20245 E (TH65F) hix

Course number: CSC.T363

AN
A Ea—37—FTIF¥
Computer Architecture

11. lR78ECIE (2), 5514
Virtual Memory (2), dependability

www.arch.cs.titech.ac.jp/lecture/CA/

%
:|:~ E -_ "i =]
Tue 13:30-15:10, 15:25-17:05 S o— FERIFR

Fri 13:39-15:10 Kenji Kise, Department of Computer Science

Kise _at_ c.titech.ac.jp 1
CSC.T363 Computer Architecture, Department of Computer Science, Instutute of SCW@Ce Tokyo

Virtual Memory

 Each program is compiled into its own
address space — a “virtual address (VA)”
space
* Physical address (PA) for the access of
physical devices
 During run-time each
virtual address, VA must be translated
to a physical address, PA

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Main memory

Secondary memory (disk)

Two Programs Sharing Physical Memory x
\

= A program's address space is divided into pages (all one
fixed size, typical 4KB) or segments (variable sizes)
= The starting location of each page (either in main memory or in
secondary memory) is contained in the program's page table

Program A’'s page table (virtual address space)

\
AN main memory
'//. \\ — 4KB page
/ *— N\,
HDD — N
o \

<
b

Program B’s page table

~ 7~
N 7

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 3

Address Translation

\
= A virtual address is translated to a physical address by a 2%
combination of hardware and software

Virtual Address (VA) Assume 4KB page size

31 30 Co. 12 11 C 0
Virtual page number Page offset

Physical page number Page offset

29 o 12 11 0
Physical Address (PA)

» So each memory request first requires an address
translation from the virtual space to the physical space

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 4

Address Translation Mechanisms

<

Virtual page # Offset

VA Page fault :
page is not in the main memory
Physical page # 1 Offset

PA

A

Main memory

Physical page

base afdr —
///
/

\ 4

\Y/

1 o

1 o— |

1 o—

1 —
1 —

1 —

0] —

1 — 9
0]

1

0]

Page Table in main memory

SC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Disk storage
.\/ \
./ ~—
o\ \

>
><
T ——

B
>

Virtual Addressing, the hardware fix

« Thus it may take an extra memory access to translate a virtual
address to a physical address

VA PA miss
CPU Trans- i
Core . Cache ol
lation Memory
hit
data]
Virtual page # Offset
I [| VA Page fault :
page is not in the main memory
Physical page # l Offset
= This makes memory (cache) PA | | '

accesses very expensive
(if every access was really two

accesses)

= What's the solution ?

Physical [page

base afddr /

Main memory

\'
1
1
1
1
1
1
0
1
0
1

0

il

Page Table in main memory

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Disk storage

\

Virtual Addressing, the hardware fix x
\

= The hardware fix is to use a Translation Lookaside
Buffer (TLB) (PRLRZE#/NYT7)

« asmall cache that keeps track of recently used
address mappings to avoid having to do a page table
lookup

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 7

Making Address Translation Fast

TLB (Translation Lookaside Buffer)

Vi I
irtual page # Vv Tag Physical page base addr
1 e
1 A}
128 entries 1 N\
0 NN
1 A .\ \ \
Main memory
v Physical page base addr
1 —
] ')<
1 - \
"1 —__— |
1 o
1M entries 1 —
=
1 Disk storage
1 o«
0 —_— \

Page Table \
ﬁ’ (in physical memory)
CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

/+44

Direct Mapped Cache Example

 One word/block, cache size = 1K words \
Byte
3130 1312 11 210
x/ offset
Hit Tag .20 10 Data
t Index 4
Index Valid Tag Data
0
1
2
- |
1021 I
1022
1023
120 .32
S What kind of locality are we taking advantage of?

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 9

Translation Lookaside Buffers (TLBs)

N\
« Just like any other cache, the TLB can be organized as
fully associative, set associative, or direct mapped

V | Virtual Page # Physical Page #

« TLB access time is typically smaller than cache access
time (because TLBs are much smaller than caches)

« TLBs are typically not more than 128 to 256 entries even
on high end machines

™

~ =
@ 10

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

A TLB in the Memory Hierarchy

3
Ya t hit Yat

VA PA miss
CPU TLB Main
Core Lookup Cache Memory
7 y age
miss hit ?agl +
Translation
(page table)
data HDD

« A TLB miss —is it a TLB miss or a page fault ?

