20255 F (5 H74) hix

Course number: CSC.T363

AN
A Ea—37—FTIOF¥
Computer Architecture

12. R—/INGRAT. AI3. SIMDISHITHT —2L ALt 5t
Superscalar, Data-Level Parallelism in Vector and SIMD
www.arch.cs.titech.ac.jp/lecture/CA/

‘!Sféész
==5 = — = f—]
Tue 13:30-15:10, 15:25-17:05 S o — TREBIFR

Fri 13:30-15:10 Kenji Kise, Department of Computer Science
Kise _at_ c.titech.ac.jp

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Sci&gfe Tokyo 1

5-stage pipelining processor of CFU Proving Ground

If_pc

odu

bimodal

If_br_pred_pc

Ma_br_true_pc

0 or 4
—>
ceQ——T%]_%v

XN
|

-
> 5 | imem
(]

pre_
decoder

IF

stage

3

IfId
~ IdEx ExMa MaWb
> | | BRU
< A m <
= £
N\ 2%
—>{regfile 9/\ ~ &N ALU ﬁlﬁ
N
"> z . <
= %o g
9 glx 3
5 -/ - MUL/DIV/CFU
lo. 15
© wn —
o + S+ ;ﬁ%
3 su
ﬁ decoder | - . dmem 9(5
3 { imm_gen | = -
WB
ID stage EX stage MA stage stage
. cc1 cC2 cC3 cca CC5 CCeé cc7 Time
Instructions >
32°he addi x1,x0,3 | IF | 10 | Ex I ma | ws |
32°h4 nop | r | I.EX | ma | ws |
32°h8 nop | 1 | o | ex | ma | wB |
32°hc addi x30,x10,0 | 1r | o | ex | ma | wB |
\ 4

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Growth in processor performance

Performance (vs. VAX-11/780)

100,000
Intel Xecn & cores, 3.3 GHz (boost to 3.6 GHZ)
Inter| Xeon 4 cores, 3.3 GHz (boost ta 3.6 GHZ)
Intel Core i7 Exrems 4 cores 3.2 GHz (boost to 3.5 GHz 24 150
Intel Core Duo Extrems 2 cores, 3.0 GHz - qugﬂ
1 I:I GI::JII:I' Intel CGare 2 Extreme 2 cores, 2.9 GHz
by B L C L b L L DRI e SR e e e e e e e e R R ! A1hlnnE4EBGHz
: BII%I Icﬂ E & GHz $
Intel Xeon EE 2.2 5 7,108
intel DRSOEMYA matherboard (306 GHz, Pemtium 4 processor with Hyper-Threading Technolagy) ﬁ.ﬂ-ﬂ 6,681
IBM Powerd, 1.3 GHz g 4195
Intel VB0 mothadoard, 1.0 GHz Fantium 1l processor : ; S018
Professional Werkstation XP1000, 687 MHz 212644 L
e va e PigitE] AlphaServer 8400 /TS, 575 MHz 21264 1,267
1000
22%/year
Jig e i R e . AT i, .
IBM RSE000/540, 30 MHz,
MIPS M2000, 26 MHZ
MIPS MM120, 16.7 MHz T3
10 e s
A&X-11,780, § MHz
1 o=

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

From CAQA 5t edition
CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Superscalar&diFL AL

o BHDNATSA42EFALT IPC (instructions per cycle) & 1L E

51

IZ5IEEITH, ERODRTELHNICEIT

<

Time (in clock cycles)

CC 1 CC 2
Instruction | Instruction
fetch decode
Instruction | Instruction

fetch

decods

Instruction
fetch

¢ n-way R—/\—RXH5

CC 3

Execution

Execution

Instruction
decode

CC 6

cC 4 CC 5
Data .

Acress Write back
Data .

access Write back

Execution

Data
access

Write back

Instruction
fetch

Instruction
decode

Execution

Data
access

Write back

CCA1

2-way superscalar

CC 2

Ins;;'l;l:::;inn Inds;rcu;::ji:n Execution a[n]:?ézs Wirite back

Ins;cg;:::r:iun Inds:cu;:;i:n Execution a[n]:?etass Write back
Insrh;:::r’fliun Inds:ﬂu;:;i:n Execution agci:letass Write back
e | e avoens | winte back

SC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Y

Intel Pentium Processor invented in 1993

* Avtar Saini, An Overview of the Intel Pentium Processor

« It is a Superscalar implementation of the x86 instruction set.

