20255 F (5 H74) hix

Course number: CSC.T363

AN
AE2A—3T7—FXTOFw
Computer Architecture

B, Fyva . yNTILTT14T AR
Caches: Set-Associative

www.arch.cs.titech.ac.jp/lecture/CA/

‘!Sféész
==5 = — = f—]
Tue 13:30-15:10, 15:25-17:05 S o — TREBIFR

Fri 13:30-15:10 Kenji Kise, Department of Computer Science

Kise _at_ c.titech.ac.jp 1
CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo

]

 Latency Numbers Programmer Should Know
« https://www.youtube.com/watch?v=FqR5vE SuKeO

| Latency numbers for the 2020s

Ins
1-10ns

«— | 10-100ns
100-1000ns

[1-10ps

10-100ps

]

E 1
[Te o
[1]

L1

— @

100-1000ms

| —

100-1000ps
- 1-10ms
10-100ms
I

1s

o Ve o P fa a1 THES
123465647 8
| I 6:22 |

Af_a‘

P CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo

A Typical Memory Hierarchy

By taking advantage of the principle of locality (BFT%)

Present much memory in the cheapest technology

at the speed of fastest technology i
On-ChIp COmponents ---------------------- ; -:-;-:-;-‘-'; --------
Control =T
= Second Secondary
B Level Memory
Datapath [& Cache (Disk)
G 9 (SRAM)
Speed (%cycles): '2’s 1's 10’s 100’s 1,000’s
Size (bytes): 100’s K's 10K’s M’s GstoT’s
Cost: highest lowest

ﬁ’ TLB: Translation Lookaside Buffer
CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 3

Caching: Direct mapped (First Example)

Cache

Index Valid Tag

00

01
10
11

Q1: Is it there?

Compare the cache tag
to the high order 2
memory address bits
to tell if the memory
block is in the cache

<

Data

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Main Memory i\%

Two low order bits
define the byte in the
word (32-b words)

Q2: How do we find it?

Use next 2 low order
memory address bits —
the index - to determine
which cache block

(block address) modulo (# of blocks in the cache)

SC.T363 Computer Architecture, Department of Computer Science, Science Tokyo

Direct Mapped Cache Example

« One word/block, cache size = 1K words

module m_cache_direct_mapped_32 (
input wire w_clk,
input wire w_we,
input wire [31:0] w_adr,
input wire [4:0] w_wadr,
input wire [57:0] w_wd,
output wire w_hit,
output wire [31:0] w_dout

)

reg [57:0] mem [0:31];
integer i; initial for (i=@; i<32; i=i+1l) mem[i] = O;

wire [4:0] w_index = w_adr[6:2];

wire W_V;

wire [24:0] w_tag;

assign {w_v, w_tag, w_dout} = mem[w_index];
assign w_hit = w_ v & (w_adr[31:7]==w_tag);

always @(posedge w_clk) if (w_we) mem[w_wadr] <= w_wd;
endmodule

Af_a'

P CSC.T363 Computer Architecture, Department of Computer Science,

w_hit

A

A

w_adr

Byte
3130 87 6 ... 210 / offset
.25 5 w_dout
A
Index Valid Tag Data
0
1
2
. g L
w_index
29
30
31
2 ~—
> \w_tag _‘32
W_V

Science Tokyo

Direct Mapped Cache Example

« One word/block, cache size = 1K words

module m_cache direct mapped 32 (
input wire w_clk,
input wire w_we,
input wire [31:0] w_adr,
input wire [4:0] w_wadr,
input wire [57:0] w_wd,
output wire w_hit,
output wire [31:0] w_dout

)s

reg [57:0] mem [0:31];
integer i; initial for (i=0; i<32; i=i+1) mem[i] = O;

wire [4:0] w_index = w_adr[6:2];

wire W_V;

wire [24:0] w_tag;

assign {w_v, w_tag, w_dout} = mem[w_index];
assign w_hit = w v & (w_adr[31:7]==w_tag);

always @(posedge w_clk) if (w_we) mem[w wadr] <= w_wd;
endmodule

module m_cache direct mapped 32 v2 (
input wire w_clk,
input wire w_we,
input wire [31:0] w_adr,
input wire [57:0] w_wd,
output wire w_hit,
output wire [31:0] w_dout
)s

reg [57:0] mem [0:31];
integer i; initial for (i=0; i<32; i=i+1) mem[i] = O;

wire [4:0] w_index = w_adr[6:2];

wire W_V;

wire [24:0] w_tag;

assign {w_v, w_tag, w_dout} = mem[w_index];
assign w_hit = w v & (w_adr[31:7]==w_tag);

always @(posedge w_clk) if (w_we) mem[w_index] <= w_wd;
endmodule

1R/1W memory

Af_a'

1RW memory

P CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo

Sources of Cache Misses X
\

Compulsory (#1#iZ 88X, cold start or process migration,
first reference):

First access to a block, “cold” fact of life, not a whole lot you
can do about it

If you are going to run “millions” of instruction, compulsory
misses are insignificant

Conflict (& =X, collision):
Multiple memory locations mapped to the same cache location
Solution 1: increase cache size
Solution 2: increase associativity

Capacity (BREM#3X):
Cache cannot contain all blocks accessed by the program
Solution: increase cache size

