
CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 1

コンピュータアーキテクチャ
Computer Architecture

12. ベクタ、SIMDにおけるデータレベル並列性
Data-Level Parallelism in Vector and SIMD

Ver. 2024-11-13a

Course number: CSC.T363

吉瀬 謙二 情報工学系
Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

2024年度（令和6年）版

www.arch.cs.titech.ac.jp/lecture/CA/
Tue 13:30-15:10, 15:25-17:05
Fri 13:30-15:10

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 2
https://www.itmedia.co.jp/news/articles/2411/08/news203.html

Dependability （信頼性）

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 3

proc8: 4-stage scalar pipelining processor

P
1
_
i
r

IF stage

+

m6P2_tpc

P1_pc

P1

r_
pc

+
32’h4

w_npc

am_
imem

m1

m2

m3

m
u
x

1

0

P2_b &
w_tkn

m0

w
_
p
c
i
n

w
_
i
r

w_r1

w_r2

w_rt

MA

m8

m
u
x

1

0

P
2
_
s
2

!r & !b

m7

adr

wd

rd

am_
dmem

we
m
u
x

1

0
w_alu

w
_
l
d
d

P3_ld

P2_s

m9

m10

w_imm

P3_rd

IFID_ir
[19:15]

ID stage

ra1

ra2

wa

wd

rd1

rd2

RF2

we

IDIF_ir
[24:20]

!P3_s &
!P3_b

m5

m4

gen_imm

r,i,s,b,u,j,ld

7

ALU

w_tkn

P2

P
2
_
r
1

w
_
i
n
1

P2_rdIFID_ir [11:7]

w
_
t
p
c

EX stage

32

P3_rd

P3
WB stage

P
3
_
l
d
d

P
3
_
a
l
u

m
u
x

1

0

m
u
x

1

0

m11

m12

w
_
i
n
2

w_m11

w_m12

m
u
x

1

0

m13

w_m13

w
_
i
n
3

P2_r2

WB

CC1 CC2 CC3 CC4 CC5

IF ID

IF ID

IF ID

IF ID

32’h0 addi x1,x0,3

32’h4 addi x2,x1,4

32’h8 addi x10,x1,5

32’hc addi x30,x10,0

Time
Instructions

EX

EX

EX

EX

CC6

WB

WB

WB

CC7

data forwarding

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 4

Superscalarと命令レベル並列性

• 複数のパイプラインを利用して IPC (instructions per cycle) を 1以上
に引き上げる，複数の命令を並列に実行

• n-way スーパースカラ

n

2-way superscalar

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 5

アーキテクチャの異なる視点による分類

• Flynnによる命令とデータの流れに注目した並列計算機

の分類（1966年）

• SISD (Single Instruction stream, Single Data stream)

• SIMD (Single Instruction stream, Multiple Data stream)

• MISD (Multiple Instruction stream, Single Data stream)

• MIMD (Multiple Instruction stream, Multiple Data stream)

Instruction stream

Data stream

SISD SIMD MISD MIMD

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 6

SIMD Variants and multicore

• Vector architectures

• SIMD extensions

• Graphics Processing Units (GPUs)

• SIMD variants exploit data-level parallelism

• Instruction-level parallelism in superscalar processors

• window size

• Thread-level parallelism in multicore processors

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 7

SIMD extensions

• Media applications operate on data types narrower than the
native word size

• Example: disconnect carry chains to “partition” adder

• Implementations:

• Intel MMX (1996)
• Eight 8-bit integer ops or four 16-bit integer ops

• Streaming SIMD Extensions (SSE) (1999)

• Eight 16-bit integer ops

• Four 32-bit integer/fp ops or two 64-bit integer/fp ops

• Advanced Vector Extensions (AVX 2010)

• Four 64-bit integer/fp ops

• 256 bit vectors -> 512 -> 1024

• Operands must be consecutive and aligned memory locations

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 8

Vector architecture

• Computers designed by Seymour Cray starting in the 1970s

• Basic idea:

• Read sets of data elements into “vector registers”

• Operate on those registers

• Disperse the results back into memory

Cray Supercomputer

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 9

DAXPY (double precision a x X + Y)

void daxpy(int n, double a, double x[], double y[])

{

for (int i = 0; i < n; i++) {

y[i] = a*x[i] + y[i];

}

}

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 10

DAXPY in MIPS Instructions

Example: DAXPY (double precision a x X + Y)

L.D F0,a ; load scalar a

DADDIU R4,Rx,#512 ; upper bound of what to load

Loop: L.D F2,0(Rx) ; load X[i]

MUL.D F2,F2,F0 ; a x X[i]

L.D F4,0(Ry) ; load Y[i]

ADD.D F4,F2,F2 ; a x X[i] + Y[i]

S.D F4,9(Ry) ; store into Y[i]

DADDIU Rx,Rx,#8 ; increment index to X

DADDIU Ry,Ry,#8 ; increment index to Y

SUBBU R20,R4,Rx ; compute bound

BNEZ R20,Loop ; check if done

• Requires almost 600 MIPS operations

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 11

DAXPY in VMIPS (MIPS with Vector) Instructions

• ADDV.D : add two vectors
• ADDVS.D : add vector to a scalar
• LV/SV : vector load and vector store from address

• Example: DAXPY (double precision a*X+Y)
L.D F0,a ; load scalar a

LV V1,Rx ; load vector X

MULVS.D V2,V1,F0 ; vector-scalar multiply

LV V3,Ry ; load vector Y

ADDV.D V4,V2,V3 ; add

SV Ry,V4 ; store the result

• Requires 6 instructions

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 12

Vector-vector add in RISC-V instructions

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 13

The basic structure of a vector architecture, VMIPS

• Eight 64-element vector registers

• All the functional units are vector functional units.

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 14

Multiple functional units to improve the performance

• (a) can complete one addition per cycle

• (b) can complete four addition per cycle

• The vector register storage is divided across the lanes

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 15

コンピュータアーキテクチャ
Computer Architecture

入出力、バス
Input/Output and Bus

Course number: CSC.T363

吉瀬 謙二 情報工学系
Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

2024年度（令和6年）版

www.arch.cs.titech.ac.jp/lecture/CA/
Tue 13:30-15:10, 15:25-17:05
Fri 13:30-15:10

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 16

コンピュータの古典的な要素

出力出力制御制御

データパスデータパス

記憶記憶

入力入力

出力出力

プロセッサ

コンピュータ

インタフェース

コンパイラ

性能の評価

Instruction Set Architecture (ISA), 命令セットアーキテクチャ

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 17

Input and Output Devices

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 18

Input and Output Devices

• I/O devices are diverse with respect to

• Behavior – input, output or storage

• Partner – human or machine

• Data rate – the peak rate at which data can be transferred
between the I/O device and the main memory or CPU

Device Behavior Partner Data rate (Mb/s)

Keyboard input human 0.0001

Mouse input human 0.0038

Laser printer output human 3.2000

Graphics display output human 800.0000-8000.0000

Network/LAN input or

output

machine 100.0000-1000.0000

Magnetic disk storage machine 240.0000-2560.0000

8
 o

rd
e
rs

 o
f m

a
g
n
itu

d
e
 ra

n
g

e

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 19

A Typical I/O System

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 20

Bus, I/O System Interconnect

• A bus is a shared communication link

1bit data wire

1bit control wire

Bus

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 21

Bus, I/O System Interconnect

• A bus is a shared communication link (a single set of wires
used to connect multiple subsystems)

• Advantages

• Low cost – a single set of wires is shared in multiple ways

• Versatile （多目的） – new devices can be added easily and
can be moved between computer systems
that use the same bus standard

• Disadvantages

• Creates a communication bottleneck – bus bandwidth
limits the maximum I/O throughput

