2025年度(令和7年)版

Ver. 2025-10-31a

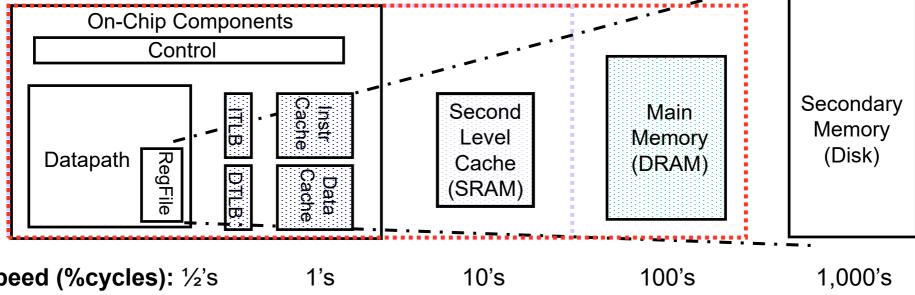
Course number: CSC.T363

コンピュータアーキテクチャ Computer Architecture

10. 仮想記憶と信頼性 (1) Virtual Memory and Dependability (1)

www.arch.cs.titech.ac.jp/lecture/CA/

Tue 13:30-15:10, 15:25-17:05


Fri 13:30-15:10

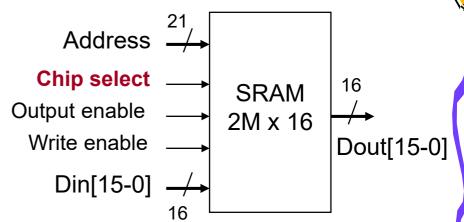
吉瀬 謙二 情報工学系

Kenji Kise, Department of Computer Science

A Typical Memory Hierarchy

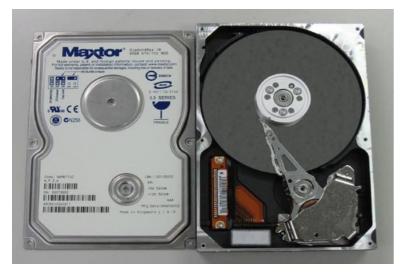
- By taking advantage of the principle of locality
 - Present much memory in the cheapest technology
 - at the speed of fastest technology

Speed (%cycles): ½'s

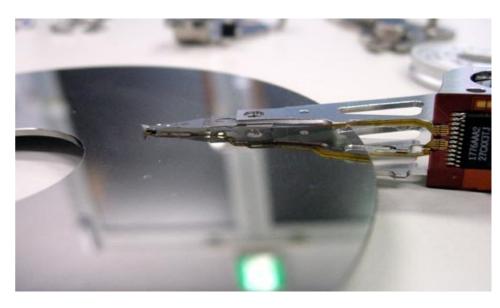

Size (bytes): 100's 10K's M's G's to T's K's

highest Cost: lowest

TLB: Translation Lookaside Buffer


Memory Hierarchy Technologies

- Caches use SRAM (static random access memory) for speed and technology compatibility
 - Low density (6 transistor cells),
 high power, expensive, fast
 - Static: content will last "forever" (until power turned off)



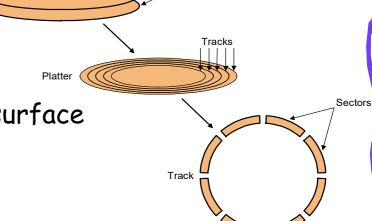
- Main Memory uses DRAM for size (density)
 - High density (1 transistor cells), low power, cheap, slow
 - Dynamic: needs to be "refreshed" regularly (~ every 8 ms)
 - 1% to 2% of the active cycles of the DRAM
 - Addresses divided into 2 halves (row and column)
 - RAS or Row Access Strobe triggering row decoder
 - CAS or Column Access Strobe triggering column selector

Magnetic Disk (磁気ディスク)