* The Pentium processor can decode two consecutive instructions I1
and I2, if the following are all true

Il is a "Simple" instruction
I2 is a "Simple"” instruction
L1 is not a JUMP instruction

Destination of Il is not
the Source of I2

Destination of Il is not
the Destination of I2

Fetch/Align Instructions

First Decode

Second Decode

ALU or Cache

Write Back Result

Figure 1: Dual Execution Pipeline

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

\

SIMD Variants and multicore
\
* Vector architectures X

« SIMD extensions
 Graphics Processing Units (GPUs)
« SIMD variants exploit data-level parallelism (DLP)

 Superscalar exploits instruction-level parallelism (ILP)
« Multicore exploits thread-level parallelism (TLP)

« Domain Specific (DS) Accelerators

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 6

T—XTO0FVvDELAHARAIZKSHHTE

\

* FlynnlZ&dmHBeET—2DRNITEB LM HIFTERE
D538 (1966 %)
« SISD (Single Instruction stream, Single Data stream)

« SIMD(Single Instruction stream, Multiple Data stream)
« MISD (Multiple Instruction stream, Single Data stream)
* MIMD (Multiple Instruction stream, Multiple Data stream)

Instruction stream 1 1 uu uu
Data stream 1 llll 1 1111

SISD SIMD MISD MIMD

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 7

SIMD extensions

A
« Media applications operate on data types narrower than The%%
native word size

« Example: disconnect carry chains to "partition” adder
* Implementations:
« Intel MMX (1996)
« Eight 8-bit integer ops or four 16-bit integer ops
« Streaming SIMD Extensions (SSE) (1999)
« Eight 16-bit integer ops
« Four 32-bit integer/fp ops or two 64-bit integer/fp ops
« Advanced Vector Extensions (AVX 2010)
« Four 64-bit integer/fp ops
« 256 bit vectors -> 512 -> 1024
« Operands must be consecutive and aligned memory locations

~ ==
! 3

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Vector architecture

« Computers designed by Seymour Cray starting in the 1970s
* Basic idea:

* Read sets of data elements into "vector registers”

« Operate on those registers

« Disperse the results back into memory

Cray Supercomputer

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

DAXPY (double precisiona x X + YY) X
\

void daxpy(int n, double a, double x[], double y[])
{

for (int 1 = 0; 1 < n; i++) {
yl[i] = a*x[1] + y[1i];
}
}

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 10

Vector-vector add (vvadd)
\

void vvadd(int n, float x[], float y[], float x[])
{

for (int 1 = 0; 1 < n; i++) {
z[1] = x[1] + y[i];
}
}

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 11

Vector-vector add in RISC-V instructions

vector-vector add routine of 32-bit integers

void vvaddint32(size_t n, const int*x, const int*y, int*z)
{ for (size_t i=0; i<n; i++) { z[il=x[il+y[i]; } }
#
#

ad = n, al = x, a2 =y, a3 =z
Non-vector instructions are indented
vvaddint32:
vsetvli t6, a@, e32, ta, ma # Set vector length based on 32-bit vectors
vlie32.v v@, (a1l) Get first vector
sub a0, a0, to Decrement number done
slli to, to, 2 Multiply number done by 4 bytes
add a1, al, to Bump pointer
vle32.v v1, (a2) Get second vector
add a2, a2, to Bump pointer
vadd.vv v2, v@, vi Sum vectors
vse32.v v2, (a3) Store result
add a3, a3, to Bump pointer
bnez a6, vvaddint32 Loop back
ret Finished

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

HOH HH HHHFHHH K

The basic structure of a vector architecture

« Eight 64-element vector registers
« All the functional units are vector functional units.

Main memory

Vector | FP add/subtract
load/store
B FP multiply I—>

= FP divide .—-
Vector — | |
registers . nteger
n Logical .—>

Scalar
registers

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Multiple functional units to improve the performance

* (a) can complete one addition per cycle
* (b) can complete four addition per cycle
« The vector register storage is divided across the lanes

Lane 1

Lane 2

Lane 3

I."I,;atld
pipe 1

~

| FP add

-

/ pipe 2

3

\ector
registers:
alements

1,5,49,...