• The maximum bus speed is largely limited by

• The length of the bus

• The number of devices on the bus

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 22

Bus Characteristics

• Control lines

• Signal requests and acknowledgments

• Indicate what type of information is on the data lines

• Data lines

• Data, addresses, and complex commands

• Bus transaction consists of

• Master issuing the command (and address) – request

• Slave receiving (or sending) the data – action

• Defined by what the transaction does to memory

• Input – inputs data from the I/O device to the memory

• Output – outputs data from the memory to the I/O device

Bus

Master

Bus

Slave

Control lines: Master initiates requests

Data lines: Data can go either way

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 23

Types of Buses (1)

Processor
Main

Memory

Backplane bus

I/O devices

Processor
Main

Memory

Processor-memory bus

Bus
adapter

I/O bus

Bus
adapter

Bus
adapter

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 24

Types of Buses (2)

Processor
Main

Memory

Processor-memory bus

Bus
adapter

Backplane bus

Bus
adapter

I/O bus

Bus
adapter

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 25

Types of Buses (3)

• Processor-memory bus
• Short and high speed

• Matched to the memory system to maximize the memory-processor
bandwidth

• Optimized for cache block transfers

• I/O bus (industry standard, e.g., SCSI, USB, Firewire)
• Usually is lengthy and slower

• Needs to accommodate a wide range of I/O devices

• Connects to the processor-memory bus or backplane bus

• Backplane bus (industry standard, e.g., ATA, PCI Express)
• The backplane is an interconnection structure within the chassis

• Used as an intermediary bus connecting I/O busses to the
processor-memory bus

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 26

Synchronous（同期式）, Asynchronous（非同期式） Buses

• Synchronous bus (e.g., processor-memory buses)
• Includes a clock in the control lines and has a fixed protocol

for communication that is relative to the clock

• Advantage: involves very little logic and can run very fast

• Disadvantages:
• Every device communicating on the bus must use same clock rate

• To avoid clock skew, they cannot be long if they are fast

• Asynchronous bus (e.g., I/O buses)
• It is not clocked, so requires a handshaking protocol and

additional control lines (ReadReq, Ack, DataRdy)

• Advantages:
• Can accommodate a wide range of devices and device speeds

• Can be lengthened without worrying about clock skew or
synchronization problems

• Disadvantage: slow

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 27

Asynchronous Bus Handshaking Protocol

An I/O device reads data from memory.

1
2

3

ReadReq

Data

Ack

DataRdy

addr data

4

5

6

7

7. I/O device sees DataRdy go low and drops Ack

1. Memory sees ReadReq, reads addr from data lines, and raises Ack

2. I/O device sees Ack and releases the ReadReq and data lines

3. Memory sees ReadReq go low and drops Ack

4. When memory has data ready, it places it on data lines and raises DataRdy

5. I/O device sees DataRdy, reads the data from data lines, and raises Ack

6. Memory sees Ack, releases the data lines, and drops DataRdy

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 28

The Need for Bus Arbitration （調停）

• Multiple devices may need to use the bus at the same time

• Bus arbitration schemes usually try to balance:

• Bus priority – the highest priority device should be serviced
first

• Fairness – even the lowest priority device should never be
completely locked out from the bus

• Bus arbitration schemes can be divided into four classes

• Daisy chain arbitration

• Centralized, parallel arbitration

• Distributed arbitration by collision detection

• device uses the bus when its not busy and if a collision
happens (because some other device also decides to use
the bus) then the device tries again later (Ethernet)

• Distributed arbitration by self-selection

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 29

Daisy Chain Bus Arbitration （デイジーチェイン）

• Advantage: simple

• Disadvantages:
• Cannot assure fairness – a low-priority device may be locked out

