
CSC.T363 Computer Architecture, Department of Computer Science, Instutute of Science Tokyo 1

コンピュータアーキテクチャ
Computer Architecture

11. 仮想記憶 (2), 信頼性
Virtual Memory (2), dependability

Ver. 2024-11-12a

Course number: CSC.T363

吉瀬 謙二 情報工学系
Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

2024年度（令和6年）版

www.arch.cs.titech.ac.jp/lecture/CA/
Tue 13:30-15:10, 15:25-17:05
Fri 13:30-15:10

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 2

Virtual Memory

• Each program is compiled into its own
address space – a “virtual address (VA)”
space

• Physical address (PA) for the access of
physical devices

• During run-time each
virtual address, VA must be translated
to a physical address, PA

Main memory

Secondary memory (disk)

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 3

Two Programs Sharing Physical Memory

Program A’s page table (virtual address space)

main memory

◼ A program’s address space is divided into pages (all one
fixed size, typical 4KB) or segments (variable sizes)
◼ The starting location of each page (either in main memory or in

secondary memory) is contained in the program’s page table

Program B’s page table

4KB page

HDD

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 4

Address Translation

Virtual Address (VA)

Page offsetVirtual page number

31 30 . . . 12 11 . . . 0

Page offsetPhysical page number

Physical Address (PA)
29 . . . 12 11 0

Translation

• So each memory request first requires an address
translation from the virtual space to the physical space

◼ A virtual address is translated to a physical address by a
combination of hardware and software

Assume 4KB page size

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 5

Address Translation Mechanisms

Physical page

base addr

Main memory

Disk storage

Virtual page #

V
1

1

1

1

1

1

0

1

0

1

0

Page Table in main memory

Offset

Physical page # Offset

Page fault :
page is not in the main memory

VA

PA

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 6

Virtual Addressing, the hardware fix

• Thus it may take an extra memory access to translate a virtual
address to a physical address

CPU
Core

Trans-

lation
Cache

Main

Memory

VA PA miss

hit

data

◼ This makes memory (cache)
accesses very expensive
(if every access was really two
accesses)

◼ What’s the solution ?

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 7

Virtual Addressing, the hardware fix

◼ The hardware fix is to use a Translation Lookaside
Buffer (TLB) （アドレス変換バッファ）

◼ a small cache that keeps track of recently used
address mappings to avoid having to do a page table
lookup

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 8

Making Address Translation Fast

Physical page base addr

Main memory

Disk storage

Virtual page #

V
1

1

1

1

1

1

0

1

0

1

0

1

1

1

0

1

Tag Physical page base addrV

TLB (Translation Lookaside Buffer)

Page Table

(in physical memory)

1M entries

128 entries

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 9

Direct Mapped Cache Example

• One word/block, cache size = 1K words

20Tag 10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 10

Translation Lookaside Buffers (TLBs)

• Just like any other cache, the TLB can be organized as
fully associative, set associative, or direct mapped

V Virtual Page # Physical Page #

• TLB access time is typically smaller than cache access
time (because TLBs are much smaller than caches)

• TLBs are typically not more than 128 to 256 entries even
on high end machines

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 11

A TLB in the Memory Hierarchy

• A TLB miss – is it a TLB miss or a page fault ?

• If the page is in main memory, then the TLB miss can be
handled (in hardware or software) by loading the translation
information from the page table into the TLB

• Takes 100’s of cycles to find and load the translation info into the TLB

• If the page is not in main memory, then it’s a true page fault
• Takes 1,000,000’s of cycles to service a page fault

