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 Latency Numbers Programmer Should Know
« https://www.youtube.com/watch?v=FqR5vE SuKeO
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A Typical Memory Hierarchy

By taking advantage of the principle of locality (BFT%)

Present much memory in the cheapest technology

at the speed of fastest technology i
On-ChIp COmponents ---------------------- ; -:-;-:-;-‘-'; --------
Control =T
= Second Secondary
B Level Memory
Datapath [ & Cache (Disk)
G 9 (SRAM)
Speed (%cycles): '2’s 1's 10’s 100’s 1,000’s
Size (bytes): 100’s K's 10K’s M’s GstoT’s
Cost: highest lowest

ﬁ’ TLB: Translation Lookaside Buffer
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Caching: Direct mapped (First Example)

Cache

Index Valid Tag

00

01
10
11

Q1: Is it there?

Compare the cache tag
to the high order 2
memory address bits
to tell if the memory
block is in the cache

<

Data

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Main Memory i\%

Two low order bits
define the byte in the
word (32-b words)

Q2: How do we find it?

Use next 2 low order
memory address bits —
the index - to determine
which cache block

(block address) modulo (# of blocks in the cache)
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Direct Mapped Cache Example

« One word/block, cache size = 1K words

module m_cache_direct_mapped_32 (
input wire w_clk,
input wire w_we,
input wire [31:0] w_adr,
input wire [4:0] w_wadr,
input wire [57:0] w_wd,
output wire w_hit,
output wire [31:0] w_dout

)

reg [57:0] mem [0:31];
integer i; initial for (i=@; i<32; i=i+1l) mem[i] = O;

wire [4:0] w_index = w_adr[6:2];

wire W_V;

wire [24:0] w_tag;

assign {w_v, w_tag, w_dout} = mem[w_index];
assign w_hit = w_ v & (w_adr[31:7]==w_tag);

always @(posedge w_clk) if (w_we) mem[w_wadr] <= w_wd;
endmodule

Af_a'
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Direct Mapped Cache Example

« One word/block, cache size = 1K words

module m_cache direct mapped 32 (
input wire w_clk,
input wire w_we,
input wire [31:0] w_adr,
input wire [4:0] w_wadr,
input wire [57:0] w_wd,
output wire w_hit,
output wire [31:0] w_dout

)s

reg [57:0] mem [0:31];
integer i; initial for (i=0; i<32; i=i+1) mem[i] = O;

wire [4:0] w_index = w_adr[6:2];

wire W_V;

wire [24:0] w_tag;

assign {w_v, w_tag, w_dout} = mem[w_index];
assign w_hit = w v & (w_adr[31:7]==w_tag);

always @(posedge w_clk) if (w_we) mem[w wadr] <= w_wd;
endmodule

module m_cache direct mapped 32 v2 (
input wire w_clk,
input wire w_we,
input wire [31:0] w_adr,
input wire [57:0] w_wd,
output wire w_hit,
output wire [31:0] w_dout
)s

reg [57:0] mem [0:31];
integer i; initial for (i=0; i<32; i=i+1) mem[i] = O;

wire [4:0] w_index = w_adr[6:2];

wire W_V;

wire [24:0] w_tag;

assign {w_v, w_tag, w_dout} = mem[w_index];
assign w_hit = w v & (w_adr[31:7]==w_tag);

always @(posedge w_clk) if (w_we) mem[w_index] <= w_wd;
endmodule

1R/1W memory

Af_a'

1RW memory
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Sources of Cache Misses X
\

Compulsory (#1#iZ 88X, cold start or process migration,
first reference):

First access to a block, “cold” fact of life, not a whole lot you
can do about it

If you are going to run “millions” of instruction, compulsory
misses are insignificant

Conflict (& =X, collision):
Multiple memory locations mapped to the same cache location
Solution 1: increase cache size
Solution 2: increase associativity

Capacity (BREM#3X):
Cache cannot contain all blocks accessed by the program
Solution: increase cache size

~ ==
! 7
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Reducing Cache Miss Rates, Associativity X
\

Allow more flexible block placement

In a direct mapped cache a memory block maps to exactly one
cache block

At the other extreme, could allow a memory block to be mapped
to any cache block — fully associative cache

A compromise is to divide the cache into sets each of which
consists of n “ways” (n-way set associative).
A memory block maps to a unique set and can be placed in
any way of that set (so there are n choices)

™
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Cache Associativity
S e —— e

A *

| | M
\ (B — \ (N —
C~_T" C~_T

¢ Direct Mapped Set Associative
c
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Set Associative Cache Example

Main Memory

0000xx

Cache 0001xx
0010xx

Way Set V Tag Data 0011xx
0 0 0100xx
1 A 0101xx

0 0110xx
1 0111xx
1000xx

Q: Is it there? 1001xx
1010xx

Compare all the cache 1011xx
tags in the set to the high 1100xx
order 3 memory address bits 1101xx
to tell if the memory block is 1110xx
in the cache 1111xx
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i\&‘
Two low order bits

define the byte in the
word (32-b words)
One word blocks

Q: How do we find it?

