
CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 1

コンピュータアーキテクチャ
Computer Architecture

入出力、バス
Input/Output and Bus

Course number: CSC.T363

吉瀬 謙二 情報工学系
Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

2024年度（令和6年）版

www.arch.cs.titech.ac.jp/lecture/CA/
Tue 13:30-15:10, 15:25-17:05
Fri 13:30-15:10

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 2

A Typical I/O System and interrupts

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 3

Communication of I/O Devices and Processor (1)

• How the processor directs the I/O devices
• Memory-mapped I/O

• Portions of the high-order memory address space
are assigned to each I/O device

• Read and writes to those memory addresses are
interpreted
as commands to the I/O devices

• Load/stores to the I/O address space can only be
done by the OS

• Special I/O instructions

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 4

Communication of I/O Devices and Processor (2)

• How the I/O device communicates with the
processor
• Polling – the processor periodically checks the status of

an I/O device to determine its need for service
• Processor is totally in control – but does all the work
• Can waste a lot of processor time due to speed

differences
• Interrupt-driven I/O – the I/O device issues an

interrupts to the processor to indicate that it needs
attention

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 5

Interrupt-Driven Input

memory

user
program

1. input
interrupt

2.1 save state

Processor

ReceiverMemory

add
sub
and
or
beq

lbu
sb
...
jr

2.2 jump to
interrupt
service routine

2.4 return
to user code

Keyboard

2.3 service
interrupt

input
interrupt
service
routine

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 6

Interrupt-Driven Output

Processor

TrnsmttrMemory

Display

add
sub
and
or
beq

lbu
sb
...
jr

memory

user
program

1.output
interrupt

2.1 save state

output
interrupt
service
routine

2.2 jump to
interrupt
service routine

2.4 return
to user code

2.3 service
interrupt

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 7

Interrupt-Driven I/O

• An I/O interrupt is asynchronous
• Is not associated with any instruction so doesn’t prevent any instruction

from completing

• You can pick your own convenient point to handle the interrupt

• With I/O interrupts
• Need a way to identify the device generating the interrupt

• Can have different urgencies (so may need to be prioritized)

• Advantages of using interrupts
• No need to continuously poll for an I/O event; user program progress is

only suspended during the actual transfer of I/O data to/from user
memory space

• Disadvantage – special hardware is needed to
• Cause an interrupt (I/O device) and detect an interrupt and save the

necessary information to resume normal processing after servicing the
interrupt (processor)

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 8

Direct Memory Access (DMA)

• For high-bandwidth devices (like disks) interrupt-driven
I/O would consume a lot of processor cycles

• DMA – the I/O controller has the ability to transfer data
directly to/from the memory without involving the
processor

• There may be multiple DMA devices in one system

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 9

Direct Memory Access (DMA) how to?

1. The processor initiates the DMA transfer by supplying

1. the I/O device address

2. the operation to be performed

3. the memory address destination/source

4. the number of bytes to transfer.

2. The I/O DMA controller manages the entire transfer
arbitrating for the bus

3. When the DMA transfer is complete, the I/O controller
interrupts the processor to let it know that the transfer
is complete

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 10

I/O and the Operating System

• The operating system acts as the interface between the
I/O hardware and the program requesting I/O

• To protect the shared I/O resources, the user program is
not allowed to communicate directly with the I/O device

• Thus OS must be able to give commands to I/O devices,
handle interrupts generated by I/O devices, provide fair
access to the shared I/O resources, and schedule I/O
requests to enhance system throughput

• I/O interrupts result in a transfer of processor
control to the supervisor (OS) process

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 11

コンピュータアーキテクチャ
Computer Architecture

13. 相互接続ネットワーク、マルチプロセッサ、マルチコア
Interconnection Network, Multiprocessors and Multicore

Ver. 2024-11-15a

Course number: CSC.T363

吉瀬 謙二 情報工学系
Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

2024年度（令和6年）版

www.arch.cs.titech.ac.jp/lecture/CA/
Tue 13:30-15:10, 15:25-17:05
Fri 13:30-15:10

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 12

From multi-core era to many-core era

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 13

Multithreading (1/2)

• During a branch miss recovery and access to the main memory by a cache miss,
ALUs have no jobs to do and have to be idle.

• Executing multiple independent threads (programs) will mitigate the overhead.

