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proc8: 4-stage scalar pipelining processor
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D538 (1966 %)
« SISD (Single Instruction stream, Single Data stream)

« SIMD (Single Instruction stream, Multiple Data stream)
« MISD (Multiple Instruction stream, Single Data stream)
* MIMD (Multiple Instruction stream, Multiple Data stream)

Instruction stream 1 1 uu uu
Data stream 1 llll 1 1111

SISD SIMD MISD MIMD
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SIMD Variants and multicore

 Vector architectures
« SIMD extensions
* Graphics Processing Units (GPUs)

« SIMD variants exploit data-level parallelism

« Instruction-level parallelism in superscalar processors
* window size
« Thread-level parallelism in multicore processors
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SIMD extensions

\
« Media applications operate on data types narrower than ’rhe%%
native word size

« Example: disconnect carry chains to "partition” adder
* Implementations:
« Intel MMX (1996)
« Eight 8-bit integer ops or four 16-bit integer ops
« Streaming SIMD Extensions (SSE) (1999)
 Eight 16-bit integer ops
« Four 32-bit integer/fp ops or two 64-bit integer/fp ops
« Advanced Vector Extensions (AVX 2010)
« Four 64-bit integer/fp ops
« 256 bit vectors -> 512 -> 1024
« Operands must be consecutive and aligned memory locations
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Vector architecture

« Computers designed by Seymour Cray starting in the 1970s
* Basic idea:

* Read sets of data elements into "vector registers”

« Operate on those registers

« Disperse the results back into memory

Cray Supercomputer
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DAXPY (double precisiona x X +Y) X
\

void daxpy(int n, double a, double x[], double y[])
{

for (int 1 = 0; 1 < n; i++) {
y[i] = a*x[1] + y[1i];
}
}
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DAXPY in MIPS Instructions

\
Example: DAXPY (double precisiona x X +Y) x
L.D FO,a ; load scalar a
DADDIU R4Rx#512 ; upper bound of what to load
Loop: L.D F20(Rx ) . load X[i]
MULD  F2,F2,F0 s ax X[i]
L.D F4,0(Ry) : load Y[i]
ADD.D F4,F2,F2 cax X[+ Y[i]
SD F4,9(Ry) ; store into Y[i]
DADDIU Rx,Rx #8 ; increment index to X
DADDIU RyRy #8 ;. increment index to Y
SUBBU R20,R4 Rx , compute bound
BNEZ R20,Loop ; check if done

= Requires almost 600 MIPS operations
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DAXPY in VMIPS (MIPS with Vector) Instructions x
\

ADDV.D : add two vectors
ADDVS.D : add vector to a scalar
LV/SV  : vector load and vector store from address

Example: DAXPY (double precision a*X+Y)

L.D FO,a ; load scalar a

LV V1 Rx ; load vector X
MULVS.D V2,V1,FO ; vector-scalar multiply
LV V3,Ry ; load vector Y
ADDVD V4V2V3 ;add

SV Ry,v4 ; store the result

« Requires 6 instructions
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Vector-vector add in RISC-V instructions

# vector-vector add routine of 32-bit integers

# void vvaddint32(size_t n, const int*x, const int*y, int*z)
# { for (size_t i=0; i<n; i++) { z[il=x[i]+y[i]; } }
#
#

ad = n, al = x, a2 =y, a3 = z
# Non-vector instructions are indented
vvaddint32:
vsetvli t6, a@, e32, ta, ma # Set vector length based on 32-bit vectors
vlie32.v ve@, (al) Get first vector
sub a0, a0, to Decrement number done
slli t9, to, 2 Multiply number done by 4 bytes
add a1, al, to Bump pointer
vle32.v v1, (a2) Get second vector
add a2, a2, to Bump pointer
vadd.vv v2, vO, VI Sum vectors
vse32.v v2, (a3) Store result
add a3, a3, to Bump pointer
bnez a@, vvaddint32 Loop back
ret Finished
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The basic structure of a vector architecture, VMIPSX
\

« Eight 64-element vector registers
« All the functional units are vector functional units.

Main memory

Vector | FP add/subtract
load/store
[ | FP multiply I—>

] FP divide .—-
Vector — | |
registers . nteger
H Logical .—>

Scalar
registers
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Multiple functional units to improve the performance

 (a) can complete one addition per cycle
* (b) can complete four addition per cycle
« The vector register storage is divided across the lanes

Lane 1

Lane 2

Lane 3

I."I,;atld
pipe 1
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| FP add

-

/ pipe 2

3

\ector
registers:
alements
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Vector load-store unit
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Input and Output Devices
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Input and Output Devices 3&‘
\

« I/0 devices are diverse with respect to
 Behavior — input, output or storage
* Partner — human or machine