« If the page is in main memory, then the TLB miss can be
handled (in hardware or software) by loading the translation
information from the page table into the TLB

Takes 100’s of cycles to find and load the translation info into the TLB

« If the page is not in main memory, then it’s a frue page fault
a @a- « Takes 1,000,000’s of cycles to service a page fault

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 11

A TLB in the Memory Hierarchy

Va t hit % t _
VA PA miss
CPU TLB Main
Core Lookup Cache) Memory
) T) age
miss l hit]F: agl’r
Translation
(page table)
data HDD

* page fault : page is not in physical memory
« TLB misses are much more frequent than true page faults

~ =
@ 12

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Two Machines’ TLB Parameters

Intel P4 AMD Opteron
TLB organization 1 TLB for instructions and | 2 TLBs for instructions and 2
1TLB for data TLBs for data
Both 4-way set associative | Both L1 TLBs fully associative
Both use ~LRU with ~LRU replacement
replacement Both L2 TLBs are 4-way set
associative with round-robin
LRU

Both L1 TLBs have 40 entries
Both L2 TLBs have 512 entries

TBL misses handled in
hardware

Both have 128 entries

TLB misses handled in
hardware

TLB Event Combinations

TLB Page | Cache |Possible? Under what circumstances?
Table

Hit Hit Hit Yes — what we want!

Hit Hit Miss | Yes — although the page table is not
checked if the TLB hits

Miss Hit Hit | Yes— TLB miss, PAin page table

Miss Hit Miss | Yes — TLB miss, PA in page table, but data
not in cache

Miss Miss Miss | Yes — page fault

Hit Miss Miss/ Impossible — TLB translation not possible if

Hit | Page is not present in memory

Miss Miss Hit Impossible — data not allowed in cache if

page is not in memory

14

Why Not a Virtually Addressed Cache?

A
A virtually addressed cache would only require address 2%
translation on cache misses

VA PA R
Trans- | Main
CPU lation Memory
Cache |,
hit
data

but

= Two different virtual addresses can map to the same physical
address (when processes are sharing data),
= Two different cache entries hold data for the same physical address
- synonyms (3l4)
= Must update all cache entries with the same physical address or
ﬁﬂ the memory becomes inconsistent

SC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 15

The Hardware/Software Boundary

\
« What parts of the virtual to physical address translation
is done by or assisted by the hardware?

* Translation Lookaside Buffer (TLB) that caches the recent
translations

« TLB access time is part of the cache hit time
« May cause an extra stage in the pipeline for TLB access
 Page table storage, fault detection and updating

« Page faults result in interrupts (precise) that are then
handled by the OS

* Hardware must support (i.e., update appropriately) Dirty and
Reference bits (e.g., ~LRU) in the Page Tables

™

Af_a'

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 16

A TLB in the Memory Hierarchy

3
Ya t hit Yat

VA PA miss
CPU TLB Main
Core Lookup Cache Memory
7 y age
miss hit ?agl +
Translation
(page table)
data HDD

« A TLB miss —is it a TLB miss or a page fault ?

« If the page is in main memory, then the TLB miss can be
handled (in hardware or software) by loading the translation
information from the page table into the TLB

« Takes 100’s of cycles to find and load the translation info into the TLB

« If the page is not in main memory, then it’s a frue page fault
a @a- « Takes 1,000,000’s of cycles to service a page fault

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 17

A Typical Memory Hierarchy

By taking advantage of the principle of locality

Present much memory in the cheapest technology

at the speed of fastest technology r=iie
On_Chlp COmponents ---------------------- ; -:-;-:-;-‘-'; --------
Control _’_,-"
=] Second Secondary
-I - |& Level Memory
Datapath [2 Cache (Disk)
Sl B (SRAM)
Speed (%cycles): '2’s 1's 10’s 100’s 1,000’s
Size (bytes): 100’s K's 10K’s M’s G'stoT’s
Cost: highest lowest

ﬁ’ TLB: Translation Lookaside Buffer
CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 18

The Hardware/Software Boundary

\
« What parts of the virtual to physical address translation
is done by or assisted by the hardware?

