
CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 1

コンピュータアーキテクチャ
Computer Architecture

5. キャッシュ：セットアソシアティブ方式
Caches: Set-Associative

Ver. 2025-10-14a

Course number: CSC.T363

吉瀬 謙二 情報工学系
Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

2025年度（令和7年）版

www.arch.cs.titech.ac.jp/lecture/CA/
Tue 13:30-15:10, 15:25-17:05
Fri 13:30-15:10

CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 2

参考

• Latency Numbers Programmer Should Know
• https://www.youtube.com/watch?v=FqR5vESuKe0

CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 3

A Typical Memory Hierarchy

Second

Level

Cache

(SRAM)

Control

Datapath

Secondary

Memory

(Disk)

On-Chip Components

R
e
g
F

ile

Main

Memory

(DRAM)D
a

ta

C
a
c
h
e

In
s
tr

C
a

c
h

e

IT
L

B
D

T
L

B

Speed (%cycles): ½’s 1’s 10’s 100’s 1,000’s

Size (bytes): 100’s K’s 10K’s M’s G’s to T’s

Cost: highest lowest

❑ By taking advantage of the principle of locality （局所性）

Present much memory in the cheapest technology

at the speed of fastest technology

TLB: Translation Lookaside Buffer

CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 4

Caching: Direct mapped (First Example)

00

01

10

11

Cache

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Main Memory

Tag Data

Q1: Is it there?

Compare the cache tag
to the high order 2
memory address bits
to tell if the memory
block is in the cache

Valid
Two low order bits
define the byte in the
word (32-b words)

Q2: How do we find it?

Use next 2 low order
memory address bits –
the index – to determine
which cache block

(block address) modulo (# of blocks in the cache)

Index

CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 5

Direct Mapped Cache Example

25

w_tag

w_adr

w_v

5

w_index

DataIndex TagValid

0

1

2

.

.

.

29

30

31

31 30 . . . 8 7 6 . . . 2 1 0

Byte
offset

25

w_dout

32

w_hit

module m_cache_direct_mapped_32 (
input wire w_clk,
input wire w_we,
input wire [31:0] w_adr,
input wire [4:0] w_wadr,
input wire [57:0] w_wd,
output wire w_hit,
output wire [31:0] w_dout

);

reg [57:0] mem [0:31];
integer i; initial for (i=0; i<32; i=i+1) mem[i] = 0;

wire [4:0] w_index = w_adr[6:2];
wire w_v;
wire [24:0] w_tag;
assign {w_v, w_tag, w_dout} = mem[w_index];
assign w_hit = w_v & (w_adr[31:7]==w_tag);

always @(posedge w_clk) if (w_we) mem[w_wadr] <= w_wd;
endmodule

• One word/block, cache size = 1K words

CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 6

Direct Mapped Cache Example

module m_cache_direct_mapped_32 (
input wire w_clk,
input wire w_we,
input wire [31:0] w_adr,
input wire [4:0] w_wadr,
input wire [57:0] w_wd,
output wire w_hit,
output wire [31:0] w_dout

);

reg [57:0] mem [0:31];
integer i; initial for (i=0; i<32; i=i+1) mem[i] = 0;

wire [4:0] w_index = w_adr[6:2];
wire w_v;
wire [24:0] w_tag;
assign {w_v, w_tag, w_dout} = mem[w_index];
assign w_hit = w_v & (w_adr[31:7]==w_tag);

always @(posedge w_clk) if (w_we) mem[w_wadr] <= w_wd;
endmodule

• One word/block, cache size = 1K words

module m_cache_direct_mapped_32_v2 (
input wire w_clk,
input wire w_we,
input wire [31:0] w_adr,
input wire [57:0] w_wd,
output wire w_hit,
output wire [31:0] w_dout

);

reg [57:0] mem [0:31];
integer i; initial for (i=0; i<32; i=i+1) mem[i] = 0;

wire [4:0] w_index = w_adr[6:2];
wire w_v;
wire [24:0] w_tag;
assign {w_v, w_tag, w_dout} = mem[w_index];
assign w_hit = w_v & (w_adr[31:7]==w_tag);

always @(posedge w_clk) if (w_we) mem[w_index] <= w_wd;
endmodule

1R/1W memory 1RW memory

CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 7

Sources of Cache Misses

Compulsory (初期参照ミス，cold start or process migration,
first reference):

First access to a block, “cold” fact of life, not a whole lot you
can do about it

