

Figura 1: Currant and expacted eras of Intal® processor architectures

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005
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Two major ISA types: RISC vs CISC

An Instruction Set Architecture (ISA) is part of the abstract model of a compute
that defines how the processor is controlled by the software. The ISA acts as an
interface between the hardware and the software.

« RISC (Reduced Instruction Set Computer) philosophy
 fixed instruction lengths
* load-store instruction sets
 limited addressing modes
* limited operations
« RISC: MIPS, Alpha, ARM, RISC-V, ...
« CISC (Complex Instruction Set Computer) philosophy
« | fixed instruction lengths
« lload-store instruction sets
« llimited addressing modes
« llimited operations
« CISC: DEC VAXI11, Intel 80x86, ..

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo
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MIPS, ARM, and RISC-V
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MIPS architecture

From Wikipadia, the free encyclopedia

MIPS (Microprocessor without Interlocked Pipelined Stages)''] is a reduced instruction set computer (RISC)
instruction set architecture (ISA)P14 13119 developed by MIPS Computer Systems, now MIPS Technologies, based in the
United States.

There are multiple versions of MIPS: including MIPS I, 11, IIL, IV, and V; as well as five releases of MIPS32/64 (for 32- and
64-bit implementations, respectively). The early MIPS architectures were 32-bit only; 64-bit versions were developed
later. As of April 2017, the current version of MIPS is MIPS32/64 Release 6.[*115) MIPS32/64 primarily differs from MIPS I-
V by defining the privileged kernel mode System Control Coprocessor in addition to the user mode architecture.

The MIPS architecture has several optional extensions. MIPS-3D which is a simple set of floating-point SIMD instructions
dedicated to common 3D tasks,'®! MDMX (MaDMaX) which is a more extensive integer SIMD instruction set using the 64-
bit floating-point registers, MIPS16e which adds compression to the instruction stream to make programs take up less
room, ! and MIPS MT, which adds multithreading capability.[®]

Computer architecture courses in universities and technical schools often study the MIPS architecture.[®] The architecture
greatly influenced later RISC architectures such as Alpha.

:‘ RISC ¢ Membership

RISC-V is an open standard Instruction Set
(ISA) enabling a new era of processor i
through open collaboration

RISC-V enables the community to share technical

contribute to the strategic future, create more ra

unprecedented design freedom, and substantially req
innovation

RISC-V International is the global non-profit home of the open standard
RISC-V Instruction Set Architecture (ISA), related specifications, and
stakeholder community At the base

ture

Article Talk Read Edit View history a r m

- — . _“'"'_"" L =
Arm "ABCD" building in Cherry Hinton,

Cambridge, UK

ARM (Advanced RISC Machine)

RISC-V Exchange Technical ~ News&Events ~ Community -~ Q

ISC-V Are you ready to break free?

R »C-\

Understanding the RISC-V ISA Open Standard

level, the RISC-V ISA and extensions ratified by RISC-V International are royalty

free and open base building blocks for anyone to build their own solutions and services on.

3,950 RISC-V members across 70 countries contribute and collaborate to define RISC-V open The RISC-V

ISA and ratified extensions are provided under globally accepted open licenses

specifications as well as convene and govern related technical, industry, domain, and special that are permanently open and remain available for all.

interest groups.
Beyond RIS

C-V International, the community has opportunity to provide their own free or

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo hTTpsi//r'iSCV.Or'g/
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RISC-V base and extensions

Chapter 1

F

1.1

—
« 8kB OTP Program Memory

E310-G002 Description

Features 1.2 Description

* SiFive E31 Core Complex up to 320MHz.  The FE310-G002 is the second Freedom E300
SoC. The FE310-G002 is built around the
E31 Core Complex instantiated in the Freedom
E300 platform.

The FE310-G002 Manual should be read to-
gether with this datasheet. This datasheet pro-
« RV32IMAC vides electrical specifications and an overview
of the FE310-G002.

« Flexible clocking options including inter-
nal PLL, free-running ring oscillator and
external 16MHz crystal.

« 1.61 DMIPs/MHz, 2.73 Coremark/MHz

The FE310-G002 comes in a convenient, in-
» 8kB Mask ROM dustry standard 6x6mm 48-lead QFN package

« 16kB Instruction Cache (0.4mm pad pitch ).
» 16kB Data SRAM

« 3 Independent PWM Controllers

« External RESET pin

« JTAG, SPI 12C, and UART interfaces.

« QSPI Flash interface.

« Requires 1.8V and 3.3V supplies.

« Hardware Multiply and Divide

ISA base and extensions (20191213)

Name Description Version | Status!®!
Base

RVWMO | Weak Memory Ordering 2.0 Ratified
RWV321 Base Integer Instruction Set, 32-bit 2.1 Ratified
RV32E Base Integer Instruction Set (embedded), 32-bit, 16 registers 1.9 Open
RvV641 Base Integer Instruction Set, 64-bit 2.1 Ratified
RV128I | Base Integer Instruction Set, 128-bit 1.7 Open