* Translation Lookaside Buffer (TLB) that caches the recent
translations

« TLB access time is part of the cache hit time
« May cause an extra stage in the pipeline for TLB access
 Page table storage, fault detection and updating

« Page faults result in interrupts (precise) that are then
handled by the OS

* Hardware must support (i.e., update appropriately) Dirty and
Reference bits (e.g., ~LRU) in the Page Tables

™

Af_a'

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 19

Magnetic Disk (B T1RY)

<

http://sougo®57.aicomp.jp/0001.html

SC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

Q3 2022 Hard Dr

\
Annualized Failure Rate (AFR)

Backblaze SSD Quarterly Failure Rates for Q2 2022
Reporting period: 4/1/22 thru 6/30/22 for drive models active as of 6/30/22

ive Failure Rates

Y

Backblaze Hard Drives Quarterly Failure Rates for Q3 2022
Reporting period: 7/1/2022 through 9/30/2022 for drive medels active as of 9/30/2022

Size Drive Drive Drive

MFG Model (GB) | Count Days Failures | AFR
Crucial |[CT250MX500SSD1 250 272 20,002 o) -
Dell DELLBOSS VD 480 351 29,066 o] -
Micron |MTFDDAV240TCB 240 89 8,084 1 4.52%
Seagate [ZA250CMI0003 250 1106 99,379 2 0.73%
Seagate |[ZA500CMI10003 (*) 500 3 42 (0] -
Seagate |ZA2000CM10002 2000 3 2N 0O -
Seagate |ZA250CMI10002 250 559 50,477 4 2.89%
Seagate [ZA500CM10002 500 18 1625 0 -
Seagate |ZA250NMI000 (*) 250 9 126 (0] -
Seagate [SSD 300 106 9,541 0 -
WDC WDS250G2B0OA 250 42 3,781 o) -

2,558 | 222,394 7 1.15%
(*) - New drive model in Q2 2022

{b Backblaze

https://www.backblaze.com/blog/ssd-drive-stats-mid-2022-review/

T "N
N

https://www.backblaze.com/blog/backblaze-drive-stats-for-q3-2022/

Drive Drive | Avg. Age Drive Drive

MFG Model Size Count |(months) Days Failures | AFR
HGST HMS5C4040ALE640 | 4TB 3,731 74.0 341,509 3| 032%
HGST HMS5C4040BLEB40 | 4TB 12,730 PR 1,170,925 14 | 0.44%
HGST HUH728080ALEG0O0 | 8TB 1n9 53.6 103,354 8| 2.83%
HGST HUH728080ALEG04 | 8TB 95 626 7,637 - | 0.00%
HGST HUH721212ALEB00 12TB 2,605 359 239,644 3| 048%
HGST HUH721212ALEE04 12TB 13,157 18.3 1,209,798 19| 057%
HGST HUH721212ALN604 12TB 10,784 418 992,989 27 | 0.99%
Seagate ST4000DMOO0O 4TB 18,292 831 1,683,920 202 | 4.38%
Seagate |ST6000DX000 6TB 886 89.6 81,509 3 1.34%
Seagate | ST8000DMO02 8TB 9,566 e 883,015 62 | 2.56%
Seagate ST8OOONMOOOA 8TB 79 n.2 26,974 - | 0.00%
Seagate ST8OOONMOO055 8TB 14,374 60.7 1,322,195 107 | 2.95%
Seagate STIOOOONMOOB6E 10TB 1174 58.6 108,372 9| 3.03%
Seagate |STI2000NMOOO7 12TB 1272 34.7 17,739 16 | 4.96%
Seagate |STI2000NMOOO8 12TB 19,910 301 1,837,021 124 | 246%
Seagate |STI2000NMOOIG 12TB 12,530 221 1,146,368 35 1N%
Seagate STI4000NMOOIG 14TB 10,737 199 987,184 40 1.48%
Seagate | STI4000NMO138 14TB 1,535 218 142,894 36 | 9.20%
Seagate | STIBOOONMOOIG 16TB 20,402 10.7 1,696,759 29 | 0862%
Seagate | STIBOOONMO0O02J 16TB 310 36 22,105 2| 3.30%
Toshiba MDO4ABA400V 4TB 95 88.3 8,849 2| B825%
Toshiba MGO7ACAI4TA 14TB 38,203 231 3,514,384 n7 | 1.22%
Toshiba MGO7ACAI4ATEY 14TB 537 184 47,742 2 1.53%
Toshiba MGOSACAIBTA 16TB 3,751 39 243,198 5 075%
Toshiba MGOBACAIETE 16TB 5,942 n7 546,805 22 1.47%
Toshiba MGOBACAIGTEY 16TB 4,244 ne 385,715 12 114%
wDC WUH721414ALE6L4 14TB 8,409 218 773,557 5| 024%
wDC WUH721816ALEELO 16TB 2,702 1.8 248,428 - | 0.00%
wDC WUH721816ALE6L4A 16TB 7138 28 310,502 6| 07%