• Slower – the daisy chain grant signal limits the bus speed

Bus

Arbiter

Device 2

Grant Grant Grant

Release

Request

wired-OR

Data/Addr

Device 1

Highest

Priority

Device N

Lowest

Priority

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 30

Centralized Parallel Arbitration （集中並列方式）

• Advantages: flexible, can assure fairness

• Disadvantages: more complicated arbiter hardware

• Used in essentially all processor-memory buses and in high-speed
I/O buses

Bus

Arbiter

Device 1 Device NDevice 2

Ack1

Data/Addr

Ack2

AckN

Request1 Request2 RequestN

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 31

Example: The Pentium 4’s Buses

System Bus (“Front Side Bus”):
64b x 800 MHz (6.4GB/s), 533
MHz, or 400 MHz

2 serial ATAs:
150 MB/s

8 USBs: 60 MB/s

2 parallel ATA:
100 MB/s

Hub Bus: 8b x 266 MHz

Memory Controller Hub
(“Northbridge”)

I/O Controller Hub
(“Southbridge”)

Gbit ethernet: 0.266 GB/s
DDR SDRAM

Main Memory

Graphics output:
2.0 GB/s

PCI:

32b x 33 MHz

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 32

A Typical I/O System and interrupts

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 33

Communication of I/O Devices and Processor (1)

• How the processor directs the I/O devices
• Memory-mapped I/O

• Portions of the high-order memory address space
are assigned to each I/O device

• Read and writes to those memory addresses are
interpreted
as commands to the I/O devices

• Load/stores to the I/O address space can only be
done by the OS

• Special I/O instructions

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 34

Communication of I/O Devices and Processor (2)

• How the I/O device communicates with the
processor
• Polling – the processor periodically checks the status of

an I/O device to determine its need for service
• Processor is totally in control – but does all the work
• Can waste a lot of processor time due to speed

differences
• Interrupt-driven I/O – the I/O device issues an

interrupts to the processor to indicate that it needs
attention

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 35

Interrupt-Driven Input

memory

user
program

1. input
interrupt

2.1 save state

Processor

ReceiverMemory

add
sub
and
or
beq

lbu
sb
...
jr

2.2 jump to
interrupt
service routine

2.4 return
to user code

Keyboard

2.3 service
interrupt

input
interrupt
service
routine

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 36

Interrupt-Driven Output

Processor

TrnsmttrMemory

Display

add
sub
and
or
beq

lbu
sb
...
jr

memory

user
program

1.output
interrupt

2.1 save state

output
interrupt
service
routine

2.2 jump to
interrupt
service routine

2.4 return
to user code

2.3 service
interrupt

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 37

Interrupt-Driven I/O

• An I/O interrupt is asynchronous
• Is not associated with any instruction so doesn’t prevent any instruction

from completing

• You can pick your own convenient point to handle the interrupt

• With I/O interrupts
• Need a way to identify the device generating the interrupt

• Can have different urgencies (so may need to be prioritized)

• Advantages of using interrupts
• No need to continuously poll for an I/O event; user program progress is

only suspended during the actual transfer of I/O data to/from user
memory space

• Disadvantage – special hardware is needed to
• Cause an interrupt (I/O device) and detect an interrupt and save the

necessary information to resume normal processing after servicing the
interrupt (processor)

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 38

Direct Memory Access (DMA)

• For high-bandwidth devices (like disks) interrupt-driven
I/O would consume a lot of processor cycles

• DMA – the I/O controller has the ability to transfer data
directly to/from the memory without involving the
processor

• There may be multiple DMA devices in one system

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 39

Direct Memory Access (DMA) how to?

1. The processor initiates the DMA transfer by supplying

1. the I/O device address

2. the operation to be performed

3. the memory address destination/source

4. the number of bytes to transfer.

2. The I/O DMA controller manages the entire transfer
arbitrating for the bus

3. When the DMA transfer is complete, the I/O controller
interrupts the processor to let it know that the transfer
is complete

• Cache Coherence

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 40

I/O and the Operating System

• The operating system acts as the interface between the
I/O hardware and the program requesting I/O

• To protect the shared I/O resources, the user program is
not allowed to communicate directly with the I/O device

• Thus OS must be able to give commands to I/O devices,
handle interrupts generated by I/O devices, provide fair
access to the shared I/O resources, and schedule I/O
requests to enhance system throughput

• I/O interrupts result in a transfer of processor
control to the supervisor (OS) process