Extension

M Standard Extension for Integer Multiplication and Division 2.0 Ratified
A Standard Extension for Atomic Instructions 2.1 Ratified
F Standard Extension for Single-Precision Floating-Point 2.2 Ratified
D Standard Extension for Double-Precision Floating-Point 2.2 Ratified
G Shorthand for the base integer set (I) and above extensions (MAFD) N/A N/ A
Q Standard Extension for Quad-Precision Floating-Point 2.2 Ratified
L Standard Extension for Decimal Floating-Point 0.0 Open
C Standard Extension for Compressed Instructions 2.0 Ratified
B Standard Extension for Bit Manipulation 0.92 Open
J Standard Extension for Dynamically Translated Languages 0.0 Open
T Standard Extension for Transactional Memory 0.0 Open
P Standard Extension for Packed-SIMD Instructions 0.2 Open
A" Standard Extension for Vector Operations 0.9 Open
N Standard Extension for User-Level Interrupts 1.1 Open
H Standard Extension for Hypervisor 0.4 Open
ZiCSR Control and Status Register (CSR) 2.0 Ratified
Zifencei | Instruction-Fetch Fence 2.0 Ratified
Zam Misaligned Atomics 0.1 Open
Ztso Total Store Ordering 0.1 Frozen

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo
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RISC-V RV32I base and our target instructions

We do not support some system
instructions (FENCE, ECALL,
EBREAK) and 8-bit or 16-bit loads
(LB, LH, LBU, LHU) and stores (SB,
SH) of RV32I.

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

RV 321 Base Instruction Set

imm[31:12 rd 0110111 LUI
imm[31:12 rd 0010111 AUIPC
imm[20[10:1]11]19:12] rd 1101111 JAL
imm|[11:0] sl 000 rd 1100111 JALR
imm|12(10:5 rs2 rsl 000 imm|4:1|11 1100011 BEQ
imm|12[10:5 rs2 rsl 001 imm|4:1|11 1100011 BNE
imm|12(10:5 rs2 rsl 100 imm|4:1|11 1100011 BLT
imm|{12[10:5 rs2 rsl 101 imm{4:1|11 1100011 BGE
imm|1210:5 rs2 rsl 110 imm4:1|11 1100011 BLTU
imm|[12(10:5 rs2 rsl 111 imm[4:1|11 1100011 BGEU
=R 1k HHH reb HR 4
TG st B+ ok 80066+ HH
imm([11:0 rsl 010 rd 0000011 LW
e 2 100 ¥l BooBoH RE
;Illlll 11-{_} lﬁ.‘l }.Dl lll DOGDG}-}- LHU
b ot b BB mrnldd PR Ls
;llllll 1}.-5 J.:”n l?’l GD}- ;J.lll].l. 40 GlODG}-l SH
imm|11:5 rs2 rsl 010 imm|4:0 0100011 SW
imm|11:0 rsl 000 rd 0010011 ADDI
imm|11:0 rsl 010 rd 0010011 SLTI
imm|[11:0 rsl 011 rd 0010011 SLTIU
imm|[11:0 rsl 100 rd 0010011 XORI
imm|[11:0 rsl 110 rd 0010011 ORI
imm|[11:0 rsl 111 rd 0010011 ANDI
0000000 shamt sl 001 rd 0010011 SLLI
0000000 shamt rsl 101 rd 0010011 SRLI
0100000 shamt rsl 101 rd 0010011 SRAIL
0000000 rs2 rsl 000 rd 0110011 ADD
0100000 rs2 rsl 000 rd 0110011 SUB
0000000 rs2 rsl 001 rd 0110011 SLL
0000000 rs2 rsl 010 rd 0110011 SLT
0000000 rs2 rsl 011 rd 0110011 SLTU
0000000 rs2 rsl 100 rd 0110011 XOR
0000000 rs2 rsl 101 rd 0110011 SRL
0100000 rs2 rsl 101 rd 0110011 SRA
0000000 rs2 rsl 110 rd 0110011 OR
0000000 rs2 rsl 111 rd 0110011 AND
ha —pred—o et ] 2 HEOL LENCE
5666660660060 80666 566 856666 HIH04 ECALE
FATRTATATATATAYATATATA NI TRTATAY FATATAY FAYATATATAT 1110011 11210 A L




RISC-V general-purpose registers

XLEN

for 32bit ISA x3

<

XLEN-1

x0 / zero

=32 x1

x2

x4

ABI(Application Binary Interface) name

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

%15

%16

%17

x18

x19

%20

x21

x22

%23

x24

%25

%26

x27

%28

%29

x30

x31

Register | ABI Name | Description Saver
x0 zero Hard-wired zero —
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer —
x4 tp Thread pointer —
x5-7 t0-2 Temporaries Caller
x8 s0/fp Saved register /frame pointer Callee
x9 si Saved register Callee
x10-11 | a0-1 Function arguments/return values | Caller
x12-17 | a2-7 Function arguments Caller
x18-27 | s2-11 Saved registers Callee
x28-31 | t3-6 Temporaries Caller
o7 | £t0-7 FP temporaries Caller
£8-9 fs FP saved registers Callee
f10-11 | fa0-1 uments/return values Caller
£12-17 | fa2 7 FP argumen Caller
£18 27 | £fs2-11 FP saved registers Callee
£28 31 | ft8 11 FP temporaries —Galler

XLEN
XLEN-1

pc

XLEN

Figure 2.1: RISC-V base unprivileged integer register state.

Table 18.2: RISC-V calling convention register usage.

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

RV32TI does not have floating point regesters of fO - f31.
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RISC-V instruction length encoding

The RISC-V Instruction Set Manual
Volume I: Unprivileged ISA

Document Version 20191214-draft We SUPPOI"T 32-bit Ieng'l‘h instructions.
16-bit length instructions called
Editors: Andrew Waterman', Krste Asanovié¢!'? Compr‘essed instructions are used in

ISiFive Inc., some embedded systems.