226,309 20,201,091 910 | 1.64%

ib Backblaze

CSC.T363 Computer Architecture, Department of Computer Science, Lnsinuie o1 ocience 10kyo

\

21

I5—, IA4—I)Lk, #E
AN

* Fault (TA—ILk, 8BE)

- BYDRE
« Error (T5—, §RY)

o VATLADERERDIELIGZWLEHA
 Failure (=

o IRTLNEELEEZLLLY. aVFR—RU RO XTFLAS, AL
f-tge, Y—EX, RO ®ERTEHL.

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 22

RAID: Redundant Array of Inexpensive Disks
\
« Arrays of small and inexpensive disks X

 Increase potential throughput by having many disk drives
« Data is spread over multiple disk
« Multiple accesses are made to several disks at a time

* Reliability is lower than a single disk

* But availability can be improved by adding redundant disks

~— — ~— ~— — ’

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 23

RAID: Level O (RAID O, i 4L, RESAMEVY) X
\

e B2 B B

« Multiple smaller disks as opposed to one big disk

 Spreading the blocks over multiple disks — striping — means
that multiple blocks can be accessed in parallel increasing the
performance

4 disk system gives four times the throughput of a1 disk
system

« Same cost as one big disk — assuming 4 small disks cost the
same as one big disk

* No redundancy, so what if one disk fails?

™

Af_a'

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

24

RAID: Level 1 (Redundancy via Mirroring)

redundant (check) data

\

« Uses twice as many disks for redundancy
so there are always two copies of the data

 The number of redundant disks = the number of data disks
so twice the cost of one big disk

« writes have to be made to both sets of disks, so writes
would be only 1/2 the performance of RAID O

 What if one disk fails?

« If adisk fails, the system just goes to the “mirror” for the
data

~ =
@ 25

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

RAID: Level 0+1 (RAIDO1, Striping with Mirroring)

redundant (check) data

« Combines the best of RAID O and RAID 1,

\

data is striped across four disks and mirrored to four disks

* Four times the throughput (due to striping)
« # redundant disks = # of data disks

so twice the cost of one big disk

writes have to be made to both sets of disks,
so writes would be only 1/2 the performance of RAID O

 What if one disk fails?

 If adisk fails, the system just goes to the “mirror” for the
= data

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

26

RAID: Level 3 (Bit/Byte-Interleaved Parity)

\

Bit parity disk

] (o] [Bha] [Blks

* Cost of higher availability is reduced to 1/N where N is the
number of disks in a protection group

» # redundant disks =1 x # of protection groups

« writes require writing the new data to the data disk as well as
computing the parity, meaning reading the other disks,
so that the parity disk can be updated

 reads require reading all the operational data disks as well as
the parity disk to calculate the missing data that was stored on
the failed disk

~ =
! 27

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

RAID 3 and parity

« RAID 3 i\%
New D1 data @
3 reads and 2 writes © _XOR

involving all the disks T~ <—

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 28

RAID: Level 4 (Block-Interleaved Parity) X
\

S Block parity disk
)])] |

 Cost of higher availability still only 1/N but the parity is
stored as blocks associated with sets of data blocks
* Four times the throughput (striping)
* # redundant disks =1 X # of protection groups