Use next 1 low order
memory address bit to
determine which cache
set
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Another Reference String Mapping (Direct Mapped) \g\%
\

 Consider the main memory word reference string
O 404040 4

0 Mmiss 0 4 Mmiss 00 0 Mmiss 0 4 Mmiss
1 4 0 a 1
00 | Mem(0) 08-|Mem(0). 0t |Mem(4). " 08-|Mem(0).4

0 miss op, 4miss . oo O miss. g 4 miss

D A ] 0 .
0t |[Mem(%). " 06 |Mem(0). 0t [Mem(4). 00 |Mem(0). "

= 8 requests, 8 misses

= Ping pong effect due to conflict misses - two memory
eﬁ, locations that map into the same cache block
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Another Reference String Mapping (Set Associative)

Consider the main memory word reference string
O 404040 4

Start with an empty cache —
all blocks initially marked as not valid

= 8 requests, 2 misses

= Solves the ping pong effect in a direct mapped cache due to conflict

misses
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0 miss 4 Mmiss 0 hit 4 hit
000 | Mem(0) 000 | Mem(0) 000 | Mem(0) 000 | Mem(0)
010 | Mem(4) 010 | Mem(4) 010 | Mem(4)

\
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Four-Way Set Associative Cache

28 = 256 sets each with four ways (each with one block, one word / block)

31 30 1312 11 21 O/Byte offset
X
+.22 38
Index
IndexV Tag V Tag Data V Tag Data V Tag Data
0 0 0 0
1 1 1 1
2 2 2 2
I Y ) ° ? ) ° ? ) ° e
253; 253 253 253
254 254 254 254
255 255 255 255
i i i O
J TN
_ > 4x1 select
~ = 9‘ .
@ Hit
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Multiword Block Direct Mapped Cache

* Four words/block, cache size = 1K words

Byte
i 3130 ... 131211 ... 43210
Hit — offset Data
A a
Tag ~40 T8 Block offset
Index
, Data ( 4 word
Index Valid Tag < ( ) >
0
1
2
253
254
255
T2 I~ 32
[ <
J .
| ~
32
P CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 14



Range of Set Associative Caches

For a fixed size cache

Used for tag compare Selects the set Selects the word in the block
Taé Index Block offset Byte offset

. L — > Increasing associativi
Decreasing associativity — 9 ty

»/ Fully associative
Direct mapped }‘7 (only one set)
(only one way) Tag is all the bits except
Smaller tags block and byte offset
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Costs of Set Associative Caches
\
N-way set associative cache costs %%

N comparators (delay and area)
MUX delay (set selection) before data is available
Data available after set selection and Hit/Miss decision.

When a miss occurs,
which way’s block do we pick for replacement ?

Least Recently Used (LRU):
the block replaced is the one that has been unused for the
longest time

Must have hardware to keep track of when each way’s block was
used

For 2-way set associative, takes one bit per set —
set the bit when a block is referenced
(and reset the other way’s bit)

ﬁg, Random
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Benefits of Set Associative Caches

3
The choice of direct mapped or set associative depends on the cost of
a miss versus the cost of implementation

12
4KB
10 - 8KB
-—16KB
2 81 - 32KB
0 — 128KB
=z 4 Qk — % 256KB
, | — |+ 512KB
— —— — >
0 | | |

1-way 2-way 4-way 8-way

Associativity Data from Hennessy & Patterson,

Computer Architecture, 2003

&v = Largest gains are in going from direct mapped to 2-way
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Clock rate is mainly determined by X
\

Switching speed of gates (transistors)

The number of levels of gates

« The maximum number of gates cascaded in series in any
combinational logics.

* In this example, the number of levels of gates is 3.
Wiring delay and fanout
The slowest of all paths is called the critical path

_‘— fanout=2 .
Reai = fanout=1 ReglsTer
eQ'STer AND gate
OR gate :)—

AND gate

~ =
@ 18
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