2CS Division, EECS Department, University of California, Berkeley
andrew@sifive.com, krste@berkeley.edu
November 12, 2021

| xxxxxxxxxxxxxxaa | 16-bit (aa # 11)

I XXXXXXXXXXXXXKXX l XXXXXXXXXXXbbbl1 ] 32-bit (bbb # 111)

- XXXX | XXXXXXXXXXXXXXXX | xxxxxxxxxx011111 ‘ 48-bit

- XXXX | XXXXXXXXXXXXXKXX | xxxxxxxxx0111111 ‘ 64-bit

- XXXX | XXXXXXXXXXXXKXXXX | xnnnxxxxx1111111 ‘ (80+16*nnn)-bit, nnn#111

- XXXX | XXXXXXXXXXXXXXXX | x11lxxxxx1111111 ‘ Reserved for >192-bits

Byte Address: base+4 base+2 base

Figure 1.1: RISC-V instruction length encoding. Only the 16-bit and 32-bit encodings are consid-

ered frozen at this time.

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo



RISC-V base instruction format

Figure 2.3: RISC-V base instruction formats showing immediate variants.

E CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
funct7 rs2 rsl funct3 rd opcode | R-type
imm[11:0] rsl funct3 rd opcode | I-type
imm|11:5] rs2 rsl funct3 imm[4:0] opcode | S-type
imm[12] | imm|[10:5] rs2 rsl funct3 | imm|4:1] | imm[11] | opcode | B-type
imm|[31:12] rd opcode | U-type
imm|[20] imm|[10:1] imm|[11] imm[19:12] rd opcode | J-type



RISC-V Arithmetic Instructions

\
« RISC-V assembly language arithmetic statement 2%

add x7, x8, X9

destination <- sourcel op source2

= Operand order is fixed (destination first)

= Those operands are all contained in the datapath’s register
file (x0, ..., x31)

@dap‘red from Computer Organization and Design, Patterson & Hennessy, © 2005 30
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo



Exercise 1

« Compiling a C assignment using registers

f=(g+h)-(Ci+73);

« The variables f, g, h, i, and j are assigned to the registers
s@, s1, s2, s3, and s4, respectively.

. . 7 Register | ABI Name | Description Saver

What is the compiled RISC-V code? ™ i .
x1 ra Return address Caller
x2 sp Stack pointer Callee

x3 gp Global pointer —

x4 tp Thread pointer —

S @ = ( S 1 + S 2 ) - ( S 3 + S 4 ) ; x5-7 t0-2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
x9 s1 Saved register Callee
x10-11 | a0-1 Function arguments/return values | Caller
x12-17 | a2-7 Function arguments Caller

-t e — S 1 + S 2 . x18-27 | s2-11 Saved registers Callee

J x28-31 | t3-6 Temporaries Caller
£0-7 £t0-7 FP temporaries Caller

t 1 — S 3 + S4 ; £8-9 fs0-1 FP saved registers Callee
f10-11 | fa0-1 FP arguments/return values Caller
£12-17 | fa2-7 FP arguments Caller

S 6 - t @ - t 1 ; £18-27 fs2-11 FP saved registers Callee
£28-31 | ft8-11 FP temporaries Caller

Table 18.2: RISC-V calling convention register usage.

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo



(1) Machine Language - Add instruction (add)

« Instructions are 32 bits long
* Arithmetic Instruction Format (R-type):

\

add x7, x8, x9

funct? rs2 rsi funct3 rd opcode R-Type

opcode 7-bits
rsl 5-bits
rs2 5-bits
rd 5-bits

opcode that specifies
register file address
register file address

register file address

the operation
of the first source operand
of the second source operand

of the result’s destination

funct3 and funct7 10-bits select the type of operation (function)

@dapmd from Computer Organization and Design, Patterson & Hennessy, © 2005 32
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo



(2) RISC-V Add immediate instruction (addi)

\
Small constants are used often in typical code 2%

Possible approaches?
 put "typical constants” in memory and load them
 create hard-wired registers (like x0) for constants like 1
* have special instructions that contain constants |

addi x7, x8, -2 # X7 = x8 + (-2)

Machine for@%:\

imm[11:0] rs1 | funct3| rd opcode I-type

The constant is kept inside the instruction itself
* Immediate format limits values to the range +2!!-1 to -2

@dapmd from Computer Organization and Design, Patterson & Hennessy, © 2005 33
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo



RISC-V Memory Access Instructions X
\

RISC-V has two basic data transfer instructions for
accessing memory

lw x5, 24(x7) # load word from memory

sw X3, 28(x9) # store word to memory

« The data is loaded into (Iw) or stored from (sw) a register
in the register file

* The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
offset value

&Ldap’red from Computer Organization and Design, Patterson & Hennessy, © 2005 34
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo



(3) Machine Language - Load word instruction (Iw)

A

* Load Instruction Format (I-type):
lw x5, 8(x7)

imm[11:0] rs1 | funct3| rd opcode | I-type

Memory

OXFFFFEFFf

P 3 0x12000008

X7 —>l 0x12000000

0x000000aC
0Xx00000008
0x00000004
0Xx00000000

data address (hex)
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
C

SC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 35




Exercise 2

« Compiling an assignment when an operand is in memory

g = h + A[2];

* Let's assume that A is an array of 100 words and the compiler has
associated the variable g and h with the registers s1 and s2.
Let's also assume that the starting address, or base address, of the array

is in s3. Compile this C code.