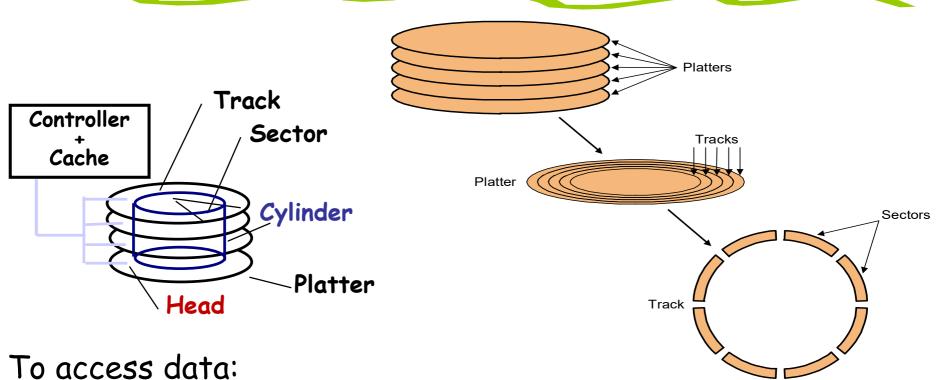
http://sougo057.aicomp.jp/0001.html

Magnetic Disk (磁気ディスク)

Purpose

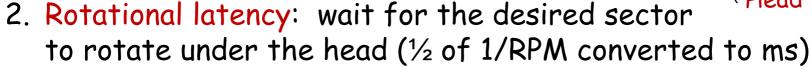

- Long term, nonvolatile(不揮発性) storage
- Lowest level in the memory hierarchy
 - slow, large, inexpensive

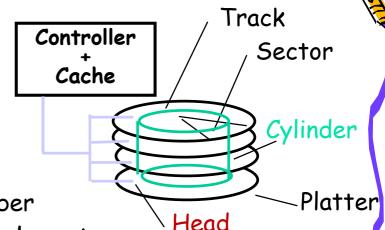
General structure


- A rotating platter coated with a magnetic surface
- A moveable read/write head to access the information on the disk

Typical numbers

- 1 to 4 platters per disk of 1" to 5.25" in diameter (3.5" dominate in 2004)
- Rotational speeds of 5,400 to 15,000 RPM (rotation per minute)
- 10,000 to 50,000 tracks per surface
 - cylinder all the tracks under the head at a given point on all surfaces
- 100 to 500 sectors per track
 - the smallest unit that can be read/written (typically 512B)


Disk Drives

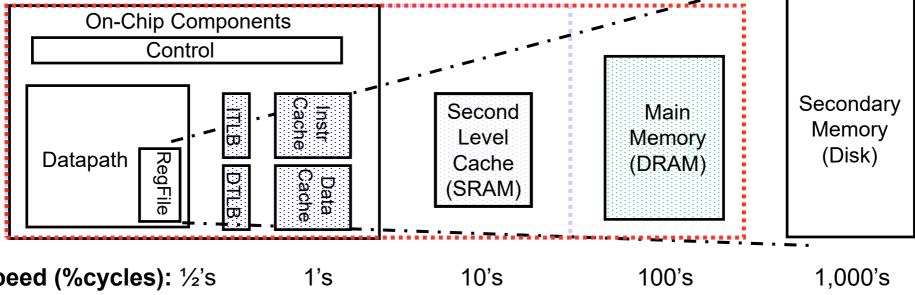

- seek time (シーク時間): position the head over the proper track
- rotational latency (回転待ち時間): wait for desired sector
- transfer time (転送時間): grab the data (one or more sectors)
- Controller time(制御時間): the overhead the disk controller imposes in performing a disk I/O access

Magnetic Disk Characteristic

- Disk read/write components
 - 1. Seek time: position the head over the proper track (3 to 14 ms avg)
 - due to locality of disk references the actual average seek time may be only 25% to 33% of the advertised number

- 0.5/5400RPM = 0.5/90 rotations per second = **5.6 ms**
- 0.5/15000RPM = 0.5/250 rotations per second = 2.0 ms
- 3. Transfer time: transfer a block of bits (one or more sectors) under the head to the disk controller's cache (30 to 80 MB/s are typical disk transfer rates)
- 4. Controller time: the overhead the disk controller imposes in performing a disk I/O access (typically < .2 ms)

Disk Latency & Bandwidth Milestones


- Disk latency is one average seek time plus the rotational latency.
- Disk bandwidth is the peak transfer time of formatted data from the media (not from the cache).