CPU
Core

TLB

Lookup
Cache

Main

Memory

VA PA miss

hit

data

Translation

(page table)

hit

miss

¾ t¼ t

HDD

page
fault

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 12

A TLB in the Memory Hierarchy

• page fault : page is not in physical memory

• TLB misses are much more frequent than true page faults

CPU
Core

TLB

Lookup
Cache

Main

Memory

VA PA miss

hit

data

Translation

(page table)

hit

miss

¾ t¼ t

HDD

page
fault

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 13

Two Machines’ TLB Parameters

Intel P4 AMD Opteron

TLB organization 1 TLB for instructions and

1TLB for data

Both 4-way set associative

Both use ~LRU

replacement

Both have 128 entries

TLB misses handled in

hardware

2 TLBs for instructions and 2

TLBs for data

Both L1 TLBs fully associative

with ~LRU replacement

Both L2 TLBs are 4-way set

associative with round-robin

LRU

Both L1 TLBs have 40 entries

Both L2 TLBs have 512 entries

TBL misses handled in

hardware

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 14

TLB Page

Table

Cache Possible? Under what circumstances?

Hit Hit Hit

Hit Hit Miss

Miss Hit Hit

Miss Hit Miss

Miss Miss Miss

Hit Miss Miss/

Hit

Miss Miss Hit

Yes – what we want!

Yes – although the page table is not

checked if the TLB hits

Yes – TLB miss, PA in page table

Yes – TLB miss, PA in page table, but data

not in cache

Yes – page fault

Impossible – TLB translation not possible if

page is not present in memory

Impossible – data not allowed in cache if

page is not in memory

TLB Event Combinations

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 15

Why Not a Virtually Addressed Cache?

• A virtually addressed cache would only require address
translation on cache misses

data

CPU
Trans-

lation

Cache

Main

Memory

VA

hit

PA

but
◼ Two different virtual addresses can map to the same physical

address (when processes are sharing data),

◼ Two different cache entries hold data for the same physical address
– synonyms （別名）

◼ Must update all cache entries with the same physical address or
the memory becomes inconsistent

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 16

The Hardware/Software Boundary

• What parts of the virtual to physical address translation
is done by or assisted by the hardware?

• Translation Lookaside Buffer (TLB) that caches the recent
translations

• TLB access time is part of the cache hit time

• May cause an extra stage in the pipeline for TLB access

• Page table storage, fault detection and updating

• Page faults result in interrupts (precise) that are then
handled by the OS

• Hardware must support (i.e., update appropriately) Dirty and
Reference bits (e.g., ~LRU) in the Page Tables

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 17

A TLB in the Memory Hierarchy

• A TLB miss – is it a TLB miss or a page fault ?

• If the page is in main memory, then the TLB miss can be
handled (in hardware or software) by loading the translation
information from the page table into the TLB

• Takes 100’s of cycles to find and load the translation info into the TLB

• If the page is not in main memory, then it’s a true page fault
• Takes 1,000,000’s of cycles to service a page fault

CPU
Core

TLB

Lookup
Cache

Main

Memory

VA PA miss

hit

data

Translation

(page table)

hit

miss

¾ t¼ t

HDD

page
fault

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 18

A Typical Memory Hierarchy

Second

Level

Cache

(SRAM)

Control

Datapath

Secondary

Memory

(Disk)

On-Chip Components

R
e

g
F

ile

Main

Memory

(DRAM)D
a

ta

C
a

c
h

e
In

s
tr

C
a

c
h

e

IT
L

B
D

T
L

B

Speed (%cycles): ½’s 1’s 10’s 100’s 1,000’s

Size (bytes): 100’s K’s 10K’s M’s G’s to T’s

Cost: highest lowest

❑ By taking advantage of the principle of locality

Present much memory in the cheapest technology

at the speed of fastest technology

TLB: Translation Lookaside Buffer

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 19

The Hardware/Software Boundary

• What parts of the virtual to physical address translation
is done by or assisted by the hardware?