Memory

to

A[2]; # address is s3 + 8

sl

s2 + tO;

ﬁ, data
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

OxFFEFFEfe

0x12000010 A[4]
0x1200000c A[3]
0x12000008 A[2]
0x12000004 A[1]

0x12000000 A[0]

0Xx0000000C
0Xx000000038
0x00000004
0Xx00000000

address (hex)

\
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(4) Machine Language - Store word instruction (sw) \
\
« Load Instruction Format (S-type): 2%

sw x5, 8(x7)

imm[11:5] rs2 rsl | funct3|imm[4:0]| opcode | S-type

Memory

S ARARARR

x5 —— 0x12000008

X7 —l 0x12000000

0Xx000000aC
0Xx00000008
0Xx00000004
0X00000000

ﬁ: data address (hex)
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 37




Exercise 3
N\

« Compiling using load and store

A[1] = h + A[2];

« Assume variable h is associated with register s2 and base
address of the array A is in s3. What is the RISC-V
assembly code for the C program?

t0 = A[2]; # address is s3 + 8
tl = s2 + t0o;
A[1] = t1; # address is s3 + 4

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 38



(5) RISC-V branch if not equal instructions (bne)

\
« RISC-V conditional branch instructions X

(bne, branch if not equal) :
bne x4, x5, Lbl # go to Lbl if x4!=x5

if (i==j) h =1 + j;

bne x4, x5, Lbll # if (i!=j) goto Lbl1l
add x6, x4, x5 #h=1+ j;
Lbll:

* Instruction Format (B-type):

imm|12| | imm|10:5 rs2 rsl funct3 | imm|4:1| | imm|11] | opcode | B-type

« How is the branch destination address specified?

@%dapf@d from Computer Organization and Design, Patterson & Hennessy, © 2005 3
CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 9



Exercise 4

« Compiling using add, addi, and bne

void main(){
int 1, sum=0;
for(i=1; i!=10; i++) sum

¥

sum + 1;

* What is the RISC-V assembly code for the C program?

void main(){
int to, t1=10, t3=0;

for(t0=1; tO!=t1; tO++) t3 = t3 + t0;

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo
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Typical five steps in processing an instruction

« IF: Instruction Fetch
fetch an instruction from instruction memory or instruction
cache

AN
« ID: Instruction Decode

decode an instruction and read input operands from register file

« EX: Execution
perform operation, calculate an address of Iw/sw

« MEM: Memory Access
access data memory or data cache for lw/sw

« WB: Write Back
write operation result and loaded data to register file

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 41



Single-cycle implementation of processors

« Single-cycle implementation also called single clock cycle
implementation is the implementation in which an instruction is

executed in one clock cycle.
While easy to understand, it is too slow to be practical.

It is useful as a baseline for lectures.

m_rvcorel

w_jalr
r_pe
L ) ., (procl.v)
w_alu_c w_rrsl g [ w_tkn_pe
w_bru_c N +

— ngp_im
w_jalr \l,w_bru_c

4
g
=3

—
32 w.imm t w_tts] —> m bl 1
— w_b_rslt
) w_rrs2 ] brul
32 w_imm
rpe > w_clk
w b rslt, w_rst m_decoder M . w alu_c W itype['D LD _IS]
l welk 432 ‘l*dk decoderl | 5 w_rsl o wosl
5 o) 32 J-op-im m alu| 32 w_a_rslt
. r pe m_imem w_ir W_IS “ alul
START_FC § £ pe imem1 m regiile | w 2 t [= § 32
x i regfilel e =
(32bit x 1024) 5 wrd g ) [
(32bit x 32)| w_imm - w_clk

w_rrsl 32 D ADDR

w_rslt

32
32 B—‘ w_imm 32 n:‘,dmerln
4 Yo mem w_ldd
, w_trs2 D_OUT | (39hit x 8K)

w_itype['D_S TYPE] W

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo

w_rslt
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m_rvcore (RV32I, single-cycle processor)

+ around 40MHz operating frequency for Arty A7 FPGA board
« Ib, Ibu, Ih, lhu, sb, sh are not supported

w jalr m_rvcorel
r_pc
=L 8 (procl.v)
32
w alu ¢ w_1rsl —> < |7 w_tkn_pc
w_bru ¢ +
w_itype >
S N\ W_op_im
w_jalr J,W,bru,c
32 w_imm t w_rrs] >
— w_b_rslt
w_Irs2 3|
32 w_imm -
r_pe — w_clk
w_b rslt, w_rst m_decoder y 3 w_alu_c w_itype['D_LD__IS]
w ek 432 w_clk decoderl | 5 w rsl £ wsl
i \ = 7 .
¥ 5 32 JW-op_im m alu| 32 w_a rslt
. r_pc m_imem Wi w_rs2 > )3, alul 7
START_PC | Z| slp pe imem1 m_regfile | w 2 t |2 =32
X (32bit x 1024) 5 wrd | regfilel — IR w2 x
(32bitx 32)[ w_imm B w_clk
N \
32 w_rslt w_rrsl 32 D ADDR
g2 i | w_imm * 32 m_dmem 32
4 ——>| ] f dmeml1 w ldd
w_rrs2 D _OUT (32bit x 8K)
w_itype['D_S_TYPE] W
w_rslt

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo
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Sample assembly code in RISC-V