• They are called coarse- and fine-grained multithreaded processors having
multiple architecture states.

http://www.realworldtech.com/alpha-ev8-
smt/ http://www.realworldtech.com/alpha-ev8-smt/

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 14

Multithreading (2/2)

• Simultaneous Multithreading (SMT) can improve hardware resource usage.

http://www.realworldtech.com/alpha-ev8-
smt/

http://www.realworldtech.com/alpha-ev8-smt/

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 15

From multi-core era to many-core era

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 16

From multi-core era to many-core era

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 17

Intel Sandy Bridge, January 2011

• 4 to 8 core

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 18

Performance Metrics of Interconnection Network

• Network cost
• number of switches

• number of links on a switch to connect to the network (plus
one link to connect to the processor)

• width in bits per link, length of link

• Network bandwidth (NB)
– represents the best case
• bandwidth of each link * number of links

• Bisection bandwidth (BB)
– represents the worst case
• divide the machine in two parts, each with half the nodes and

sum the bandwidth of the links that cross the dividing line

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 19

Bus Network

• N processors, 1 switch (), 1 link (the bus)

• Only 1 simultaneous transfer at a time

• NB (best case) = link (bus) bandwidth * 1

• BB (worst case) = link (bus) bandwidth * 1

Processor node

Bidirectional

network switch

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 20

Ring Network

• N processors, N switches, 2 links/switch, N links

• N simultaneous transfers

• NB (best case) = link bandwidth * N

• BB (worst case) = link bandwidth * 2

• If a link is as fast as a bus, the ring is only twice as fast as
a bus in the worst case, but is N times faster in the best
case

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 21

Cell Broadband Engine (2005)

• Cell Broadband Engine (2005)
• 8 core (SPE) + 1 core (PPE)

• each SPE has 256KB memory

• PS3, IBM Roadrunner(12k)

Diagram created by IBM to promote the CBEP, ©2005 from WIKIPEDIA

PlayStation3 の写真は
PlaySation.com (Japan) から

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 22

Crossbar (Xbar) Network

• N processors, N2 switches (unidirectional), 2 links/switch,
N2 links

• N simultaneous transfers

• NB = link bandwidth * N

• BB = link bandwidth * N/2

A symbol of Xbar

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 23

Tree

• Trees are good structures. People in CS use them all the
time. Suppose we wanted to make a tree network.

• Any time A wants to send to C, it ties up the upper links, so
that B can't send to D.

• The bisection bandwidth on a tree is horrible - 1 link, at all
times

• The solution is to 'thicken' the upper links.

• More links as the tree gets thicker increases the bisection
bandwidth

C DA B

N = 4

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 24

Fat Tree

• N processors, log(N-1)*logN switches, 2 up + 4 down = 6
links/switch, N*logN links

• N simultaneous transfers

• NB = link bandwidth * N log N

• BB = link bandwidth * 4

N = 4 N = 8

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 25

Mesh Network

• N processors, N switches, 4 links/switch, N * (N1/2 – 1) links

• N simultaneous transfers

• NB = link bandwidth * 2N

• BB = link bandwidth * N1/2

N = 16N = 4

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 26

2D and 3D Mesh / Torus Network

2D Mesh Torus 3D Mesh

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 27

Intel Skylake-X, Core i9-7980XE, 2017

• 18 core

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 28

Bus vs. Networks on Chip (NoC)

• Circuit switching
• a communication method where a dedicated communication

path, or circuit, is established between two devices before
data transmission begins

• Packet switching

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 29

NoC and Many-core

• NoC requirements: low latency, high throughput, low cost

• Focus on mesh topology

• Packet based data transmission via NoC routers and
XY-dimension order routing

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 30

NoC and Many-core

RR

PM
0, 2

RR

PM
1, 2

RR

PM
2, 2

RR

PM
3, 2

RR

PM
0, 1

RR

PM
1, 1

RR

PM
2, 1

RR

PM
3, 1

RR

PM
0, 0

RR

PM
1, 0

RR

PM
2, 0

RR

PM
3, 0

RR

PM
0, 3

RR

PM
1, 3

RR

PM
2, 3

RR

PM
3, 3

PM: Processing Module or Core
R: Router

packet
(tag + data)

x

y

XY-dimension order routing

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 31

Simple NoC router architecture

• Routing computation for XY-dimension order

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

N

E

S

W

Node (3, 3)

Packet from
node (1, 3) to
node (3, 1)

NoC router
x

y

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 32

Simple NoC router architecture

• Buffering and arbitration
• time stamp based, round robin, etc.

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

N

E

S

W

N

S

E

W

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 33

Simple NoC router architecture

• Flow control

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

N

E

S

W

N (Y-)

South router

FIFO full?

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 34

Simple NoC router architecture

• Problem: Head-of-line (HOL) blocking

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

N

E

S

W

N (Y-)

South router

FIFO full?

