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A Typical I/O System and interrupts
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Communication of I/O Devices and Processor (1)

• How the processor directs the I/O devices
• Memory-mapped I/O

• Portions of the high-order memory address space 
are assigned to each I/O device

• Read and writes to those memory addresses are 
interpreted
as commands to the I/O devices

• Load/stores to the I/O address space can only be 
done by the OS

• Special I/O instructions
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Communication of I/O Devices and Processor (2)

• How the I/O device communicates with the 
processor
• Polling – the processor periodically checks the status of 

an I/O device to determine its need for service
• Processor is totally in control – but does all the work
• Can waste a lot of processor time due to speed 

differences
• Interrupt-driven I/O – the I/O device issues an 

interrupts to the processor to indicate that it needs 
attention
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Interrupt-Driven Input
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Interrupt-Driven Output
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Interrupt-Driven I/O

• An I/O interrupt is asynchronous
• Is not associated with any instruction so doesn’t prevent any instruction 

from completing

• You can pick your own convenient point to handle the interrupt

• With I/O interrupts
• Need a way to identify the device generating the interrupt

• Can have different urgencies (so may need to be prioritized) 

• Advantages of using interrupts
• No need to continuously poll for an I/O event; user program progress is 

only suspended during the actual transfer of I/O data to/from user 
memory space

• Disadvantage – special hardware is needed to
• Cause an interrupt (I/O device) and detect an interrupt and save the 

necessary information to resume normal processing after servicing the 
interrupt (processor)
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Direct Memory Access (DMA)

• For high-bandwidth devices (like disks) interrupt-driven 
I/O would consume a lot of processor cycles

• DMA – the I/O controller has the ability to transfer data 
directly to/from the memory without involving the 
processor

• There may be multiple DMA devices in one system
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Direct Memory Access (DMA) how to?

1. The processor initiates the DMA transfer by supplying 

1. the I/O device address

2. the operation to be performed 

3. the memory address destination/source

4. the number of bytes to transfer.

2. The I/O DMA controller manages the entire transfer 
arbitrating for the bus

3. When the DMA transfer is complete, the I/O controller 
interrupts the processor to let it know that the transfer 
is complete
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I/O and the Operating System

• The operating system acts as the interface between the 
I/O hardware and the program requesting I/O

• To protect the shared I/O resources, the user program is 
not allowed to communicate directly with the I/O device

• Thus OS must be able to give commands to I/O devices, 
handle interrupts generated by I/O devices, provide fair 
access to the shared I/O resources, and schedule I/O 
requests to enhance system throughput

• I/O interrupts result in a transfer of processor 
control to the supervisor (OS) process
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From multi-core era to many-core era

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005
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Multithreading (1/2)

• During a branch miss recovery and access to the main memory by a cache miss, 
ALUs have no jobs to do and have to be idle.

• Executing multiple independent threads (programs) will mitigate the overhead.

• They are called coarse- and fine-grained multithreaded processors having 
multiple architecture states.

http://www.realworldtech.com/alpha-ev8-
smt/ http://www.realworldtech.com/alpha-ev8-smt/
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Multithreading (2/2)

• Simultaneous Multithreading (SMT) can improve hardware resource usage. 

http://www.realworldtech.com/alpha-ev8-
smt/

http://www.realworldtech.com/alpha-ev8-smt/



CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 15

From multi-core era to many-core era

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36
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From multi-core era to many-core era

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005
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Intel Sandy Bridge, January 2011

• 4 to 8 core
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Performance Metrics of Interconnection Network 

• Network cost
• number of switches

• number of links on a switch to connect to the network (plus 
one link to connect to the processor)

• width in bits per link, length of link

• Network bandwidth (NB) 
– represents the best case
• bandwidth of each link * number of links

• Bisection bandwidth (BB)
– represents the worst case
• divide the machine in two parts, each with half the nodes and 

sum the bandwidth of the links that cross the dividing line
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Bus Network

• N processors,  1 switch  (    ),  1 link (the bus)

• Only 1 simultaneous transfer at a time

• NB (best case) = link (bus) bandwidth * 1

• BB (worst case)  = link (bus) bandwidth * 1

Processor node

Bidirectional

network switch
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Ring Network

• N processors, N switches, 2 links/switch, N links

• N simultaneous transfers

• NB (best case) = link bandwidth * N

• BB (worst case) = link bandwidth * 2

• If a link is as fast as a bus, the ring is only twice as fast as 
a bus in the worst case, but is N times faster in the best 
case
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Cell Broadband Engine (2005)

• Cell Broadband Engine (2005)
• 8 core (SPE) + 1 core (PPE)

• each SPE has 256KB memory

• PS3, IBM Roadrunner(12k)

Diagram created by IBM to promote the CBEP, ©2005 from WIKIPEDIA

PlayStation3 の写真は
PlaySation.com (Japan) から

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed
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Crossbar (Xbar) Network

• N processors, N2 switches (unidirectional), 2 links/switch, 
N2 links

• N simultaneous transfers

• NB = link bandwidth * N

• BB = link bandwidth * N/2

A symbol of Xbar
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Tree

• Trees are good structures. People in CS use them all the 
time. Suppose we wanted to make a tree network.

