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Dependability （信頼性）
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proc8: 4-stage scalar pipelining processor
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Superscalarと命令レベル並列性

• 複数のパイプラインを利用して IPC (instructions per cycle) を 1以上
に引き上げる，複数の命令を並列に実行

• n-way スーパースカラ

n

2-way superscalar
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アーキテクチャの異なる視点による分類

• Flynnによる命令とデータの流れに注目した並列計算機

の分類（1966年）

• SISD (Single Instruction stream, Single Data stream)

• SIMD (Single Instruction stream, Multiple Data stream)

• MISD (Multiple Instruction stream, Single Data stream)

• MIMD (Multiple Instruction stream, Multiple Data stream)

Instruction stream

Data stream

SISD SIMD MISD MIMD
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SIMD Variants and multicore

• Vector architectures

• SIMD extensions

• Graphics Processing Units (GPUs)

• SIMD variants exploit data-level parallelism

• Instruction-level parallelism in superscalar processors

• window size

• Thread-level parallelism in multicore processors
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SIMD extensions

• Media applications operate on data types narrower than the 
native word size

• Example:  disconnect carry chains to “partition” adder

• Implementations:

• Intel MMX (1996)
• Eight 8-bit integer ops or four 16-bit integer ops

• Streaming SIMD Extensions (SSE) (1999)

• Eight 16-bit integer ops

• Four 32-bit integer/fp ops or two 64-bit integer/fp ops

• Advanced Vector Extensions (AVX 2010)

• Four 64-bit integer/fp ops

• 256 bit vectors -> 512 -> 1024

• Operands must be consecutive and aligned memory locations
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Vector architecture

• Computers designed by Seymour Cray starting in the 1970s

• Basic idea:

• Read sets of data elements into “vector registers”

• Operate on those registers

• Disperse the results back into memory

Cray Supercomputer
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DAXPY (double precision a x X + Y)

void daxpy(int n, double a, double x[], double y[])

{

for (int i = 0; i < n; i++) {

y[i] = a*x[i] + y[i];

}

}
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DAXPY in MIPS Instructions

Example:  DAXPY (double precision a x X + Y)

L.D F0,a ; load scalar a

DADDIU R4,Rx,#512 ; upper bound of what to load

Loop: L.D F2,0(Rx ) ; load X[i]

MUL.D F2,F2,F0 ; a x X[i]

L.D F4,0(Ry) ; load Y[i]

ADD.D F4,F2,F2 ; a x X[i] + Y[i]

S.D F4,9(Ry) ; store into Y[i]

DADDIU Rx,Rx,#8 ; increment index to X

DADDIU Ry,Ry,#8 ; increment index to Y

SUBBU R20,R4,Rx ; compute bound

BNEZ R20,Loop ; check if done

• Requires almost 600 MIPS operations
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DAXPY in VMIPS (MIPS with Vector) Instructions

• ADDV.D :  add two vectors
• ADDVS.D :  add vector to a scalar
• LV/SV :  vector load and vector store from address

• Example:  DAXPY (double precision a*X+Y)
L.D F0,a ; load scalar a

LV V1,Rx ; load vector X

MULVS.D V2,V1,F0 ; vector-scalar multiply

LV V3,Ry ; load vector Y

ADDV.D V4,V2,V3 ; add

SV Ry,V4 ; store the result

• Requires 6 instructions
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Vector-vector add in RISC-V instructions
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The basic structure of a vector architecture, VMIPS

• Eight 64-element vector registers

• All the functional units are vector functional units.
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Multiple functional units to improve the performance

• (a) can complete one addition per cycle

• (b) can complete four addition per cycle

• The vector register storage is divided across the lanes
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コンピュータの古典的な要素

出力出力制御制御

データパスデータパス

記憶記憶

入力入力

出力出力

プロセッサ

コンピュータ

インタフェース

コンパイラ

性能の評価

Instruction Set Architecture (ISA), 命令セットアーキテクチャ
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Input and Output Devices
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Input and Output Devices

• I/O devices are diverse with respect to

• Behavior – input, output or storage

• Partner – human or machine

• Data rate – the peak rate at which data can be transferred 
between the I/O device and the main memory or CPU 

Device Behavior Partner Data rate (Mb/s)

Keyboard input human 0.0001

Mouse input human 0.0038

Laser printer output human 3.2000

Graphics display output human 800.0000-8000.0000

Network/LAN input or 

output

machine 100.0000-1000.0000

Magnetic disk storage machine 240.0000-2560.0000
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A Typical I/O System