	CDC Wren	SG ST41	SG ST15	SG ST39	SG ST37
Speed (RPM)	3600	5400	7200	10000	15000
Year	1983	1990	1994	1998	2003
Capacity (Gbytes)	0.03	1.4	4.3	9.1	73.4
Diameter (inches)	5.25	5.25	3.5	3.0	2.5
Interface	ST-412	SCSI	SCSI	SCSI	SCSI
Bandwidth (MB/s)	0.6	4	9	24	86
Latency (msec)	48.3	17.1	12.7	8.8	5.7

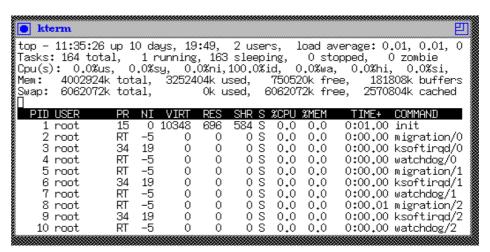
A Typical Memory Hierarchy

- By taking advantage of the principle of locality
 - Present much memory in the cheapest technology
 - at the speed of fastest technology

Speed (%cycles): ½'s

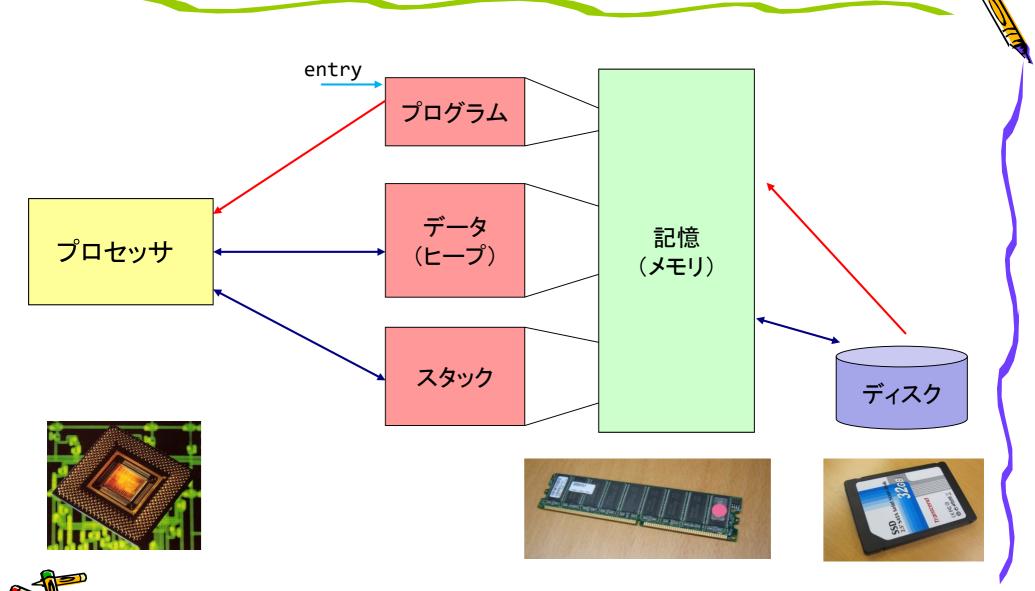
Size (bytes): 100's 10K's M's G's to T's K's

highest Cost: lowest

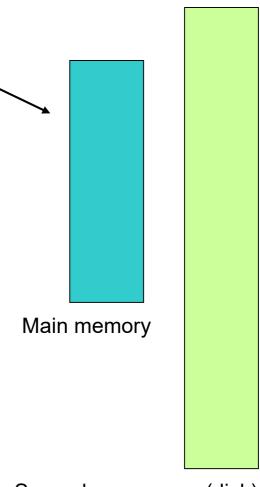

TLB: Translation Lookaside Buffer

Example of 32-bit memory space (4GB)

0x0000000



2GB Memory!