• Translation Lookaside Buffer (TLB) that caches the recent
translations

• TLB access time is part of the cache hit time

• May cause an extra stage in the pipeline for TLB access

• Page table storage, fault detection and updating

• Page faults result in interrupts (precise) that are then
handled by the OS

• Hardware must support (i.e., update appropriately) Dirty and
Reference bits (e.g., ~LRU) in the Page Tables

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 20

Magnetic Disk （磁気ディスク）

http://sougo057.aicomp.jp/0001.html

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 21

Q3 2022 Hard Drive Failure Rates

Annualized Failure Rate (AFR)

https://www.backblaze.com/blog/backblaze-drive-stats-for-q3-2022/

https://www.backblaze.com/blog/ssd-drive-stats-mid-2022-review/

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 22

エラー，フォールト，故障

• Fault （フォールト，故障）

• 誤りの原因

• Error （エラー，誤り）

• システム内の構成要素の正しくない出力

• Failure （障害）

• システムが正常な動作をしない．コンポーネントやシステムが，期待し
た機能，サービス，結果から逸脱すること．

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 23

RAID: Redundant Array of Inexpensive Disks

• Arrays of small and inexpensive disks

• Increase potential throughput by having many disk drives

• Data is spread over multiple disk

• Multiple accesses are made to several disks at a time

• Reliability is lower than a single disk

• But availability can be improved by adding redundant disks

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 24

RAID: Level 0 (RAID 0, 冗長性なし，ストライピング)

• Multiple smaller disks as opposed to one big disk

• Spreading the blocks over multiple disks – striping – means
that multiple blocks can be accessed in parallel increasing the
performance

• 4 disk system gives four times the throughput of a 1 disk
system

• Same cost as one big disk – assuming 4 small disks cost the
same as one big disk

• No redundancy, so what if one disk fails?

blk1 blk3blk2 blk4

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 25

RAID: Level 1 (Redundancy via Mirroring)

• Uses twice as many disks for redundancy
so there are always two copies of the data

• The number of redundant disks = the number of data disks
so twice the cost of one big disk

• writes have to be made to both sets of disks, so writes
would be only 1/2 the performance of RAID 0

• What if one disk fails?

• If a disk fails, the system just goes to the “mirror” for the
data

blk1.1 blk1.3blk1.2 blk1.4 blk1.1 blk1.2 blk1.3 blk1.4

redundant (check) data

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 26

RAID: Level 0+1 (RAID01, Striping with Mirroring)

• Combines the best of RAID 0 and RAID 1,
data is striped across four disks and mirrored to four disks

• Four times the throughput (due to striping)

• # redundant disks = # of data disks
so twice the cost of one big disk
• writes have to be made to both sets of disks,

so writes would be only 1/2 the performance of RAID 0

• What if one disk fails?

• If a disk fails, the system just goes to the “mirror” for the
data

blk1 blk3blk2 blk4 blk1 blk2 blk3 blk4

redundant (check) data

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 27

RAID: Level 3 (Bit/Byte-Interleaved Parity)

• Cost of higher availability is reduced to 1/N where N is the
number of disks in a protection group

• # redundant disks = 1 × # of protection groups
• writes require writing the new data to the data disk as well as

computing the parity, meaning reading the other disks,
so that the parity disk can be updated

• reads require reading all the operational data disks as well as
the parity disk to calculate the missing data that was stored on
the failed disk

Bit parity disk

blk1 blk2 blk3 blk4

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 28

RAID 3 and parity

• RAID 3
New D1 data

D1 D2 D3 D4 P

D1 D2 D3 D4 P


3 reads and 2 writes
involving all the disks

XOR

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 29

RAID: Level 4 (Block-Interleaved Parity)

• Cost of higher availability still only 1/N but the parity is
stored as blocks associated with sets of data blocks
• Four times the throughput (striping)
• # redundant disks = 1 × # of protection groups
• Supports “small reads” and “small writes”

(reads and writes that go to just one (or a few) data disk in a
protection group)

