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参考

• Latency Numbers Programmer Should Know
• https://www.youtube.com/watch?v=FqR5vESuKe0
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A Typical Memory Hierarchy

Second

Level

Cache

(SRAM)

Control

Datapath

Secondary

Memory

(Disk)

On-Chip Components

R
e
g
F

ile

Main

Memory

(DRAM)D
a

ta

C
a
c
h
e

In
s
tr

C
a

c
h

e

IT
L

B
D

T
L

B

Speed (%cycles): ½’s             1’s                   10’s                    100’s                  1,000’s

Size (bytes):    100’s   K’s                   10K’s                      M’s                  G’s to T’s

Cost:       highest                                                                                     lowest

❑ By taking advantage of the principle of locality （局所性）

Present much memory in the cheapest technology

at the speed of fastest technology

TLB: Translation Lookaside Buffer
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Caching: Direct mapped (First Example)
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Q1: Is it there?

Compare the cache tag
to the high order 2 
memory address bits
to tell if the memory 
block is in the cache

Valid
Two low order bits 
define the byte in the 
word (32-b words)

Q2: How do we find it?

Use next 2 low order 
memory address bits –
the index – to determine 
which cache block

(block address) modulo (# of blocks in the cache)

Index
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Direct Mapped Cache Example
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module m_cache_direct_mapped_32 (
input  wire        w_clk,
input  wire        w_we,
input  wire [31:0] w_adr,
input  wire [4:0]  w_wadr,
input  wire [57:0] w_wd,
output wire        w_hit,
output wire [31:0] w_dout

);

reg [57:0] mem [0:31];
integer i; initial for (i=0; i<32; i=i+1) mem[i] = 0;

wire [4:0]  w_index = w_adr[6:2];
wire        w_v;
wire [24:0] w_tag;
assign {w_v, w_tag, w_dout} = mem[w_index];
assign w_hit = w_v & (w_adr[31:7]==w_tag);

always @(posedge w_clk) if (w_we) mem[w_wadr] <= w_wd;
endmodule

• One word/block, cache size = 1K words
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Direct Mapped Cache Example

module m_cache_direct_mapped_32 (
input  wire        w_clk,
input  wire        w_we,
input  wire [31:0] w_adr,
input  wire [4:0] w_wadr,
input  wire [57:0] w_wd,
output wire        w_hit,
output wire [31:0] w_dout

);

reg [57:0] mem [0:31];
integer i; initial for (i=0; i<32; i=i+1) mem[i] = 0;

wire [4:0]  w_index = w_adr[6:2];
wire        w_v;
wire [24:0] w_tag;
assign {w_v, w_tag, w_dout} = mem[w_index];
assign w_hit = w_v & (w_adr[31:7]==w_tag);

always @(posedge w_clk) if (w_we) mem[w_wadr] <= w_wd;
endmodule

• One word/block, cache size = 1K words

module m_cache_direct_mapped_32_v2 (
input  wire        w_clk,
input  wire        w_we,
input  wire [31:0] w_adr,
input  wire [57:0] w_wd,
output wire        w_hit,
output wire [31:0] w_dout

);

reg [57:0] mem [0:31];
integer i; initial for (i=0; i<32; i=i+1) mem[i] = 0;

wire [4:0]  w_index = w_adr[6:2];
wire        w_v;
wire [24:0] w_tag;
assign {w_v, w_tag, w_dout} = mem[w_index];
assign w_hit = w_v & (w_adr[31:7]==w_tag);

always @(posedge w_clk) if (w_we) mem[w_index] <= w_wd;
endmodule

1R/1W memory 1RW memory
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Sources of Cache Misses

Compulsory (初期参照ミス，cold start or process migration, 
first reference):

First access to a block, “cold” fact of life, not a whole lot you 
can do about it

If you are going to run “millions” of instruction, compulsory 
misses are insignificant

Conflict (競合性ミス，collision):

Multiple memory locations mapped to the same cache location

Solution 1: increase cache size

Solution 2: increase associativity

Capacity (容量性ミス):

Cache cannot contain all blocks accessed by the program

Solution: increase cache size 
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Reducing Cache Miss Rates, Associativity

Allow more flexible block placement

In a direct mapped cache a memory block maps to exactly one 

cache block

At the other extreme, could allow a memory block to be mapped 

to any cache block – fully associative cache

A compromise is to divide the cache into sets each of which 

consists of n “ways” (n-way set associative).  

A memory block maps to a unique set and can be placed in 

any way of that set (so there are n choices)
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Cache Associativity

本棚

机机

Direct Mapped Set Associative

本
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Set Associative Cache Example
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Q: Is it there?

Compare all the cache 
tags in the set to the high 
order 3 memory address bits
to tell if the memory block is 
in the cache
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Q: How do we find it?

Use next 1 low order 
memory address bit to 
determine which cache 
set
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0 4 0 4

0 4 0 4

Another Reference String Mapping (Direct Mapped)

• Consider the main memory word reference string

0   4   0   4   0   4   0   4
miss miss miss miss

miss miss miss miss

00    Mem(0) 00    Mem(0)
01 4

01    Mem(4)
000

00    Mem(0)
01

4

00    Mem(0)

01 4
00    Mem(0)

01
4

01    Mem(4)
000

01    Mem(4)
000

◼ Ping pong effect due to conflict misses - two memory 
locations that map into the same cache block

◼ 8 requests, 8 misses
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0 4 0 4

Another Reference String Mapping (Set Associative)

Consider the main memory word reference string

0   4   0   4   0   4   0   4

miss miss hit hit

000    Mem(0) 000    Mem(0)

Start with an empty cache –
all blocks initially marked as not valid

010    Mem(4) 010    Mem(4)

000    Mem(0) 000    Mem(0)

010    Mem(4)

◼ Solves the ping pong effect in a direct mapped cache due to conflict 
misses

◼ 8 requests, 2 misses
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Four-Way Set Associative Cache

28 = 256 sets each with four ways (each with one block, one word / block)
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Multiword Block Direct Mapped Cache

• Four  words/block, cache size = 1K words

32
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Range of Set Associative Caches

For a fixed size cache

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block
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Costs of Set Associative Caches

N-way set associative cache costs
N comparators (delay and area)
MUX delay (set selection) before data is available
Data available after set selection and Hit/Miss decision.   

When a miss occurs, 
which way’s block do we pick for replacement ?
Least Recently Used (LRU):

the block replaced is the one that has been unused for the 
longest time

Must have hardware to keep track of when each way’s block was 
used 

For 2-way set associative, takes one bit per set→
set the bit when a block is referenced 
(and reset the other way’s bit)

Random
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Benefits of Set Associative Caches

0

2

4

6

8

10

12

1-way 2-way 4-way 8-way

Associativity

M
is

s
 R

a
te

4KB

8KB

16KB

32KB

64KB

128KB

256KB

512KB

The choice of direct mapped or set associative depends on the cost of 
a miss versus the cost of implementation

Data from Hennessy & Patterson, 
Computer Architecture, 2003

◼ Largest gains are in going from direct mapped to 2-way
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Clock rate is mainly determined by

• Switching speed of gates (transistors)

• The number of levels of gates 

• The maximum number of gates cascaded in series in any 
combinational logics.

• In this example, the number of levels of gates is 3.

• Wiring delay and fanout

• The slowest of all paths is called the critical path

Register
Register

AND gate

OR gate

fanout=1

fanout=2

18

AND gate