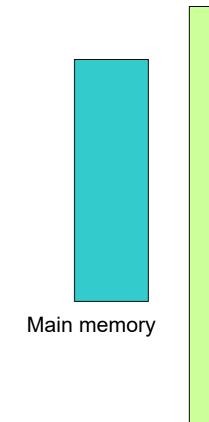

0xFFFFFFF

プログラム, データ, その他

Virtual Memory (仮想記憶)

- Use main memory as a "cache" for secondary memory
 - Provides the ability to easily run programs larger than the size of physical memory
 - Simplifies loading a program for execution by providing for code relocation (i.e., the code can be loaded anywhere in main memory)
 - Allows efficient and safe sharing of memory among multiple programs
- Security, memory protection
 - control memory access rights

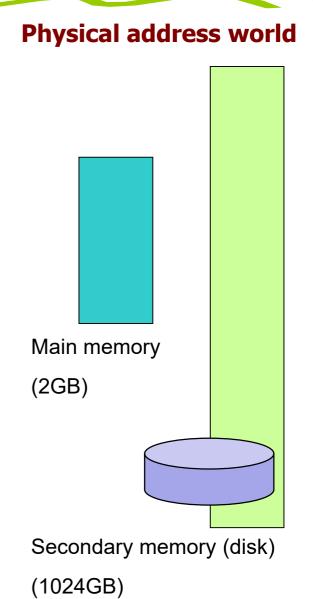
Secondary memory (disk)


Virtual Memory

- What makes it work? again the Principle of Locality
 - A program is likely to access a relatively small portion of its address space during any period of time

Virtual Memory

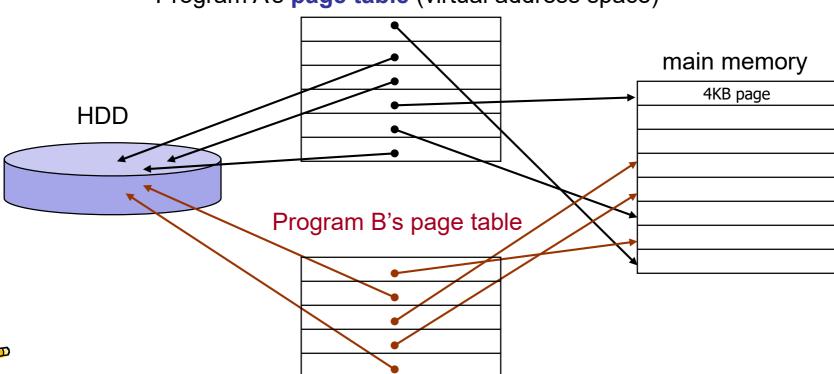
- Each program is compiled into its own address space – a "virtual address (VA)" space
- Physical address (PA) for the access of physical devices
 - During run-time each virtual address, VA must be translated to a physical address, PA



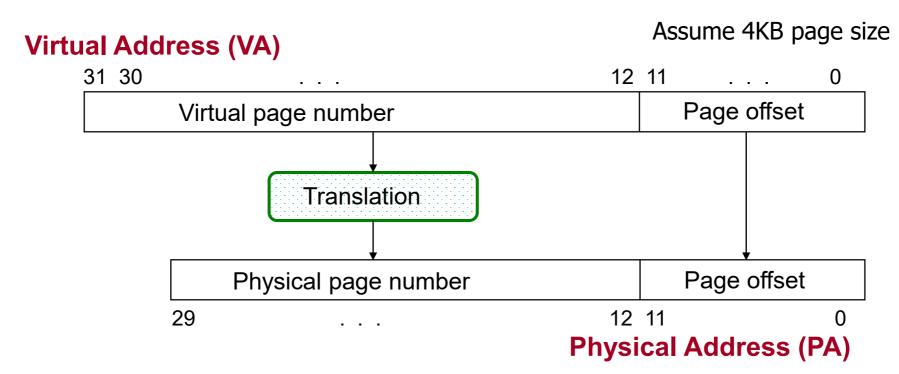
Secondary memory (disk)