Block parity disk

blk1 blk2 blk3 blk4

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 30

Small Reads and Small Writes

• RAID 3
New D1 data

D1 D2 D3 D4 P

D1 D2 D3 D4 P


3 reads and 2 writes
involving all the disks

• RAID 4 small reads and small writes

New D1 data
D1 D2 D3 D4 P

D1 D2 D3 D4 P

2 reads and 2 writes
involving just two disks




XOR

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 31

Distributing Parity Blocks

• By distributing parity blocks to all disks, some small writes
can be performed in parallel

1 2 3 4 P0

5 6 7 8 P1

9 10 11 12 P2

13 14 15 16 P3

RAID 4 RAID 5

1 2 3 4 P0

5 6 7 P1 8

9 10 P2 11 12

13 P3 14 15 16

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 32

RAID: Level 5 (Distributed Block-Interleaved Parity)

• Cost of higher availability still only 1/N but the parity block
can be located on any of the disks
so there is no single bottleneck for writes

• Still four times the throughput (striping)

• # redundant disks = 1 × # of protection groups

• Supports “small reads” and “small writes” (reads and writes
that go to just one (or a few) data disk in a protection group)

• Allows multiple simultaneous writes

one of these assigned as the block parity disk

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 33

ACRi Room で利用できる幾つかのソフトウェア

• /tools/cad/bin/simrv

• simrv -a -m main.bin

• simrv –a –t 0 100 –m main.bin

• /tools/cad/riscv/rv32ima/bin/riscv32-unknown-linux-gnu-gcc

• /tools/cad/riscv/rv32ima/bin/riscv32-unknown-linux-gnu-ld

• /tools/cad/riscv/rv32ima/bin/riscv32-unknown-linux-gnu-objdump

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 34

module m_rvcore (RV32I, multi-cycle processor)

• 40MHz operating frequency

• lb, lbu, lh, lhu, sb, sh are not supported, DRAM is not initialized through UART

m_regfile

regfile1

(32bit x 32)

w_rs1

m_imem

imem1

(32bit x 1024)

m_dmem

dmem1

(DRAM)

r_pc

I_
A

D
D

R

32
+

I_
IN

w_rs2

w_rd

w_ma_rd

m_decoder

decoder1

5 w_rrs1

w_rrs2_t
M
u
x

w_rrs2

m
_alu

w_imm_t

w_rslt

m
_b

ru

w_b_rslt

w_mem_adr

D_ADDR

D_IN w_ma_ld_rslt

M
u
x

w_ma_rslt

D_OUT

w_rrs1

w_imm

w_rrs2

w_rrs1

w_rrs2

w_rrs1

w_imm

w_imm

D_WE, D_RE

r_pc

32

5

5

32

32

32

1

32

3232

32

32

32

32

32

m_rvcore

r_state==0 r_state==1

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 35

RISC-V開発のための Tool /SDK, GNU Toolchain

• 準備

• Ubuntu 22.04 server

• 次のコマンドで幾つかのパッケージをインストールする。
• apt -y install autoconf automake autotools-dev curl python3

libmpc-dev libmpfr-dev libgmp-dev gawk build-essential bison
flex texinfo gperf libtool patchutils bc zlib1g-dev
libexpat-dev

• 参考サイト

• https://github.com/riscv-collab/riscv-gnu-toolchain

2022-09

CSC.T363 Computer Architecture, Department of Computer Science, Institute of Science Tokyo 36

RISC-V GNU Toolchain / RV32IMA

$ git clone https://github.com/riscv/riscv-gnu-toolchain
$ cd riscv-gnu-toolchain
$./configure --prefix=/tools/cad/riscv/rv32ima --with-arch=rv32ima --with-abi=ilp32
$ time make –j 4

インストールするフォルダ、命令セット、ABIを指定する。
命令セットには、基本の rv32i と乗除算 m とアトミック命令の a 指定する。

• ビルドとインストール

• Ubuntu 22.04 Server (64-bit)

• 一般ユーザの権限で構築

• Intel Corei9-12900KF を搭載するサーバ計算機で、構築に「12分」程度

• make の –j オプションで利用するコア数を指定する。