\ector
registers:
elements

2. 6,10, ...

Viector
registers:
elements

3,711, ...

fa)

I

I FP mul.
pipe 2

I

Al9] B8]
Ald] BlE]
AT B[T]
Ald] B[6]
A5 B[5]
Al4] Bl4]
Al[3] B[3]
Aalz] B[2] B[E] B[] VRN
All] B[1] B[4] B[6] 7]
't
L L et —.‘
[0] cral Cre] Cra]

Elamefit group

Vector load-store unit

Af_a'

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

\

14

20255 F (5 H74) hix

Course number: CSC.T363

AN
AE2A—3T7—FXTOFw
Computer Architecture

N VAW
Input/Output and Bus

www.arch.cs.titech.ac.jp/lecture/CA/

‘!Sféész
==5 = — = f—]
Tue 13:30-15:10, 15:25-17:05 S o — TREBIFR

Fri 13:30-15:10 Kenji Kise, Department of Computer Science

Kise _at_ c.titech.ac.jp 15
CSC.T363 Computer Architecture, Department of Computer Science, Institute of Sci&gfe Tokyo

AEA—20OHHEPMLGTER

_7—"—\?1

[AN }
Instruction Set Architecture (ISA), S8 S Y7 —FT9F v
AR TT—R
avEaL—4
JOtyY
il 4]
EfadJ=1
T—RI/I\R

Input and Output Devices

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

17

Input and Output Devices 3&‘
\

« I/0 devices are diverse with respect to
 Behavior — input, output or storage
* Partner — human or machine

* Data rate — the peak rate at which data can be transferred
between the I/0 device and the main memory or CPU

Device Behavior Partner Data rate (Mb/s) o
Keyboard input human 0.0001 | | %
Mouse input human 0.0038 g
Laser printer output human 3.2000| | 3
Graphics display output human 800.0000-8000.0000 §
Network/LAN input or machine 100.0000-1000.0000 g

output ®
Magnetic disk storage machine 240.0000-2560.0000 §
"D

~ =
! 18

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

A Typical I/0 System

Processor

Interrupts

Cache

Main
Memory

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

/10 1/10 1/10
Controller Controller Controller

19

Bus, I/0 System Interconnect

A bus is a shared communication link

1bit data wire

1bit control wire

BT

CSC T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Bus, I/O System Interconnect x
\

* A bus is a shared communication link (a single set of wires
used to connect multiple subsystems)
« Advantages
* Low cost — a single set of wires is shared in multiple ways

» Versatile (% BH#) — new devices can be added easily and
can be moved between computer systems
that use the same bus standard

« Disadvantages

 Creates a communication bottleneck — bus bandwidth
limits the maximum I/O throughput

« The maximum bus speed is largely limited by
« The length of the bus
* The number of devices on the bus

~ =
@ 21

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Bus Characteristics

Bus
Master

Control lines: Master initiates requests

Data lines: Data can go either way

e Control lines

 Signal requests and acknowledgments
« Indicate what type of information is on the data lines

* Data lines

* Data, addresses, and complex commands
 Bus transaction consists of

« Master issuing the command (and address)

 Slave receiving (or sending) the data

« Defined by what the transaction does to memory
« Input - inputs data from the I/0 device to the memory
¥~ * Output —outputs data from the memory to the I/O device

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Bus
Slave

— request
— action

Types of Buses (1)

Backplane bus

Main

Processor % Memory
[} [1 []I/O devices

Processor

I/0O bus —

N~
K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

N~

Processor-memory bus ,
Main
Memory
Bus Bus Bus
adapter adapter adapter
> S S
N~ N~
> > >

23

Types of Buses (2)

Processor-memory bus

Processor

Bus
adapter

I/O bus
Bus

Backplane bus

adapter

Bus

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

adapter

Main
Memory

24

Types of Buses (3)
\

* Processor-memory bus
« Short and high speed

* Matched to the memory system to maximize the memory-processor
bandwidth

« Optimized for cache block transfers

« I/O bus (industry standard, e.g., SCSI, USB, Firewire)