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk
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Bus, I/O System Interconnect

• A bus is a shared communication link 

1bit data wire

1bit control wire

Bus
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Bus, I/O System Interconnect

• A bus is a shared communication link (a single set of wires 
used to connect multiple subsystems)

• Advantages

• Low cost – a single set of wires is shared in multiple ways

• Versatile （多目的） – new devices can be added easily and 
can be moved between computer systems 
that use the same bus standard

• Disadvantages

• Creates a communication bottleneck – bus bandwidth 
limits the maximum I/O throughput

• The maximum bus speed is largely limited by

• The length of the bus

• The number of devices on the bus
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Bus Characteristics

• Control lines

• Signal requests and acknowledgments

• Indicate what type of information is on the data lines

• Data lines

• Data, addresses, and complex commands

• Bus transaction consists of

• Master issuing the command (and address) – request

• Slave receiving (or sending) the data – action

• Defined by what the transaction does to memory

• Input – inputs data from the I/O device to the memory

• Output – outputs data from the memory to the I/O device

Bus

Master

Bus

Slave

Control lines: Master initiates requests

Data lines: Data can go either way
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Types of Buses (1)

Processor
Main 

Memory

Backplane bus

I/O devices

Processor
Main 

Memory

Processor-memory bus

Bus
adapter

I/O bus

Bus
adapter

Bus
adapter
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Types of Buses (2)

Processor
Main 

Memory

Processor-memory bus

Bus
adapter

Backplane bus

Bus
adapter

I/O bus

Bus
adapter
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Types of Buses (3)

• Processor-memory bus
• Short and high speed

• Matched to the memory system to maximize the memory-processor 
bandwidth

• Optimized for cache block transfers

• I/O bus (industry standard, e.g., SCSI, USB, Firewire)
• Usually is lengthy and slower

• Needs to accommodate a wide range of I/O devices

• Connects to the processor-memory bus or backplane bus

• Backplane bus (industry standard, e.g., ATA, PCI Express)
• The backplane is an interconnection structure within the chassis

• Used as an intermediary bus connecting I/O busses to the 
processor-memory bus
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Synchronous（同期式）, Asynchronous（非同期式） Buses

• Synchronous bus (e.g., processor-memory buses)
• Includes a clock in the control lines and has a fixed protocol 

for communication that is relative to the clock

• Advantage: involves very little logic and can run very fast

• Disadvantages:
• Every device communicating on the bus must use same clock rate

• To avoid clock skew, they cannot be long if they are fast

• Asynchronous bus (e.g., I/O buses)
• It is not clocked, so requires a handshaking protocol and 

additional control lines (ReadReq, Ack, DataRdy)

• Advantages:
• Can accommodate a wide range of devices and device speeds

• Can be lengthened without worrying about clock skew or 
synchronization problems

• Disadvantage: slow
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Asynchronous Bus Handshaking Protocol

An I/O device reads data from memory.

1
2

3

ReadReq

Data

Ack

DataRdy

addr data

4

5

6

7

7. I/O device sees DataRdy go low and drops Ack

1. Memory sees ReadReq, reads addr from data lines, and raises Ack

2. I/O device sees Ack and releases the ReadReq and data lines

3. Memory sees ReadReq go low and drops Ack

4. When memory has data ready, it places it on data lines and raises DataRdy

5. I/O device sees DataRdy, reads the data from data lines, and raises Ack

6. Memory sees Ack, releases the data lines, and drops DataRdy
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The Need for Bus Arbitration （調停）

• Multiple devices may need to use the bus at the same time

• Bus arbitration schemes usually try to balance:

• Bus priority – the highest priority device should be serviced 
first

• Fairness – even the lowest priority device should never be 
completely locked out from the bus

• Bus arbitration schemes can be divided into four classes

• Daisy chain arbitration

• Centralized, parallel arbitration 

• Distributed arbitration by collision detection

• device uses the bus when its not busy and if a collision 
happens (because some other device also decides to use 
the bus) then the device tries again later (Ethernet)

• Distributed arbitration by self-selection
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Daisy Chain Bus Arbitration （デイジーチェイン）

• Advantage: simple

• Disadvantages:
• Cannot assure fairness – a low-priority device may be locked out