Virtual Memory

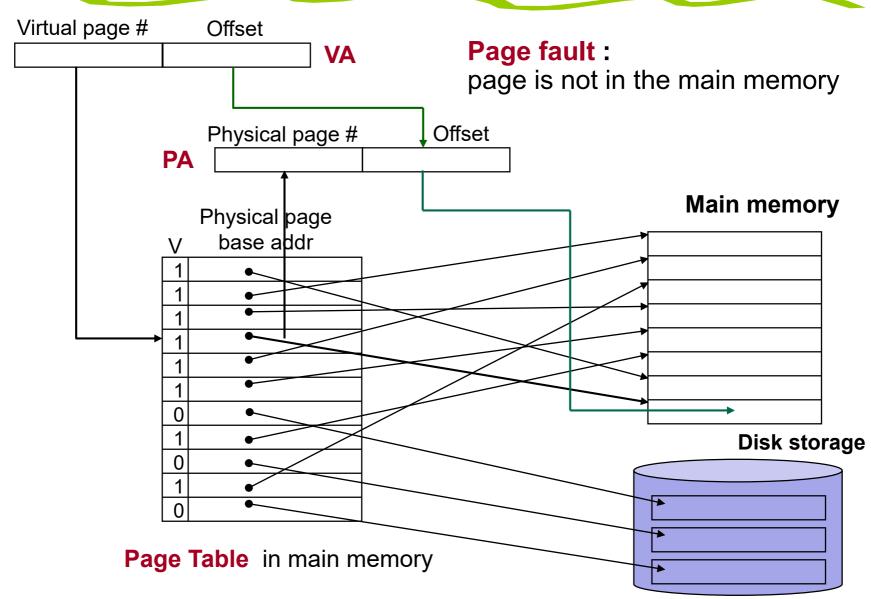
Virtual address world VA for 4GB memory of program C VA for 4GB memory of program **B**


VA for 4GB memory of program **A**

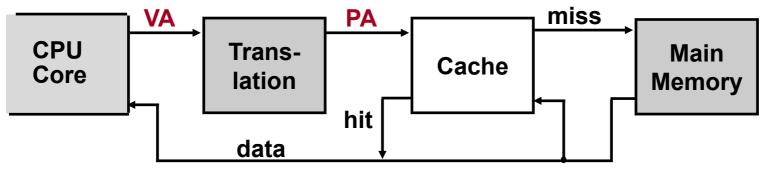
Two Programs Sharing Physical Memory


- A program's address space is divided into pages (all one fixed size, typical 4KB) or segments (variable sizes)
 - The starting location of each page (either in main memory or in secondary memory) is contained in the program's page table

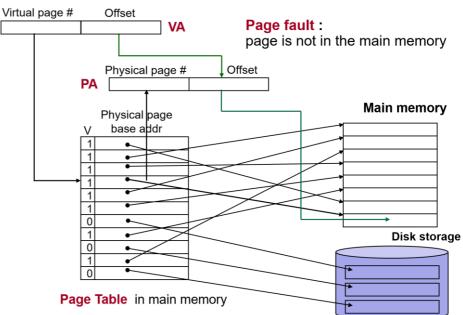
Program A's page table (virtual address space)


Address Translation

 A virtual address is translated to a physical address by a combination of hardware and software


 So each memory request first requires an address translation from the virtual space to the physical space