* Usuadlly is lengthy and slower
* Needs to accommodate a wide range of I/0 devices
« Connects to the processor-memory bus or backplane bus

 Backplane bus (industry standard, e.g., ATA, PCI Express)
« The backplane is an interconnection structure within the chassis

« Used as an intermediary bus connecting I/0 busses to the
processor-memory bus

~ =
@ 25

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Synchronous ([E]EA=(), Asynchronous (ERIHAZ) Buseg\%
\

* Synchronous bus (e.g., processor-memory buses)

« Includes a clock in the control lines and has a fixed protocol
for communication that is relative to the clock

« Advantage: involves very little logic and can run very fast
 Disadvantages:
« Every device communicating on the bus must use same clock rate
« To avoid clock skew, they cannot be long if they are fast
 Asynchronous bus (e.g., I/0 buses)

« It is not clocked, so requires a handshaking protocol and
additional control lines (ReadReq, Ack, DataRdy)
« Advantages:
« Can accommodate a wide range of devices and device speeds

 Can be lengthened without worrying about clock skew or
synchronization problems

- Disadvantage: slow 26
P C

SC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Asynchronous Bus Handshaking Protocol 3&‘
\

An 1/O device reads data from memory.

ReadReq ___1\1 ﬂ

Data ddr 2\\Y data >
Ack :| W/Z/]
DataRdy \|//5 '

1. Memory sees ReadReq, reads addr from data lines, and raises Ack
2. I/O device sees Ack and releases the ReadReq and data lines
3. Memory sees ReadReq go low and drops Ack

2. When memory has data ready, it places it on data lines and raises DataRdy
s. I/O device sees DataRdy, reads the data from data lines, and raises Ack
6. Memory sees Ack, releases the data lines, and drops DataRdy

- 7. I/O device sees DataRdy go low and drops Ack

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 27

The Need for Bus Arbitration (Fi&=)

\
« Multiple devices may need to use the bus at the same time %%

 Bus arbitration schemes usually try to balance:

 Bus priority - the highest priority device should be serviced
first

* Fairness - even the lowest priority device should never be
completely locked out from the bus

 Bus arbitration schemes can be divided into four classes
* Daisy chain arbitration
 Centralized, parallel arbitration

 Distributed arbitration by collision detection

* device uses the bus when its not busy and if a collision
happens (because some other device also decides to use
the bus) then the device tries again later (Ethernet)

- Distributed arbitration by self-selection

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 28

Daisy Chain Bus Arbitration (T4 —FzA2)

Bus
Arbiter

Device 1 Device 2 Device N
Highest ¢ ° Lowest
Priority Priority
Grant Grant Grant /1
) Release /'/
N)
R
‘ ® o\ equest)/ ®
wired-OR
N N Data/Addr &

« Advantage: simple
 Disadvantages:

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Cannot assure fairness — a low-priority device may be locked out
Slower — the daisy chain grant signal limits the bus speed

\

29

Centralized Parallel Arbitration (E5ifiF A=)

Bus
Arbiter

\

« Advantages: flexible, can assure fairness

Device 1 Device 2 c o o Device N
Acki Request1 Request2 RequestN
« Ack2
AckN
S N Data/Addr S

 Disadvantages: more complicated arbiter hardware

« Used in essentially all processor-memory buses and in high-speed
I/0 buses

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

30

__,‘_,—\ —

Memor‘y Controller Hub Il"lt«e':l.' Pentium®4 SySTem Bus (“Fr'OﬂT Side BUS"):
(*Northbridge") S 64b x 800 MHz (6.468B/s), 533

s4,420r32c8,s - MHz, or 400 MHz

DDRA00/333 SDRAM
m > Main Memory

Example: The Pentium 4’s Buses X
—— \

Graphics output:
2.0 GB/s BT 20

GB/s
Gbit ethernet: 0.266

Communication Streaming
Architecture/GbE

Intel" Hub Architecture Hyb Bus: 8b x 266 MHz

6 Channel
Audio

2 Ser'i(]l ATAS: Dual Independent TaRED]

150 MB/s Gl Ll vis/s

10/100 LAN
Connect Interface

2 par'allel ATA: § Legacy Hi- 5[’;?3{;-:555 2.0
ATA 100
100 MB/s . U SBs:

Intel® RAID Technology
BIOS Supports (ICHS5R only)
I/0 Controller Hub

" . "
ﬁn ("Southbridge")
CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 31

MB.I"E

bx33 MHz

60 MB/s

A Typical I/0 System and interrupts

Interrupts

Processor

|
Cache

Main /10 I/0 I/0
Memory Controller Controller Controller

Graphlcs m
K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Communication of I/0O Devices and Processor (1)

\
» How the processor directs the I/0 devices X

* Memory-mapped I/0
 Portions of the high-order memory address space
are assigned to each I/0O device

* Read and writes to those memory addresses are
interpreted
as commands to the I/0 devices

 Load/stores to the I/O address space can only be
done by the OS

« Special I/0 instructions

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 33

Communication of I/0 Devices and Processor (2) x
\

« How the I/0 device communicates with the

processor
* Polling — the processor periodically checks the status of
an I/0 device to determine its need for service
* Processor is totally in control — but does all the work
« Can waste a lot of processor time due to speed
differences
* Interrupt-driven I/O — the I/0 device issues an
interrupts to the processor to indicate that it needs
attention

™

~ = 9'
! 34

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Interrupt-Driven Input

Processor

A

](7 ,_—'.
Memory Receiver
Keyboard

S

S

1. input
interrupt add
\ sub
/ and
2.1 or
saIe state / beg)
2.2 jump to
interrupt | N
service routine Ibu
| sb
2.4 return\ |r
to user code)
memory

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

\

user
program

2.3 service
interrupt

iInput
interrupt
service
routine

35

Interrupt-Driven Output

Processor
N
Memory Trnsmttr
Display

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

1.output
interrupt add
sub
and
or
2.1 saIe state / beq)
2.2 jump to
interrupt | N
service routine Ibu
sb
2.4 return Jr
to user code)
memory

\

user
s program

2.3 service
interrupt

output

~ interrupt

service
routine

36

Interrupt-Driven I/0

An I/0 interrupt is asynchronous

« TIs not associated with any instruction so doesn’t prevent any instruction
from completing

« You can pick your own convenient point to handle the interrupt

With I/0 interrupts
* Need a way to identify the device generating the interrupt
« Can have different urgencies (so may need to be prioritized)

Advantages of using interrupts

* No need to continuously poll for an I/0 event; user program progress is
only suspended during the actual transfer of I/0 data to/from user

memory space

Disadvantage — special hardware is needed to

« Cause an interrupt (I/0 device) and detect an interrupt and save the
necessary information o resume normal processing after servicing the
interrupt (processor)

Af_a'

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

\

37

Direct Memory Access (DMA)
\

« For high-bandwidth devices (like disks) interrupt-driven
I/0 would consume a lot of processor cycles

* DMA - the I/0 controller has the ability to transfer data
directly to/from the memory without involving the
processor

« There may be multiple DMA devices in one system

Interrupts
Processor < 4

~~—_|

Cache

Main /10 I[e] /10
Memory Controller Controller Controller

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 38

Direct Memory Access (DMA) how to0?

\
1. The processor initiates the DMA transfer by supplying x
1. the I/0 device address
2. the operation to be performed
3. the memory address destination/source
4. the number of bytes to transfer.
2. The I/0 DMA controller manages the entire transfer
arbitrating for the bus

3. When the DMA transfer is complete, the I/O controller

interrupts the processor to let it know that the transfer
is complete

 Cache Coherence

™

~ =
! 39

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

I/0 and the Operating System

\
« The operating system acts as the interface between the %%
I/0 hardware and the program requesting I/0

« To protect the shared I/0 resources, the user program is
not allowed to communicate directly with the I/O device

« Thus OS must be able to give commands to I/0 devices,
handle interrupts generated by I/0 devices, provide fair
access to the shared I/0 resources, and schedule I/0
requests to enhance system throughput

« I/O interrupts result in a transfer of processor
control to the supervisor (OS) process

™

~ =
< 40

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