FIFO

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 35

Two (physical) networks to mitigate HOL ?

Simple NoC router

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X FIFO full

HOL blocking

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

HOL blocking

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X FIFO full

HOL blocking

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 36

Datapath of Virtual Channel (VC) NoC router

• To mitigate head-of-line (HOL) blocking, virtual channels are used

N (Y-)

E (X+)

S (Y+)

W (X-)

VC0

VC1

VC2

VC0

VC1

VC2

VC0

VC1

VC2

VC0

VC1

VC2

N (Y-)

E (X+)

S (Y+)

W (X-)

X

VC0

VC1

VC2

PM
(Module)

PM
(Module)

FIFO full

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

FIFO full

HOL blocking

VC NoC routerSimple NoC router

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 37

Bus vs. Networks on Chip (NoC) of mesh topology

Virtual Channel

To mitigate
head-of-line (HOL) blocking

Pipelined NoC router
Packet of multiple flits

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 38

From multi-core era to many-core era

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 39

2021.11 Intel Alder Lake processor

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 40

2022.11 AMD EPYC 9654 processor with 96 cores

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 41

The Free Lunch Is Over

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005

• Tuning, Optimization, and Parallel processing (Concurrency)

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 42

Distributed Memory Multi-Processor Architecture

A PC cluster or parallel computers for higher performance

Each memory module is associated with a processor

Using explicit send and receive functions (message passing) to obtain the data
required.

Who will send and receive data? How?

PC2 PC3 PC4PC1

Chip Chip Chip Chip

Proc1 Proc2 Proc4

Caches Caches Caches

Interconnection network

Memory
(DRAM)

Proc3

Caches

Memory
(DRAM)

Memory
(DRAM)

Memory
(DRAM)

PC cluster

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 43

Shared Memory Multi-Processor Architecture

All the processors can access the same address space of the main memory (shared
memory) through an interconnection network.

The shared memory or shared address space (SAS) is used as a means for
communication between the processors.

What are the means to obtain the shared data?

What are the advantages of shared memory?

System

Interconnection network

Main memory (DRAM) I/O

Chip Chip Chip Chip

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 44

System

Chip

Shared memory many-core architecture

The single-chip integrates many cores (conventional processors) and an
interconnection network.

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Intel Skylake-X, Core i9-7980XE, 2017

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 45

Cache Coherence Problem

• Processors see different values for shared data u after event 3

• With write-back caches, value written back to memory depends on
which cache flushes or writes back value when

• Processes accessing main memory may see stale (out-of-date) value

• Unacceptable for programming, and its frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5

1

u :5

2

u :5

3

u= 7

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 46

Cache coherence and enforcing coherence

• Cache coherence
• All reads by any processor must return the most recently

written value

• Writes to the same location by any two processors are seen
in the same order by all processors

• Cache coherence protocols
• Snooping (write invalidate / write update)

• Each core tracks sharing status of each block

• Directory based
• Sharing status of each block kept in one location

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 47

Memory consistency: problem in multi-core context

• Assume that A=0 and Flag=0 initially

• Core 1 (C1) writes data into A and sets Flag to tell C2 that data value
can be read (loaded) from A.

• C2 waits till Flag is set and then reads (loads) data from A.

• What is the printed value by C2?

A = 3; while (Flag==0);
Flag = 1; print A;

C1 (Core 1) C2 (Core 2)

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 48

Problem in multi-core context

• If the two writes (stores) of different addresses on C1 can be
reordered, it is possible for C2 to read 0 from variable A.

• This can happen on most modern processors.

• For single-core processor, Code1 and Code2 are equivalent. These
writes may be reordered by compilers statically or by OoO
execution units dynamically.

• The printed value by C2 will be 0 or 3.

A = 3;
Flag = 1;

Code1

Flag = 1;
A = 3;

Code2

while (Flag==0);
print A;

C1 (Core 1) C2 (Core 2)

Flag = 1;

A = 3;

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 49

Memory Consistency Models

• A single-core processor can reorder instructions subject only to
control and data dependence constraints

• These constraints are not sufficient in shared-memory multi-cores

• simple parallel programs may produce counter-intuitive results

• Question: what constraints must we put on single-core instruction
reordering so that

• shared-memory programming is intuitive

• but we do not lose single-core performance?

• The answers are called memory consistency models supported by
the processor

• Memory consistency models are all about ordering constraints on
independent memory operations in a single-core’s instruction stream

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 50

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput
and low latency with NoC routers

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 51

Computer Architecture & Design