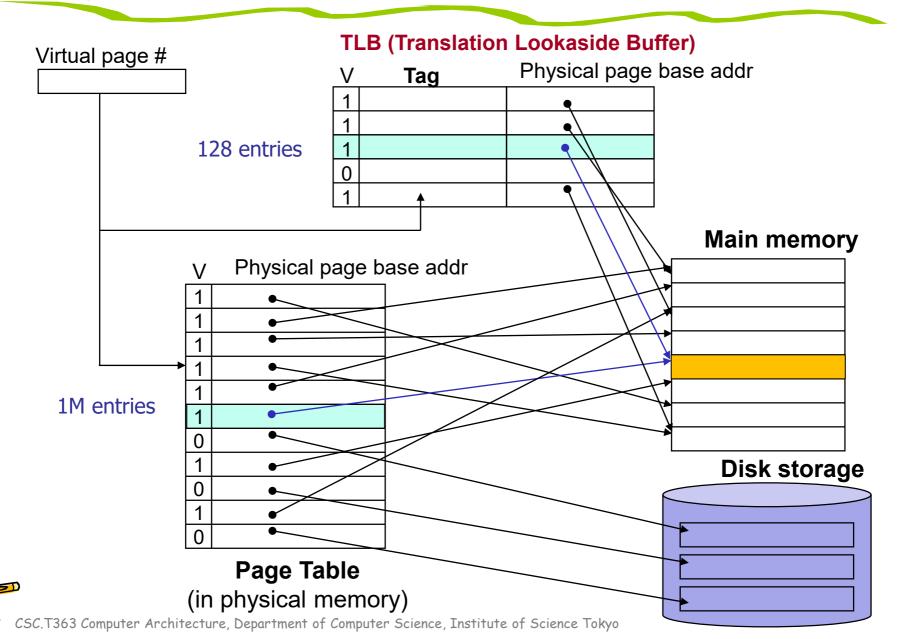
Address Translation Mechanisms



Virtual Addressing, the hardware fix

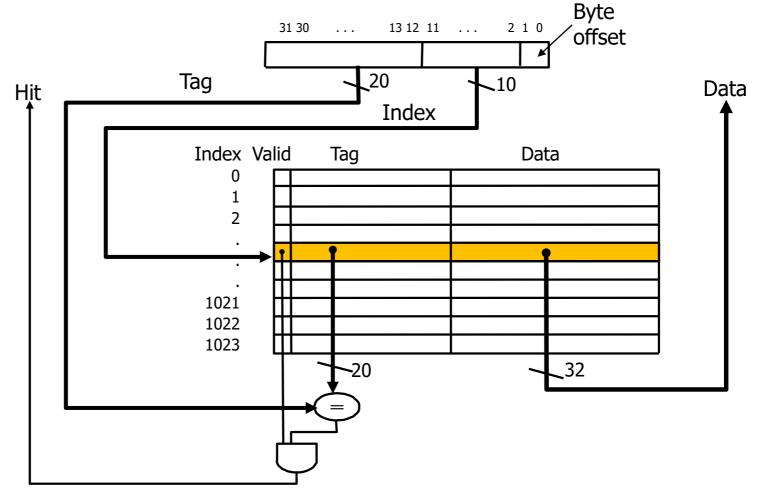
 Thus it may take an extra memory access to translate a virtual address to a physical address

- This makes memory (cache)
 accesses very expensive
 (if every access was really two
 accesses)
- What's the solution?



Virtual Addressing, the hardware fix

- The hardware fix is to use a Translation Lookaside Buffer (TLB) (アドレス変換バッファ)
 - a small cache that keeps track of recently used address mappings to avoid having to do a page table lookup



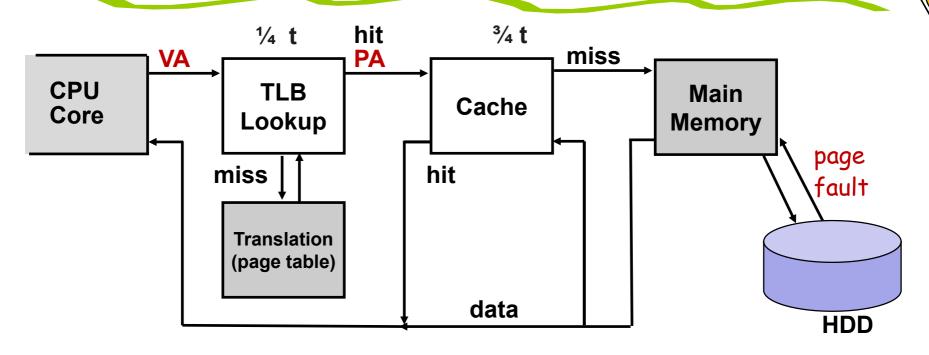
Making Address Translation Fast

Direct Mapped Cache Example

One word/block, cache size = 1K words

What kind of locality are we taking advantage of?

Translation Lookaside Buffers (TLBs)


 Just like any other cache, the TLB can be organized as fully associative, set associative, or direct mapped

V	Virtual Page #	Physical Page #		

- TLB access time is typically smaller than cache access time (because TLBs are much smaller than caches)
 - TLBs are typically not more than 128 to 256 entries even on high end machines

