
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 1

Advanced Computer Architecture

Final Report

Ver. 2025-01-30aFiscal Year 2024

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No. W8E-308, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 2

Final report of Advanced Computer Architecture

1. Please submit your final report describing your answers to
all questions in a PDF file
via E-mail (kise [at] c.titech.ac.jp) by February 10, 2025
• E-mail title should be “Report of Advanced Computer

Architecture”

2. Please submit the report in 15 pages or less on A4 size
PDF file, including the cover page.

3. You can discuss it with your colleague, but try to solve the
questions yourself. Enjoy!

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 3

1. Academic paper reading

• Select an academic paper from the list below and

• In your own word, describe the problem that the authors try to solve,

• Describe the key idea of the proposal,

• Describe your opinion why the authors could solve the problem
although there may be many researchers try to solve similar
problems.

• Choose the figure you consider to be the most important in the paper
and explain why.

• List
• Increasing Processor Performance by Implementing Deeper Pipelines, ISCA,2002

• Combining Branch Predictors, WRL TN, 1993

• Prophet/critic hybrid branch prediction, ISCA, 2004

• Focused Value Prediction, ISCA, 2020

• Emulating Optimal Replacement with a Shepherd Cache, MICRO, 2008

• Clockhands: Rename-free Instruction Set Architecture for Out-of-order Processors,
MICRO, 2023

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 4

2. four-stage pipelining processor

• Describe a 4-stage pipelining scalar processor (rvcore_4s) in
Verilog HDL. The report should include the description of module
m_rvcore_4s.

• Verify the described code by compaing vefiry.txt generated by
simulations of rvcore1 and rvcore_4s.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 5

rvcore_4s : 4-stage pipelining processor with data forwarding

• The strategy is to separate the instruction fetch (IF) step, instruction decode (ID) step,
and write back(WB) step, and other (EX, MA) steps. The first stage is named IF. The
second stage is named ID. The third stage is named EX+. The last stage is named WB.

m_regfile

regfile1

(bypass)

w_rs1

m_imem

imem1
r_pc

32

+

w_rs2

w_rslt

5 w_rrs1

w_rrs2_t

w
_

rr
s2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

M
u
x

w_rslt

D_OUT

w_exrrs1

P2_imm

w_exrrs2

w_exrrs1

w_exrrs2

w_exrrs1

w_imm

D_WE

P1_pc

32

5

5

32

32

1

32

32

32

32

32

32

32

w_rd

r_pc

w
_

ir m_alu

alu1

m_bru

bru1

M
u
x

P2_itype[`D_S_TYPE] & P2_v

M
u
x

+ w
_

tk
n
_

p
c

M
u
x

32

+

w_b_rslt

& P2_v

w_imm32

32
4

P
3

_
it

y
p

e[
`D

_
L

D
_

_
IS

]

P2_jalr

w_op_im

w_jalr

w_op_im
w_itype

P2_bru_c

P2_alu_c

w_bru_c
w_alu_c

P1

P3_v

!(w_b_rslt & P2_v)

IF stage ID stage EX+ stage

P3_rd

`S
T

A
R

T
_

P
C

m
_
d
ec

o
d
er

d
ec
o
d
er
1

P2

P1_pc

P1_ir

P1_v

P2_

rrs2

P2_

rrs1

P2_pc

P2_

imm_t

P2_

imm

P2_v

WB stage

P3_

ldd

P3_v

P3

M
u
x

M
u
x

w_exrrs1

w_exrrs2

m_dmem

dmem1

P3_

a_rslt

d
at

a
fo

rw
ar

d
in

g

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 6

four-stage pipelining processor

• login the gateway server of ACRi room with your username

• ssh username@gw.acri.c.titech.ac.jp

• login a compute server of ACRi room, select one among vs100, vs200, vs300, and vs400

• ssh vs300

• copy the project directory to your working directory

• cd

• mkdir –p aca

• cd aca

• cp –r /home/tu_kise/aca/rvcore_2s/ .

• cp –r /home/tu_kise/aca/rvcore_3s/ .

• simulate and test two-stage pipelining processor

• cd rvcore_2s

• make

• make run

• implement your four-stage pipelining processor, simulate it, and vefity it

• cd ~/aca/rvcore_4s

• emacs proc1.v (please use your favorit text editor)

• make

• make run

• diff verify.txt ../rvcore_2s/verify.txt

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 7

3. OoO execution and dynamic scheduling

• Draw the cycle by cycle processing behavior of these 13
instructions

• Modify this dataflow graph by removing two edges of the graph
so that the number of execution cycles is reduced. Draw another
cycle by cycle processing behavior of the modified graph.

75

6

8 103

4
1 2

Dataflow graph

11 12

13

9

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 8

Instruction window Issue Execute Commit

ROB

Retire

Cycle 1

Instruction window Issue Execute Commit

ROB

Retire

Cycle 2

Instruction window Issue Execute Commit

ROB

Retire

Cycle 3

Instruction window Issue Execute Commit

ROB

Retire

Cycle 4

Instruction window Issue Execute Commit

ROB

Retire

Cycle 5

Instruction window Issue Execute Commit

ROB

Retire

Cycle 6

Instruction window Issue Execute Commit

ROB

Retire

Cycle 7

Instruction window Issue Execute Commit

ROB

Retire

Cycle 8

Instruction window Issue Execute Commit

ROB

Retire

Cycle 9

Instruction window Issue Execute Commit

ROB

Retire

Cycle 10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 9

4. Parallel programming

• Adjust the number of elements N so that
this sequential program (main8.c) takes
about 5 second. Use this adjusted value for
N. Use the time command to measure the
execution time.
Please use –O0 optimization flag while
compiling.

• Describe an efficient parallel program for
the sequential program of main8.c using
LOCK, UNLOCK, and BARRIER of pthread
assuming a shared memory architecture of
4 cores.

• Explain why your code runs correctly
and why your code is efficient.

• Show your speedup over the sequential
execution. To measure the execution time,
use a computer with four or more cores.

#include <stdio.h>

#include <math.h>

#define N 30 /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

float diff;

void solve () {

int i, done = 0;

while (!done) {

diff = 0;

for (i=1; i<=N; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

// for (i=0; i<=N+1; i++) printf(" %6.2f", A[i]);

// printf("¥n");

for (i=1; i<=N; i++) A[i] = B[i];

}

}

int main() {

int i;

for (i=1; i<=N; i++) A[i] = 100+i*2;

A[0] = 90;

A[N+1] = 50+N*2;

solve();

for (i=N/2-10; i<=N/2; i++) printf(" %6.3f", B[i]);

printf("¥n diff=%6.3f¥n", diff);

}main8.c

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 10

5. Building blocks for synchronization

• Implement your BARRIER() using some global variables, pthred lock,
and unlock.

• Show your code and explain why your code runs correctly and why your
code is efficient.

• Replace the barrier in the program in Question 4 with your designed
one and measure the speedup over the sequential program.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 11

6. Cache coherence protocols

• Select your favorite commercial Intel or AMD multi-core
processor with more than three cores shipped after 2022

• Describe the memory organization, including caches and
main memory

• cache line size, write policy, write allocate/no-allocate,
direct-mapped/set-associative, the number of caches (L1, L2,
and L3?)

• Describe the cache coherence protocol used there