• Slower – the daisy chain grant signal limits the bus speed

Bus

Arbiter

Device 2

Grant Grant Grant

Release

Request

wired-OR

Data/Addr

Device 1

Highest

Priority

Device N

Lowest

Priority
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Centralized Parallel Arbitration （集中並列方式）

• Advantages:  flexible, can assure fairness

• Disadvantages:  more complicated arbiter hardware

• Used in essentially all processor-memory buses and in high-speed 
I/O buses

Bus

Arbiter

Device 1 Device NDevice 2

Ack1

Data/Addr

Ack2

AckN

Request1 Request2 RequestN
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Example:  The Pentium 4’s Buses

System Bus (“Front Side Bus”): 
64b x 800 MHz (6.4GB/s), 533 
MHz, or 400 MHz

2 serial ATAs: 
150 MB/s

8 USBs:    60 MB/s

2 parallel ATA: 
100 MB/s

Hub Bus: 8b x 266 MHz

Memory Controller Hub 
(“Northbridge”)

I/O Controller Hub 
(“Southbridge”)

Gbit ethernet: 0.266 GB/s
DDR SDRAM 

Main Memory

Graphics output:    
2.0 GB/s

PCI: 

32b x 33 MHz
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A Typical I/O System and interrupts

Processor
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Communication of I/O Devices and Processor (1)

• How the processor directs the I/O devices
• Memory-mapped I/O

• Portions of the high-order memory address space 
are assigned to each I/O device

• Read and writes to those memory addresses are 
interpreted
as commands to the I/O devices

• Load/stores to the I/O address space can only be 
done by the OS

• Special I/O instructions
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Communication of I/O Devices and Processor (2)

• How the I/O device communicates with the 
processor
• Polling – the processor periodically checks the status of 

an I/O device to determine its need for service
• Processor is totally in control – but does all the work
• Can waste a lot of processor time due to speed 

differences
• Interrupt-driven I/O – the I/O device issues an 

interrupts to the processor to indicate that it needs 
attention
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Interrupt-Driven Input

memory

user
program

1. input
interrupt

2.1 save state

Processor

ReceiverMemory

add
sub
and
or
beq

lbu
sb
...
jr

2.2 jump to 
interrupt
service routine

2.4 return
to user code

Keyboard

2.3 service 
interrupt

input
interrupt
service
routine
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Interrupt-Driven Output

Processor

TrnsmttrMemory

Display

add
sub
and
or
beq

lbu
sb
...
jr

memory

user
program

1.output
interrupt

2.1 save state

output
interrupt
service
routine

2.2 jump to 
interrupt
service routine

2.4 return
to user code

2.3 service 
interrupt
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Interrupt-Driven I/O

• An I/O interrupt is asynchronous
• Is not associated with any instruction so doesn’t prevent any instruction 

from completing

• You can pick your own convenient point to handle the interrupt

• With I/O interrupts
• Need a way to identify the device generating the interrupt

• Can have different urgencies (so may need to be prioritized) 

• Advantages of using interrupts
• No need to continuously poll for an I/O event; user program progress is 

only suspended during the actual transfer of I/O data to/from user 
memory space

• Disadvantage – special hardware is needed to
• Cause an interrupt (I/O device) and detect an interrupt and save the 

necessary information to resume normal processing after servicing the 
interrupt (processor)
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Direct Memory Access (DMA)

• For high-bandwidth devices (like disks) interrupt-driven 
I/O would consume a lot of processor cycles

• DMA – the I/O controller has the ability to transfer data 
directly to/from the memory without involving the 
processor

• There may be multiple DMA devices in one system

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk
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Direct Memory Access (DMA) how to?

1. The processor initiates the DMA transfer by supplying 

1. the I/O device address

2. the operation to be performed 

3. the memory address destination/source

4. the number of bytes to transfer.

2. The I/O DMA controller manages the entire transfer 
arbitrating for the bus

3. When the DMA transfer is complete, the I/O controller 
interrupts the processor to let it know that the transfer 
is complete

• Cache Coherence
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I/O and the Operating System

• The operating system acts as the interface between the 
I/O hardware and the program requesting I/O

• To protect the shared I/O resources, the user program is 
not allowed to communicate directly with the I/O device

• Thus OS must be able to give commands to I/O devices, 
handle interrupts generated by I/O devices, provide fair 
access to the shared I/O resources, and schedule I/O 
requests to enhance system throughput

• I/O interrupts result in a transfer of processor 
control to the supervisor (OS) process