A TLB in the Memory Hierarchy

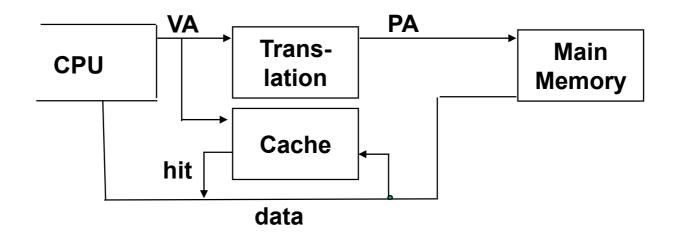
- A TLB miss is it a TLB miss or a page fault?
 - If the page is in main memory, then the TLB miss can be handled (in hardware or software) by loading the translation information from the page table into the TLB
 - Takes 100's of cycles to find and load the translation info into the TLB
 - If the page is not in main memory, then it's a true page fault
 - Takes 1,000,000's of cycles to service a page fault

A TLB in the Memory Hierarchy

- page fault: page is not in physical memory
- TLB misses are much more frequent than true page faults

Two Machines' TLB Parameters

	Intel P4	AMD Opteron
TLB organization	1 TLB for instructions and 1TLB for data	2 TLBs for instructions and 2 TLBs for data
	Both 4-way set associative Both use ~LRU	Both L1 TLBs fully associative with ~LRU replacement
	replacement	Both L2 TLBs are 4-way set associative with round-robin LRU
	Both have 128 entries	Both L1 TLBs have 40 entries Both L2 TLBs have 512 entries TBL misses handled in
	TLB misses handled in hardware	hardware



TLB Event Combinations

TLB	Page Table	Cache	Possible? Under what circumstances?
Hit	Hit	Hit	Yes – what we want!
Hit	Hit	Miss	Yes – although the page table is not checked if the TLB hits
Miss	Hit	Hit	Yes – TLB miss, PA in page table
Miss	Hit	Miss	Yes – TLB miss, PA in page table, but data not in cache
Miss	Miss	Miss	Yes – page fault
Hit	Miss	Miss/ Hit	Impossible – TLB translation not possible if page is not present in memory
Miss	Miss	Hit	Impossible – data not allowed in cache if page is not in memory

Why Not a Virtually Addressed Cache?

 A virtually addressed cache would only require address translation on cache misses

but

- Two different virtual addresses can map to the same physical address (when processes are sharing data),
- Two different cache entries hold data for the same physical address
 synonyms (別名)
 - Must update all cache entries with the same physical address or the memory becomes inconsistent

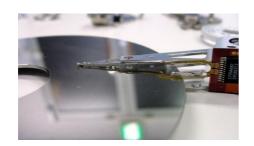
The Hardware/Software Boundary

- What parts of the virtual to physical address translation is done by or assisted by the hardware?
 - Translation Lookaside Buffer (TLB) that caches the recent translations
 - TLB access time is part of the cache hit time
 - May cause an extra stage in the pipeline for TLB access
 - Page table storage, fault detection and updating
 - Page faults result in interrupts (precise) that are then handled by the OS
 - Hardware must support (i.e., update appropriately) Dirty and Reference bits (e.g., ~LRU) in the Page Tables

Q3 2022 Hard Drive Failure Rates

Annualized Failure Rate (AFR)

Backblaze SSD Quarterly Failure Rates for Q2 2022


Reporting period: 4/1/22 thru 6/30/22 for drive models active as of 6/30/22

MFG	Model	Size (GB)	Drive Count	Drive Days	Drive Failures	AFR
Crucial	CT250MX500SSD1	250	272	20,002	0	-
Dell	DELLBOSS VD	480	351	29,066	0	-
Micron	MTFDDAV240TCB	240	89	8,084	1	4.52%
Seagate	ZA250CM10003	250	1,106	99,379	2	0.73%
Seagate	ZA500CM10003 (*)	500	3	42	0	-
Seagate	ZA2000CM10002	2000	3	271	0	-
Seagate	ZA250CM10002	250	559	50,477	4	2.89%
Seagate	ZA500CM10002	500	18	1,625	0	-
Seagate	ZA250NM1000 (*)	250	9	126	0	-
Seagate	SSD	300	106	9,541	0	-
WDC	WDS250G2B0A	250	42	3,781	0	-
			2,558	222,394	7	1.15%