 Supports “small reads” and “small writes”
(reads and writes that go to just one (or a few) data disk in a

protection group)

™

Af_a'

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

29

Small Reads and Small Writes

\

g AN
New D1 data s T - S < S -

3 reads and 2 writes

involving all the disks S R S—

« RAID 4 small reads and small writes

New D1 data e W < S s S <—
o [(o] [or

2 reads and 2 writes
involving just two disks

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 30

Distributing Parity Blocks

RAID 4 RAID 5
C O O DS C O O O =
— | | ——— | | ——— | | A/ N\
N~ — ~ N ~ @ N~ O ~_ N~ N~ ~ @ N~ O ~_

By distributing parity blocks to all disks, some small writes
can be performed in parallel

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

31

RAID: Level 5 (Distributed Block-Interleaved Par'i’ry)égi

\
coooo

one of these assigned as the block parity disk

 Cost of higher availability still only 1/N but the parity block
can be located on any of the disks
so there is no single bottleneck for writes

« Still four times the throughput (striping)
* # redundant disks = 1 X # of protection groups

« Supports “small reads” and “small writes” (reads and writes
that go to just one (or a few) data disk in a protection group)

 Allows multiple simultaneous writes

P CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

ACRi Room THIFATZE A O DVYIRTT x
\

« /tools/cad/bin/simrv
simrv -a -m main.bin
simrv -a -t 0 100 -m main.bin

« /tools/cad/riscv/rv32ima/bin/riscv32-unknown-linux-ghu-gcc
 /tools/cad/riscv/rv32ima/bin/riscv32-unknown-linux-gnu-Id
« /tools/cad/riscv/rv32ima/bin/riscv32-unknown-linux-gnu-ob jdump

module m_rvcore (RV32I, multi-cycle processor)

40MHz operating frequency
Ib, Ibu, |h, lhu, sb, sh are not supported, DRAM is not initialized through UART

2t pc

SU

I ADDR

m_imem
imem1
(32bit x 1024)

I IN

m rvcore
r pc / N
32
w 1rs] —>|
B 32 . L
r state== > <> w_imm r_state==1
N
w_rrsl | —> 1
5 w_b rslt
/ N\ W_ITS
32 w_imm t B —
//
32 1 RS
/5/ w_rsl d W_ITS)
m_decoder 3
decoderl 32 | 32 w_rslt
eco 5 w_rs2 - 4 > N
7 >| m_regfile 2 c
| 5 regfilel LI S i z =
wrd |(32bitx 32)| w imm w_mem_adr
\. / w ma rd — D _ADDR
- w_rrsl —>\ 32
> w_imm___3 " 3 m_dmem
| — ~ dmeml
D OUT (DRAM) w_ma ld rslt
w_1rs2 5
D WE, D _RE

w_ma_rslt

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

34

RISC-VEHFEDT=6D Tool /SDK, GNU Toolchain
\
- g
« Ubuntu 22.04 server
« ROARUKTEOINIDNYT—DFALRMN—)LT B,
e apt -y install autoconf automake autotools-dev curl python3
libmpc-dev libmpfr-dev libgmp-dev gawk build-essential bison

flex texinfo gperf libtool patchutils bc zliblg-dev
libexpat-dev

« ZEY AL
 https://github.com/riscv-collab/riscv-gnu-toolchain

K CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 35

RISC-V GNU Toolchain / RV32IMA

+ EILREAVR—IL
« Ubuntu 22.04 Server (64-bit)
« —HRA—TDIERE TIEE
« Intel Corei9-12900KF &9 5 —/\G1EH T, BEICN 127 112 E
* make @ -j AT L3V THRATHITHEIEET .

$ git clone https://github.com/riscv/riscv-gnu-toolchain

$ cd riscv-gnu-toolchain

$./configure --prefix=/tools/cad/riscv/rv32ima --with-arch=rv32ima --with-abi=ilp32
$ time make -j 4

AVARM—=ILT BT74ILE fistvb., ABIZFIEET 5,
mEEYMIE. ERD 320 EFEBRE m ETFSVIHTD a FEET 5,

Af_a'

P (CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo

36