• Any time A wants to send to C, it ties up the upper links, so 
that B can't send to D. 

• The bisection bandwidth on a tree is horrible - 1 link, at all 
times

• The solution is to 'thicken' the upper links. 

• More links as the tree gets thicker increases the bisection 
bandwidth

C DA B

N = 4
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Fat Tree

• N processors, log(N-1)*logN switches, 2 up + 4 down = 6 
links/switch, N*logN links

• N simultaneous transfers

• NB = link bandwidth * N log N

• BB = link bandwidth * 4

N = 4 N = 8
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Mesh Network

• N processors, N switches, 4 links/switch, N * (N1/2 – 1) links

• N simultaneous transfers

• NB = link bandwidth * 2N

• BB = link bandwidth * N1/2

N = 16N = 4
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2D and 3D Mesh / Torus Network

2D Mesh Torus 3D Mesh
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Intel Skylake-X, Core i9-7980XE, 2017

• 18 core
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Bus vs. Networks on Chip (NoC)

• Circuit switching
• a communication method where a dedicated communication 

path, or circuit, is established between two devices before 
data transmission begins

• Packet switching
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NoC and Many-core

• NoC requirements: low latency, high throughput, low cost

• Focus on mesh topology

• Packet based data transmission via NoC routers and 
XY-dimension order routing
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NoC and Many-core
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Simple NoC router architecture

• Routing computation for XY-dimension order
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Simple NoC router architecture

• Buffering and arbitration
• time stamp based, round robin, etc.
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Simple NoC router architecture

• Flow control
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Simple NoC router architecture

• Problem: Head-of-line (HOL) blocking
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Two (physical) networks to mitigate HOL ?

Simple NoC router
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Datapath of Virtual Channel (VC) NoC router

• To mitigate head-of-line (HOL) blocking, virtual channels are used
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Bus vs. Networks on Chip (NoC) of mesh topology

Virtual Channel

To mitigate 
head-of-line (HOL) blocking

Pipelined NoC router
Packet of multiple flits
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From multi-core era to many-core era

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005
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2021.11 Intel Alder Lake processor
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2022.11 AMD EPYC 9654 processor with 96 cores
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The Free Lunch Is Over

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005

• Tuning, Optimization, and Parallel processing (Concurrency)
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Distributed Memory Multi-Processor Architecture

A PC cluster or parallel computers for higher performance

Each memory module is associated with a processor

Using explicit send and receive functions (message passing) to obtain the data 
required.

Who will send and receive data? How?
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Shared Memory Multi-Processor Architecture

All the processors can access the same address space of the main memory (shared 
memory) through an interconnection network.

The shared memory or shared address space (SAS) is used as a means for 
communication between the processors.

What are the means to obtain the shared data?

What are the advantages of shared memory?

System
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System

Chip

Shared memory many-core architecture

The single-chip integrates many cores (conventional processors) and an 
interconnection network.

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Intel Skylake-X, Core i9-7980XE, 2017



CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 45

Cache Coherence Problem

• Processors see different values for shared data u after event 3

• With write-back caches, value written back to memory depends on 
which cache flushes or writes back value when

• Processes accessing main memory may see stale (out-of-date) value

• Unacceptable for programming, and its frequent!
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Cache coherence and enforcing coherence

• Cache coherence 
• All reads by any processor must return the most recently 

written value

• Writes to the same location by any two processors are seen 
in the same order by all processors

• Cache coherence protocols
• Snooping (write invalidate / write update)

• Each core tracks sharing status of each block

• Directory based
• Sharing status of each block kept in one location
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Memory consistency: problem in multi-core context

• Assume that A=0 and Flag=0 initially

• Core 1 (C1) writes data into A and sets Flag to tell C2 that data value 
can be read (loaded) from A.

• C2 waits till Flag is set and then reads (loads) data from A.

• What is the printed value by C2?

A = 3; while (Flag==0); 
Flag = 1; print A; 

C1 (Core 1) C2 (Core 2)
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Problem in multi-core context

• If the two writes (stores) of different addresses on C1 can be 
reordered, it is possible for C2 to read 0 from variable A.

• This can happen on most modern processors.

• For single-core processor, Code1 and Code2 are equivalent. These 
writes may be reordered by compilers statically or by OoO 
execution units dynamically.  

• The printed value by C2 will be 0 or 3.

A = 3;
Flag = 1;

Code1

Flag = 1;
A = 3;

Code2

while (Flag==0); 
print A; 

C1 (Core 1) C2 (Core 2)

Flag = 1;

A = 3; 
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Memory Consistency Models

• A single-core processor can reorder instructions subject only to 
control and data dependence constraints

• These constraints are not sufficient in shared-memory multi-cores

• simple parallel programs may produce counter-intuitive results

• Question: what constraints must we put on single-core instruction 
reordering so that

• shared-memory programming is intuitive

• but we do not lose single-core performance?

• The answers are called memory consistency models supported by 
the processor

• Memory consistency models are all about ordering constraints on 
independent memory operations in a single-core’s instruction stream 



CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 50

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput 
and low latency with NoC routers

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware 
mechanism to support thread 
synchronization
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Computer Architecture & Design