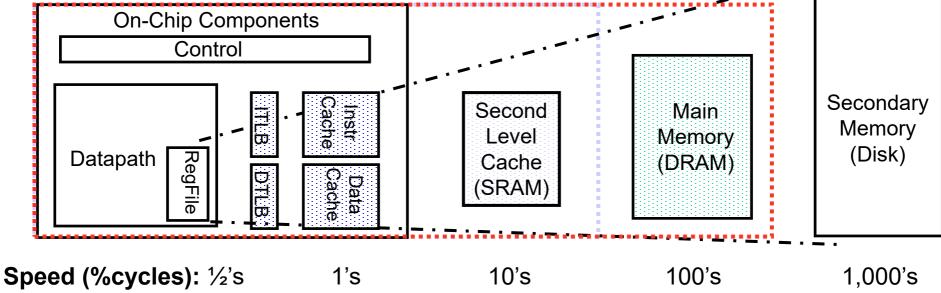
(*) - New drive model in Q2 2022

Backblaze

https://www.backblaze.com/blog/ssd-drive-stats-mid-2022-review/

Backblaze Hard Drives Quarterly Failure Rates for Q3 2022

Reporting period: 7/1/2022 through 9/30/2022 for drive models active as of 9/30/2022


MFG	Model	Drive Size	Drive Count	Avg. Age (months)	Drive Days	Drive Failures	AFR
HGST	HMS5C4O4OALE64O	4TB	3,731	74.0	341,509	3	0.32%
HGST	HMS5C4O4OBLE64O	4TB	12,730	71.1	1,170,925	14	0.44%
HGST	HUH728080ALE600	8TB	1,119	53.6	103,354	8	2.83%
HGST	HUH728080ALE604	8TB	95	62.6	7,637	-	0.00%
HGST	HUH721212ALE600	12TB	2,605	35.9	239,644	3	0.46%
HGST	HUH721212ALE604	12TB	13,157	18.3	1,209,798	19	0.57%
HGST	HUH721212ALN604	12TB	10,784	41.8	992,989	27	0.99%
Seagate	ST4000DM000	4TB	18,292	83.1	1,683,920	202	4.38%
Seagate	ST6000DX000	6TB	886	89.6	81,509	3	1.34%
Seagate	ST8000DM002	8TB	9,566	71.6	883,015	62	2.56%
Seagate	ST8000NM000A	8TB	79	11.2	26,974	-	0.00%
Seagate	ST8000NM0055	8TB	14,374	60.7	1,322,195	107	2.95%
Seagate	ST10000NM0086	1OTB	1,174	58.6	108,372	9	3.03%
Seagate	ST12000NM0007	12TB	1,272	34.7	117,739	16	4.96%
Seagate	ST12000NM0008	12TB	19,910	30.1	1,837,021	124	2.46%
Seagate	ST12000NM001G	12TB	12,530	22.1	1,146,368	35	1.11%
Seagate	ST14000NM001G	14TB	10,737	19.9	987,184	40	1.48%
Seagate	ST14000NM0138	14TB	1,535	21.8	142,894	36	9.20%
Seagate	ST16000NM001G	16TB	20,402	10.7	1,696,759	29	0.62%
Seagate	ST16000NM002J	16TB	310	3.6	22,105	2	3.30%
Toshiba	MD04ABA400V	4TB	95	88.3	8,849	2	8.25%
Toshiba	MG07ACA14TA	14TB	38,203	23.1	3,514,384	117	1.22%
Toshiba	MG07ACA14TEY	14TB	537	18.4	47,742	2	1.53%
Toshiba	MG08ACA16TA	16TB	3,751	3.9	243,198	5	0.75%
Toshiba	MG08ACA16TE	16TB	5,942	11.7	546,805	22	1.47%
Toshiba	MG08ACA16TEY	16TB	4,244	11.9	385,715	12	1.14%
WDC	WUH721414ALE6L4	14TB	8,409	21.8	773,557	5	0.24%
WDC	WUH721816ALE6LO	16TB	2,702	11.8	248,428	-	0.00%
WDC	WUH721816ALE6L4	16TB	7,138	2.8	310,502	6	0.71%
			226,309		20,201,091	910	1.64%

https://www.backblaze.com/blog/backblaze-drive-stats-for-q3-2022/

A Typical Memory Hierarchy

- By taking advantage of the principle of locality
 - Present much memory in the cheapest technology
 - at the speed of fastest technology

Size (bytes): 100's

Cost:

highest

K's

10K's

M's

G's to T's

lowest

TLB: Translation Lookaside Buffer