* Data rate — the peak rate at which data can be transferred
between the I/0 device and the main memory or CPU

Device Behavior Partner Data rate (Mb/s) o
Keyboard input human 0.0001 | | %
Mouse input human 0.0038 g
Laser printer output human 3.2000| | 5
Graphics display output human 800.0000-8000.0000 §
Network/LAN input or machine 100.0000-1000.0000 g

output ®
Magnetic disk storage machine 240.0000-2560.0000 §
"D
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A Typical I/0 System

Processor

Interrupts

Cache

Main
Memory
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Bus, I/O System Interconnect

« A bus is ashared communication link

1bit data wire

1bit control wire

BT
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Bus, I/O System Interconnect x
\

« A bus is a shared communication link (a single set of wires
used to connect multiple subsystems)
« Advantages
* Low cost — a single set of wires is shared in multiple ways

« Versatile (2% BH#]) — new devices can be added easily and
can be moved between computer systems
that use the same bus standard

« Disadvantages

* Creates a communication bottleneck — bus bandwidth
limits the maximum I/O throughput

« The maximum bus speed is largely limited by

* The length of the bus
 The number of devices on the bus

~ =
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Bus Characteristics

Bus
Master

Control lines: Master initiates requests

Data lines: Data can go either way

e Control lines

 Signal requests and acknowledgments
« Indicate what type of information is on the data lines

* Data lines

« Data, addresses, and complex commands
« Bus transaction consists of

« Master issuing the command (and address)

 Slave receiving (or sending) the data

« Defined by what the transaction does to memory
« Input - inputs data from the I/O device to the memory
¥~  * Output—outputs data from the memory to the I/O device

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo
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Types of Buses (1)

Backplane bus ,
Main
Processor
Memory
I/O devices
Processor-memory bus :
Processor Main
Memory
Bus Bus Bus
adapter adapter adapter
I/O bUS ~ ~ ~—
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Types of Buses (2)

Processor-memory bus

Processor

Bus
adapter

I/O bus
Bus

Backplane bus

adapter

Bus
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Types of Buses (3)
\

* Processor-memory bus
« Short and high speed

*  Matched to the memory system to maximize the memory-processor
bandwidth

« Optimized for cache block transfers

« I/0 bus (industry standard, e.g., SCSI, USB, Firewire)

* Usuadlly is lengthy and slower
* Needs to accommodate a wide range of I/0 devices
« Connects to the processor-memory bus or backplane bus

 Backplane bus (industry standard, e.g., ATA, PCI Express)
« The backplane is an interconnection structure within the chassis

« Used as an intermediary bus connecting I/0 busses to the
processor-memory bus

~ =
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Synchronous ([E]EA3(), Asynchronous (ERIHAZ) Buseg\%
\

 Synchronous bus (e.g., processor-memory buses)

« Includes a clock in the control lines and has a fixed protocol
for communication that is relative to the clock

« Advantage: involves very little logic and can run very fast
 Disadvantages:
« Every device communicating on the bus must use same clock rate
« To avoid clock skew, they cannot be long if they are fast
 Asynchronous bus (e.g., I/0 buses)

« It is not clocked, so requires a handshaking protocol and
additional control lines (ReadReq, Ack, DataRdy)
« Advantages:
« Can accommodate a wide range of devices and device speeds

 Can be lengthened without worrying about clock skew or
synchronization problems

« Disadvantage: slow 26
P C
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Asynchronous Bus Handshaking Protocol 3&‘
\

An 1/O device reads data from memory.

ReadReq ___1\1 /‘

Data ddr 2\\Y data >
Ack :| W/Z/ ]
DataRdy \|//5 '

1.  Memory sees ReadReq, reads addr from data lines, and raises Ack
2. I/O device sees Ack and releases the ReadReq and data lines
3. Memory sees ReadReq go low and drops Ack

4. When memory has data ready, it places it on data lines and raises DataRdy
5. I/O device sees DataRdy, reads the data from data lines, and raises Ack
6. Memory sees Ack, releases the data lines, and drops DataRdy

- 7. I/O device sees DataRdy go low and drops Ack

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 27



The Need for Bus Arbitration (=)

\
« Multiple devices may need to use the bus at the same time 3%

 Bus arbitration schemes usually try to balance:

 Bus priority - the highest priority device should be serviced
first

* Fairness - even the lowest priority device should never be
completely locked out from the bus

 Bus arbitration schemes can be divided into four classes
* Daisy chain arbitration
 Centralized, parallel arbitration

 Distributed arbitration by collision detection

* device uses the bus when its not busy and if a collision
happens (because some other device also decides to use
the bus) then the device tries again later (Ethernet)

- Distributed arbitration by self-selection

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 28



Daisy Chain Bus Arbitration (T4 —F A >)