« sample assembly code in the instruction memory
* the leftmost number is the instruction memory address where

the instruction is stored

* the first register x0 is zero register with hardwiring O

\

0x00
Ox04
Ox08
Ox0c
0x10
Oox14
Ox18

L1: addi
addi
add
SW
1w
add
bne

x5,
X6,
X7,
X7,
X8,
X9,
X5,

X0, 2

X0, 3

X5, X6
32(x0)
32(x0)
X8, X5
X6, L1

H OH H OH OH OH OH

x5 = 2

X6 = 3

X7 = X5 + x6 =5
mem[@ + 32] = X7 =
X8 = mem[0@ + 32]
X9 = x8 + x5 =7
go to L1 if x5!=x6

5

0Xx00200293
0x00300313
0x006283B3
0x02702023
0XxX02002403
0x005404B3
OXFE6294E3

Af_a'

P CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo
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Processing behabior of rvcorel

0x00 L1: addi x5, x0, 2 # x5 = 2
oo R 5B, 5 6 = 3  cycle count O (ccO) at 50nsec
0x08 add x7, x5, x6 # X7 = x5 + x6 =5
ox0c sw  x7, 32(x0) # mem[@ + 32] = x7 =5
0x10 lw x8, 32(x0) # x8 = mem[0 + 32]
ox14 add x9, x8, x5 # X9 = x8 + x5 =7
0x18 bne x5, x6, L1 # go to L1 if x5!=x6
W jalr m_rvcorel
I _pc
2 5 (procl.v)
w_alu_c¢ w_rrsl — e | w_tkn_pc
w_bru ¢ +
w_itype
W_op_im
( \ W jalr
—>
32w imm_t w_msl —»
# — w_b rslt
] w_Irs2
32 w_imm
0, 1 Lpe >
w b rslt, w rst m_decoder 1 | \l/w—alu—c w_itype[D_LD IS]
32 decoderl | 5 w rsl oy W us
i ) 4 /7,2 ¢w70p7im m alu| 32 w_a rslt
X - : 5 w rs2 > — / - =
OX0 sTART PC g ® r pe e n:[ixlln e g m regfile vs;irrszit z 32 2l § 32
2 32bit x 1024 5 wid | regfilel N 2 =
' (32bit x ) A (32bitx 32)| w_imm =
32 L/ W_I'Slt \V_ITSI —> 32 D_ADDR
{2 + W_imm — * 32 m dmem 32
4 f dmem1 w ldd
W_rrs2 D_OUT 1 (32bit x 8K)
@ w_itype['D_S_TYPE] ————————
D WE
- w_rslt

\

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo
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Processing behabior of rvcorel

\

0x00 L1: addi x5, x0, 2 # x5 = 2
ox04 addi x6, x0, 3 # x6 = 3 « cycle count 1 (ccl) at 150nsec
0x08 add x7, x5, x6 # x7 = x5 + x6 =5 :
o * executing
ox0c sw  x7, 32(x0) # mem[@ + 32] = x7 =5 .
ox10 Iw  x8, 32(x0) # x8 = mem[@ + 32] addi x5, xo0, 2
ox14 add x9, x8, x5 # X9 = X8 + X5 = 7 of address 0x00
0x18 bne x5, x6, L1 # go to L1 if x5!=x6
w jalr m_rvcorel
I _pc
rocl.v
2 5 (p )
w_alu ¢ w sl —X |7 | w_tkn pc
w_bru_c +
w_itype
m W_0p_im
w_jalr N \Lw_bru_c
32 w_imm_t w_msl —>
e w_ b rslt
) worrs2 5 T
32 w_imm
0, © pe —
w b rslt, w rst m_decoder I w_itype[D_LD IS]
i 32 decoderl | 5 w?rsl }Z wrsl © T
Ox0 ; 32 | W-op_im m alu| 32 2 w_a rslt
. r pc| m imem w_ir AR W alul [
START PC r pe imem1 m regfile | w o2 ¢ [2]32 2 ) 32 )
32bit x 1024 5 w.d regfilel
ox4 (32bit x ) A S (32bit x 32) \%_imm wts2
0x00200293__/ "
32 w_rslt w_rrs]l ——> D_ADDR
ox0 — 2 i + 37
32 + ox4 w_imm —-> 32 m_dmem
4 f dmem1 w ldd
w_rts2 D—QOUT (32bit x 8K)

Y

w_itype[ D_S_TYPE] ——————>|

D WE

w_rslt

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo
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Processing behabior of rvcorel

\

0x00 L1: addi x5, x0, 2 # x5 = 2
0x04 addi x6, x0, 3 # x6 = 3  cycle count 2 (cc2) at 250nsec
ox08 add x7, x5, x6 # X7 = x5 + x6 =5 .
S * executing
ox0c sw  x7, 32(x0) # mem[@ + 32] = x7 =5 .
ox10 Iw  x8, 32(x0) # x8 = mem[@ + 32] addi x6, x0, 3
ox14 add x9, x8, X5 # X9 = X8 + X5 = 7 of address 0x04
0x18 bne x5, x6, L1 # go to L1 if x5!=x6
w jalr m_rvcorel
I _pc
rocl.v
o » (p )
w_alu_c w sl —|X [7 | w_tkn pc
w_bru_c +
w_itype
m w_op_im
L&lr \Lw_bru_c
32w imm t w_rsl —>
# w_b_rslt
. w_rrs2
32 w_imm 3
e) @ r pc >
w b rslt, w rst m_decoder I w_itype[D_LD IS]
i 32 decoderl 5’ W?[Sl %/2 w_rrsl @ ‘l,W_a u_c
ox4 ; 32 Jroem | 20 3 w_a rslt
. r pc| m imem w_ir ), W_rs2 v, o
START PC ¢ pe imem1 m regfile | w 2 ¢ |2 32 3 ) 32 3
32bit x 1024 5 w.d regfilel
ox8 (32bitx ) A 3 (32bit x 32) \3v_imm w2
0x00300313\_/ 0
32 w_rslt w_rrs]l ——> D_ADDR
ox4 L 3 . + . 3
32 + ox8 w_imm —-> 32 m_dmem
4= H dmem1 w_ldd
w_ITs2 D—QOUT (32bit x 8K)