~ ==
! 7

P CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo

Reducing Cache Miss Rates, Associativity X
\

Allow more flexible block placement

In a direct mapped cache a memory block maps to exactly one
cache block

At the other extreme, could allow a memory block to be mapped
to any cache block — fully associative cache

A compromise is to divide the cache into sets each of which
consists of n “ways” (n-way set associative).
A memory block maps to a unique set and can be placed in
any way of that set (so there are n choices)

™

~ ==
! 3

P CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo

Cache Associativity
S e —— e

A *

| | M
\ (B — \ (N —
C~_T" C~_T

¢ Direct Mapped Set Associative
c

SC.T363 Computer Architecture, Department of Computer Science, Science Tokyo

Set Associative Cache Example

Main Memory

0000xx

Cache 0001xx
0010xx

Way Set V Tag Data 0011xx
0 0 0100xx
1 A 0101xx

0 0110xx
1 0111xx
1000xx

Q: Is it there? 1001xx
1010xx

Compare all the cache 1011xx
tags in the set to the high 1100xx
order 3 memory address bits 1101xx
to tell if the memory block is 1110xx
in the cache 1111xx

K CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo

i\&‘
Two low order bits

define the byte in the
word (32-b words)
One word blocks

Q: How do we find it?

Use next 1 low order
memory address bit to
determine which cache
set

10

Another Reference String Mapping (Direct Mapped) \g\%
\

 Consider the main memory word reference string
O 404040 4

0 Mmiss 0 4 Mmiss 00 0 Mmiss 0 4 Mmiss
1 4 0 a 1
00 | Mem(0) 08-|Mem(0). 0t |Mem(4). " 08-|Mem(0).4

0 miss op, 4miss . oo O miss. g 4 miss

D A] 0 .
0t |[Mem(%). " 06 |Mem(0). 0t [Mem(4). 00 |Mem(0). "

= 8 requests, 8 misses

= Ping pong effect due to conflict misses - two memory
eﬁ, locations that map into the same cache block

SC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 11

Another Reference String Mapping (Set Associative)

Consider the main memory word reference string
O 404040 4

Start with an empty cache —
all blocks initially marked as not valid

= 8 requests, 2 misses

= Solves the ping pong effect in a direct mapped cache due to conflict

misses

K CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo

0 miss 4 Mmiss 0 hit 4 hit
000 | Mem(0) 000 | Mem(0) 000 | Mem(0) 000 | Mem(0)
010 | Mem(4) 010 | Mem(4) 010 | Mem(4)

\

12

Four-Way Set Associative Cache

28 = 256 sets each with four ways (each with one block, one word / block)

31 30 1312 11 21 O/Byte offset
X
+.22 38
Index
IndexV Tag V Tag Data V Tag Data V Tag Data
0 0 0 0
1 1 1 1
2 2 2 2
I Y) ° ?) ° ?) ° e
253; 253 253 253
254 254 254 254
255 255 255 255
i i i O
J TN
_ > 4x1 select
~ = 9‘ .
@ Hit

P CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo Data

13

Multiword Block Direct Mapped Cache

* Four words/block, cache size = 1K words

Byte
i 3130 ... 131211 ... 43210
Hit — offset Data
A a
Tag ~40 T8 Block offset
Index
, Data (4 word
Index Valid Tag < () >
0
1
2
253
254
255
T2 I~ 32
[<
J .
| ~
32
P CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 14

Range of Set Associative Caches

For a fixed size cache

Used for tag compare Selects the set Selects the word in the block
Taé Index Block offset Byte offset

. L — > Increasing associativi
Decreasing associativity — 9 ty

»/ Fully associative
Direct mapped }‘7 (only one set)
(only one way) Tag is all the bits except
Smaller tags block and byte offset

K CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 15

Costs of Set Associative Caches
\
N-way set associative cache costs %%

N comparators (delay and area)
MUX delay (set selection) before data is available
Data available after set selection and Hit/Miss decision.

When a miss occurs,
which way’s block do we pick for replacement ?

Least Recently Used (LRU):
the block replaced is the one that has been unused for the
longest time

Must have hardware to keep track of when each way’s block was
used

For 2-way set associative, takes one bit per set —
set the bit when a block is referenced
(and reset the other way’s bit)

ﬁg, Random
P CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 16

Benefits of Set Associative Caches

3
The choice of direct mapped or set associative depends on the cost of
a miss versus the cost of implementation

12
4KB
10 - 8KB
-—16KB
2 81 - 32KB
0 — 128KB
=z 4 Qk — % 256KB
, | — |+ 512KB
— —— — >
0 | | |

1-way 2-way 4-way 8-way

Associativity Data from Hennessy & Patterson,

Computer Architecture, 2003

&v = Largest gains are in going from direct mapped to 2-way

SC.T363 Computer Architecture, Department of Computer Science, Science Tokyo 17

Clock rate is mainly determined by X
\

Switching speed of gates (transistors)

The number of levels of gates

« The maximum number of gates cascaded in series in any
combinational logics.

* In this example, the number of levels of gates is 3.
Wiring delay and fanout
The slowest of all paths is called the critical path

_‘— fanout=2 .
Reai = fanout=1 ReglsTer
eQ'STer AND gate
OR gate :)—

AND gate

~ =
@ 18

P CSC.T363 Computer Architecture, Department of Computer Science, Science Tokyo