Bus
Arbiter

Device 1 Device 2 Device N
Highest ¢ ° Lowest
Priority Priority
Grant Grant Grant //
) Release /'/
N 1
R
‘ ® o\ equest )/ ®
wired-OR
N N Data/Addr &

« Advantage: simple
 Disadvantages:

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Cannot assure fairness — a low-priority device may be locked out
Slower — the daisy chain grant signal limits the bus speed

\
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Centralized Parallel Arbitration (55 A =)

Bus
Arbiter

\

« Advantages: flexible, can assure fairness

Device 1 Device 2 c o o Device N
Acki Request1 Request2 RequestN
« Ack2
AckN
S N Data/Addr S

- Disadvantages: more complicated arbiter hardware

« Used in essentially all processor-memory buses and in high-speed
I/0 buses

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo
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DDRA00/333 SDRAM
m > Main Memory

Example: The Pentium 4’s Buses X
—— \

Graphics output:
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Communication Streaming
Architecture/GbE
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Audio
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150 MB/s Gl Ll vis/s

10/100 LAN
Connect Interface
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BIOS Supports (ICHS5R only)
I/0 Controller Hub

" . ]
ﬁn ("Southbridge")
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A Typical I/0 System and interrupts

Interrupts

Processor

|
Cache

Main /10 /10 1/0
Memory Controller Controller Controller

Graphlcs m
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Communication of I/0O Devices and Processor (1)

\
« How the processor directs the I/0O devices X

* Memory-mapped I/0
 Portions of the high-order memory address space
are assigned to each I/0O device

* Read and writes to those memory addresses are
interpreted
as commands to the I/0 devices

 Load/stores to the I/O address space can only be
done by the OS

« Special I/0 instructions
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Communication of I/0 Devices and Processor (2) x
\

« How the I/0 device communicates with the

processor
* Polling — the processor periodically checks the status of
an I/0 device to determine its need for service
* Processor is totally in control — but does all the work
« Can waste a lot of processor time due to speed
differences
* Interrupt-driven I/O — the I/0 device issues an
interrupts to the processor to indicate that it needs
attention

™
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Interrupt-Driven Input

Processor

A

[

Memory Receiver

Keyboard
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1. input
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interrupt \

sub
and

2.1 save state 4//

or

beq

|

2.2 jump to —

f

\

interrupt
service routine

2.4 return\ —

to user code

memory
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S
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\

program

2.3 service
interrupt

iInput
interrupt
service
routine
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Interrupt-Driven Output

\

1.output
interrupt =dd
Processor =ub
and
or
2.1 save state / beg
: |
Trnsmttr
memeny 22jumpto |
l interrupt B
Display service routine Lbbu
2.4 return Jr
to user code

memory
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2.3 service
interrupt
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output
interrupt
service
routine
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Interrupt-Driven I/0

An I/0 interrupt is asynchronous

« TIs not associated with any instruction so doesn’t prevent any instruction
from completing

« You can pick your own convenient point to handle the interrupt

With I/0 interrupts
* Need a way to identify the device generating the interrupt
« Can have different urgencies (so may need to be prioritized)

Advantages of using interrupts

* No need to continuously poll for an I/0O event; user program progress is
only suspended during the actual transfer of I/0 data to/from user
memory space

Disadvantage — special hardware is needed to

« Cause an interrupt (I/0 device) and detect an interrupt and save the
hecessary information to resume normal processing after servicing the
interrupt (processor)

Af_a'
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Direct Memory Access (DMA)
\

« For high-bandwidth devices (like disks) interrupt-driven
I/0 would consume a lot of processor cycles

* DMA - the I/0 controller has the ability to transfer data
directly fo/from the memory without involving the
processor

« There may be multiple DMA devices in one system

Interrupts
Processor < _/

~~—_|

|
Cache

Main /10 I[e] /10
Memory Controller Controller Controller

oisk | ook | [ Sromies Network

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 38




Direct Memory Access (DMA) how to?

\
1. The processor initiates the DMA transfer by supplying x
1. the I/O device address
2. the operation to be performed
3. the memory address destination/source
4. the number of bytes to transfer.
2. The I/0 DMA controller manages the entire transfer
arbitrating for the bus

3. When the DMA transfer is complete, the I/O controller

interrupts the processor to let it know that the transfer
is complete

 Cache Coherence

™
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I/0 and the Operating System

\
« The operating system acts as the interface between the %%
I/0 hardware and the program requesting I/0

« To protect the shared I/0 resources, the user program is
not allowed to communicate directly with the I/O device

« Thus OS must be able to give commands to I/0 devices,
handle interrupts generated by I/0 devices, provide fair
access to the shared I/0 resources, and schedule I/0O
requests to enhance system throughput

« I/O interrupts result in a transfer of processor
control to the supervisor (OS) process

™
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