Y

w_itype[ D_S_TYPE] ——————>|

D WE

w_rslt

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo
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Processing behabior of rvcorel

\

0x00 L1: addi x5, x0, 2 # x5 = 2
G A G, D G e  cycle count 3 (cc3) at 350nsec
ox08 add x7, x5, x6 # x7 = x5 + x6 =5 .
e * executing
ox0c sw  x7, 32(x0) # mem[@ + 32] = x7 =5
ox10 Iw  x8, 32(x0) # x8 = mem[@ + 32] add x7, x5, x6
ox14 add x9, x8, X5 #x9 = x8 + X5 = 7 of address 0x08
0x18 bne x5, x6, L1 # go to L1 if x5!=x6
W jalr m_rvcorel
I _pc
rocl.v
a (p )
w_alu_c¢ w_rrsl — X 7] | w_tkn_pc
w_bru ¢ +
w_itype
m W_0p_im
w_jalr 5 \Lw_bru_c
32w imm_t w_msl —>
. w_b rslt
) w_Irs2
0. 0 r pe 32 w_imm
) 7
w b rslt, w rst m_decoder I w_itype[D_LD IS]
i 32 decoder1 | 5 w?rsl j,z wrsl 2 e
ox8 : w ir 5 w§r52 3/2 3 JV-op im m_alu 3’2 5 w_a_rslt
r pe m_imem | Vi 7 alul [ 7
'START PC ¢ pe imem1 m regfile | w 2 ¢ |32 3 ) 32 c
32bit x 1024 5 w.d regfilel £
oxc (32bit x ) A 7 (32bitx 32)| w_imm WS
0x006283B3___/ "
32 w_rslt w_Irs]l —— D _ADDR
ox8 7 5 i * m dmem 32
PRI oxc T rfb dmem]1 1dd
Z W7
! w_rrs2 D—QOUT (32bit x 8K)

Y

w_itype[ D_S TYPE] W

w_rslt

CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo
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Processing behabior of rvcorel

\

49

0x00 L1: addi x5, x0, 2 # x5 = 2
ox04 addi x6, x0, 3 4 X6 = 3  cycle count 4 (cc4) at 450nsec
ox08 add x7, x5, x6 # X7 = x5 + x6 =5 .
S * executing
ox0c sw  x7, 32(x0) # mem[@ + 32] = x7 =5
ox10 w  x8, 32(x0) # x8 = mem[@ + 32] sw X7, 32(x0)
ox14 add x9, x8, X5  # x9 = X8 + X5 = 7 of address Ox0Oc
0x18 bne x5, x6, L1 # go to L1 if x5!=x6
w jalr m_rvcorel
I _pc
rocl.v
o » (p )
w_alu ¢ w sl —X |7 | w_tkn pc
w_bru ¢ +
w_itype
W_op_im
( \ W jalr
—>
32w imm t w_msl —> -
e w b 15
. WoIrs2 s T
0. 0 r pe 32 w_imm 32
wﬁb}slt, W rst m_decoder %) 3 ) w_itype[D_LD IS]
i 32 decoderl | 5 w_rsl /,2 w_rrs]
OXC . 7 ¢w70p7im 1 32 w_a_rslt
r_pe m_imem w_ir 5, w_rs2 j}Z > H;leu A
'START PC r pe imem1 m regfile | v rrs2 ¢t 325 2|32
32bit x 1024 5 wd regfilel 5 =
ox10 (2pir 1024 A5 lebiex 32| v w2
0x02702023\_/ 0 g, 32
32 w_rslt w_rrs]l ——> D_ADDR
oxc L= .32 . 32
32 + ox10 w_imm ——> 2 g m_dmem
4= H dmem1 w_ldd
w_ITs2 D—loUT (32bit x 8K)
@ w_itype D_S_TYPE] ———=——|
- w_rslt
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Processing behabior of rvcorel