If you are going to run “millions” of instruction, compulsory
misses are insignificant

Conflict (競合性ミス，collision):

Multiple memory locations mapped to the same cache location

Solution 1: increase cache size

Solution 2: increase associativity

Capacity (容量性ミス):

Cache cannot contain all blocks accessed by the program

Solution: increase cache size

CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 8

Reducing Cache Miss Rates, Associativity

Allow more flexible block placement

In a direct mapped cache a memory block maps to exactly one

cache block

At the other extreme, could allow a memory block to be mapped

to any cache block – fully associative cache

A compromise is to divide the cache into sets each of which

consists of n “ways” (n-way set associative).

A memory block maps to a unique set and can be placed in

any way of that set (so there are n choices)

CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 9

Cache Associativity

本棚

机机

Direct Mapped Set Associative

本

CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 10

Set Associative Cache Example

0

Cache

Tag Data

Q: Is it there?

Compare all the cache
tags in the set to the high
order 3 memory address bits
to tell if the memory block is
in the cache

V

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Set

1

0
1

Way

0

1

Main Memory

Two low order bits
define the byte in the
word (32-b words)
One word blocks

Q: How do we find it?

Use next 1 low order
memory address bit to
determine which cache
set

CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 11

0 4 0 4

0 4 0 4

Another Reference String Mapping (Direct Mapped)

• Consider the main memory word reference string

0 4 0 4 0 4 0 4
miss miss miss miss

miss miss miss miss

00 Mem(0) 00 Mem(0)
01 4

01 Mem(4)
000

00 Mem(0)
01

4

00 Mem(0)

01 4
00 Mem(0)

01
4

01 Mem(4)
000

01 Mem(4)
000

◼ Ping pong effect due to conflict misses - two memory
locations that map into the same cache block

◼ 8 requests, 8 misses

CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 12

0 4 0 4

Another Reference String Mapping (Set Associative)

Consider the main memory word reference string

0 4 0 4 0 4 0 4

miss miss hit hit

000 Mem(0) 000 Mem(0)

Start with an empty cache –
all blocks initially marked as not valid

010 Mem(4) 010 Mem(4)

000 Mem(0) 000 Mem(0)

010 Mem(4)

◼ Solves the ping pong effect in a direct mapped cache due to conflict
misses

◼ 8 requests, 2 misses

CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 13

Four-Way Set Associative Cache

28 = 256 sets each with four ways (each with one block, one word / block)
31 30 . . . 13 12 11 . . . 2 1 0 Byte offset

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

Index DataTagV
0

1

2

.

.

.

253

254

255

8

Index

22Tag

Hit
Data

32

4x1 select

CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 14

8

Index

Data (4 word)
Index TagValid

0

1

2

.

.

.

253

254

255

31 30 . . . 13 12 11 . . . 4 3 2 1 0
Byte
offset

20

20Tag

Hit Data

32

Block offset

Multiword Block Direct Mapped Cache

• Four words/block, cache size = 1K words

32

CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 15

Range of Set Associative Caches

For a fixed size cache

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block

CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 16

Costs of Set Associative Caches

N-way set associative cache costs
N comparators (delay and area)
MUX delay (set selection) before data is available
Data available after set selection and Hit/Miss decision.

When a miss occurs,
which way’s block do we pick for replacement ?
Least Recently Used (LRU):

the block replaced is the one that has been unused for the
longest time

Must have hardware to keep track of when each way’s block was
used

For 2-way set associative, takes one bit per set→
set the bit when a block is referenced
(and reset the other way’s bit)

Random

CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 17

Benefits of Set Associative Caches

0

2

4

6

8

10

12

1-way 2-way 4-way 8-way

Associativity

M
is

s
 R

a
te

4KB

8KB

16KB

32KB

64KB

128KB

256KB

512KB

The choice of direct mapped or set associative depends on the cost of
a miss versus the cost of implementation

Data from Hennessy & Patterson,
Computer Architecture, 2003

◼ Largest gains are in going from direct mapped to 2-way

CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 18

Clock rate is mainly determined by

• Switching speed of gates (transistors)

• The number of levels of gates

• The maximum number of gates cascaded in series in any
combinational logics.

• In this example, the number of levels of gates is 3.

• Wiring delay and fanout

• The slowest of all paths is called the critical path

Register
Register

AND gate

OR gate

fanout=1

fanout=2

18

AND gate