\

50

0x00 L1: addi x5, x0, 2 # x5 = 2
ox04 addi x6, x0, 3 # X6 = 3  cycle count 5 (ccb) at 550nsec
ox08 add x7, x5, x6 # x7 = x5 + x6 =5 :
o * executing
ox0c sw  x7, 32(x0) # mem[@ + 32] = x7 =5
ox10 w  x8, 32(x0) # x8 = mem[@ + 32] Iw x8, 32(x0)
ox14 add x9, x8, x5 # X9 = X8 + X5 = 7 of address 0x10
0x18 bne x5, x6, L1 # go to L1 if x5!=x6
w jalr m_rvcorel
I _pc
A (procl.v)
w_alu ¢ w_rrsl —> % 7] | w_tkn pc
w_bru_c +
w_itype
W_op_im
( \ W jalr
—>
32 w_imm_t w_msl —>
7 w_b rslt
. w_Irs2
32 w_imm 32
0, © rpe >
w_b rslt, w _rst m_decoder %) ) w_itype[ D_LD__IS]
i 32 decoderl | 5 w_rsl }Z w_trs]
ox10 . ) ; — 32 ‘J/W*Op*im m_alu 3’2 w_a_rslt
r pe m_imem w_Ir ;= # alul [ 7
'START P r pe e m regfile | w 2 t |2 32 <32 5
32bit x 1024 5 w.d regfilel £
ox14 (32bit x ) A 3 (32bitx 32)| w_imm w_rs2
0x02002403\_/ IR
ox10 32 w_rslt w_rrsl — . D_ADDR “
4,2 } ox14 5 w_imm ZZ5) 32 m_dmem g
4= H dmem1 w_ldd
w_rts2 D—QOUT (32bit x 8K)
w_itype[ D_S TYPE] W
- w_rslt
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Processing behabior of rvcorel

0x00 L1: addi x5, x0, 2 # x5 = 2
G A G, D G e  cycle count 6 (cc6) at 650nsec
ox08 add x7, x5, x6 # x7 = x5 + x6 =5 .
T * executing
ox0c sw  x7, 32(x0) # mem[@ + 32] = x7 =5
ox10 Iw  x8, 32(x0) # x8 = mem[@ + 32] add x9, x8, x5
ox14 add x9, x8, X5 #x9 = x8 + X5 = 7 of address 0x14
0x18 bne x5, x6, L1 # go to L1 if x5!=x6
W jalr m_rvcorel
I _pc
rocl.v
a (p )
w_alu_c¢ w_rrsl — X 7] | w_tkn_pc
w_bru_c +
w_itype
m W_0p_im
w_jalr 5 \Lw_bru_c
32w imm_t w_msl —>
# w_b_rslt
) w_Irs2
32 w_imm
0, o rpe —
w b rslt, w rst m_decoder I w_itype[D_LD IS]
i 32 decoder1 | 5 w?rsl j,z wrsl 2 e
ox14 i 3 5 AV 2007 wamk
. : w152 y = ‘
) r pe m_imem w_ir Vi 7 alul [ 7
START_P! r pe imem1 m_regfile | w rrs2 ¢ 325 ) 32 7
32bit x 1024 5 w.d regfilel £
ox18 (32bitx ) A ) (32bitx 32)| w_imm w2
0x005404B3_/ "
32 w_rslt w_Irs]l —— D _ADDR
ox14 L= , + d 32
2 [+ ox18 7 w_imm — 32 m_dmem
4 f dmem1 w ldd
w_rrs2 D—QOUT (32bit x 8K)
w_itype[ D_S TYPE] W
- w_rslt

\
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Processing behabior of rvcorel

\

0x00 L1: addi x5, x0, 2 # x5 = 2
ox04 addi x6, x0, 3 # x6 < 3  cycle count 7 (cc7) at 750nsec
ox08 add x7, x5, x6 # X7 = x5 + x6 =5 .
o * executing
ox0c sw  x7, 32(x0) # mem[@ + 32] = x7 =5
ox10 Iw  x8, 32(x0) # x8 = mem[@ + 32] bne x5, x6, L1
ox14 add x9, x8, x5 # X9 = X8 + X5 = 7 of address 0x18
0x18 bne x5, x6, L1 # go to L1 if x5!=x6
w jalr m_rvcorel
0x18 ree . (procl.v)
\\::gg:z w sl —X |7 . | w_tkn pc Ox0
w_itype
m W_op_im -9x18
w_jalr
g 2
1
32 w_imm_t w_msl —>
7 3 w_b rslt
) wW_Irs2 _— 5
32 w_imm
1, © rpe —
wjrslt, W rst o n;}‘iz‘;l‘iif 5 W?[Sl 3/2 w sl 2 ‘l/w_alu_c w_itype[ D_LD__IS]
ox0 gx18 | .6 p 3 e [l w a rslt
r pe m_imem w_ir / w_Is2 # alul 7
'START PC r pe imem1 m regfile | v rrs2 ¢t 323 ) 2|32
32bit x 1024 5 wd regfilel 5 =
ox1c (201029 A @2biex 32)| w ol )
OXFE6294E3N__/ “
32 w_rslt w_rrs]l ——> D_ADDR
ox18 , . -
4,2 + Ox1lc w_imm —-> 32 m_dmem
4 f dmem1 w ldd
w_rrs2 D—QOUT (32bit x 8K)
w_itype[ D_S TYPE] W
- w_rslt
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Single-cycle implementation of processors \
\

« Single-cycle implementation also called single clock cycle
implementation is the implementation in which an instruction is

executed in one clock cycle.
While easy to understand, it is too slow to be practical.

It is useful as a baseline for lectures.

m_rvcorel

w_jalr
r_pe
L ) ., (procl.v)
w_alu_c w_rrsl g [ w_tkn_pe
w_bru_c N +

— ngp_im
w_jalr \l,w_bru_c

4
g
=3

—
32 w.imm t w_tts] —> m bl 1
— w_b_rslt
) w_rrs2 ] brul
32 w_imm
rpe > w_clk
w b rslt, w_rst m_decoder M . w alu_c W itype['D LD _IS]
l welk 432 ‘l*dk decoderl | 5 w_rsl o wosl
5 o) 32 J-op-im m alu| 32 w_a_rslt
. r pe m_imem w_ir W_IS “ alul
START_FC § £ pe imem1 m regiile | w 2 t [= § 32
x i regfilel e =
(32bit x 1024) 5 wrd g ) [
(32bit x 32)| w_imm - w_clk

w_rrsl 32 D ADDR

w_rslt

32
32 B—‘ w_imm 32 n:‘,dmerln
4 Yo mem w_ldd
, w_trs2 D_OUT | (39hit x 8K)

w_itype['D_S TYPE] W

w_rslt
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Critical path of rvcorel (single-cycle version)

« The critical path is defined as the path between a source register (or
memory) and a destination register with the maximum delay.

« This design is too slow to be practical.

jal
r_pe . rvcorel
=| 32
w_alu ¢ w_rrs] — X [ w_tkn_pc
w_bru_c +
w_itype
m Ww_op_im
w_jalr 5 \l/w_bru_c
32 w_imm_t w_rrsl —>,
A — w_ b rslt
w_Irs2 s
32 w_imm
r_pc —~>
w_b_rslt, w_rst m_decoder 3 w_alu ¢
l 32 decoderl | 5 w_rsl ;  wsl
V4 L .
' s 5 32 W_qp-tm m_alu 3/2 w_a rslt
r_pe m_imem w_ir y WIS # > alul 7 g
'START_PC [Z 1 5, >|  imem1 m_regfile | w rre2 ¢ |23}
=< : regfilel <
(32bit x 1024) S, w_rd g — = (W ms2
# (32bitx 32)| w_imm B
0 — wrslt 32 p_ADDR
: , 32
39 + ‘ w_imm 32 m_dmem
40 Y = dmeml w_ldd
w_rrs2 P_OUT | (32bit x 8K)
w_itype['D_S_TYPE] ————————>|

D WE

w_itype['D_LD__IS]

<132
c
X

w_rslt
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Single-cycle implementation of laundry

A
* (A) Ann, (B) Brian, (C) Cathy, and (D) Don each have dirty clothes to bex
washed, dried, folded, and put away, each taking 30 minutes.

« The cycle time (the time from the end of one load to the end of the
next one) is 2 hours.

« For four loads, the sequential laundry takes 8 hours.

- 6 PM 7 8 9 10 11 12 1 2AM
R NN e NN BN e NN e B B e B
Task
order
» o=l
B Fﬂo%
2- € OE.
| aE
| D cycle time =

K CSC.T440 Computer Organization and Architecture, Department of Computer Science, Science Tokyo 55



Single-cycle implementation and pipelining X
\

« When the washing of load A is finished at 6:30 p.m., another washing of
load B starts.

« Pipelined laundry takes 3.5 hours just using the same hardware
resources. The cycle time is 30 minutes.

« What is the laTency §PM 7 8 9 10 11 12 : 2 AM

Time
(execution time) of each load? w0 C 0 U0 T

order

» o=l

: o=l __

. Jo=l

, F9=l

Time GTM 7 8 l 9 1|0 1|1 1f 1| QIAM R

- R

» O5=l

»  90=l

c mE=

: e |
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Bucket brigade

Here is a picture of an old Bucket Brigade.

Firemen are passing pails of water up to
the fire.
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Clock rate is mainly determined by

« Switching speed of gates (transistors)
« The number of levels of gates

<

« The maximum number of gates cascaded in
combinational logics.

\

series in any

* In this example, the number of levels of gates is 3.
* Wiring delay and fanout

I

OR gate _:D_

AND gate

Register B

L OR gate Split a path by placing registers
. Register B
Register A "0 82te I

Register C
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Pipelining example: multiply-add operation (1) 2\%
\

« As an example of pipelining, we will see a multiply-add circuit.
* r_b, r_careinput registers and r_y is output register of the circuit.

 This has two paths named pathl and path2, and pathl is the critical path
to determine the maximum operating frequency.

Critical path

16

—
+ —F~ r.y
32
(a) Pathi
—>
+ r‘_y
r Ccr—7 32
— |32
(b) Path2
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Pipelining example: multiply-add operation (2) 2\%
\

« By inserting register r_d, the critical path can be divided into Path3
and Path4.

« Asaresult, the new critical path becomes Path3.

« This has the disadvantage that input b and ¢ in the same clock cycle
cannot be processed.

Critical path
3
16 E:ﬁ% rd
" |16
3 (a) Path3
16 X—~7|r d
b —# r_br# 32 =
16 | | 16 ‘_QF;\W g
+—r_y y
C—r cl+ 32 32
32 - | 32 l} r_y
(b) Path4 32

+ r‘_y

_ 7
32

(c) Path2
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Pipelining example: multiply-add operation (3)

3
« To overcome this drawback, we insert register r_e.

« This realizes a pipeline with stages 1 and 2.
A set of registers between two adjacent stages are called a pipeline

register.
stage 1 stage 2
3 Critical path
16 3 7 ,
b ﬁ% r b 32 X // r d /
- b r b 32 || 32
16 16 7" 7 ‘A
y 3; e ?f; + ryr~—>Yy
c 2 | =3 L— C rc r e 32 32
32 32 - 32
(a) original multiply-add circuit (b) two-stage pipelined circuit
stage 1 stage 2
3
16 X |—A
/. d
b / b |~ 32 r 32
16 r 16 ‘A
+ ryr—=>Y
C—r c I r e 1 32 32
32 | 7|32 = |32
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