
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 1

Advanced Computer Architecture

12. Thread Level Parallelism:
Cache Coherence Protocol

Ver. 2025-01-30aFiscal Year 2024

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No. W8E-308, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 2

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput and low
latency

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization
(lock, unlock, barrier)

Shared memory many-core architecture

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4Proc3

Caches Caches CachesCaches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 3

Four-Way Set Associative Cache

• One word/block, 28 = 256 sets where each with four ways (each with one block)
31 30 . . . 13 12 11 . . . 2 1 0 Byte offset

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

Index DataTagV
0

1

2

.

.

.

253

254

255

8

Index

22Tag

Hit Data

32

4x1 select

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 4

Cache writing policy

• Write-through

• writing is done synchronously both to the cache and to the main
memory. All stores update the main memory and memory bandwidth
becomes a performance bottleneck.

• Write-back

• initially, writing is done only to the cache. The write to the main
memory is postponed until the modified content is about to be
replaced by another cache block.

• reduces the required network and memory bandwidth.

• preferable for manycore.

• we assume the use of write-back

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Shared memory many-core architecture

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 5

Cache coherence problem

• In this example behavior of five events,

• Cores see different values for shared data u after event 3

• With write-back caches, value written back to memory depends on which
cache line flushes or writes back

• main memory may see stale (out-of-date) value for a long time

• Unacceptable for programming, and its frequent!

I/O devices

Main memory

Core
A

$ $ $

Core
B

Core
C

5

u = ?

4

u = ?

u:5

1

u:5

2

u:5

3

u= 7

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 6

Cache coherence problem

• Cores may see different values through their caches

• assuming a write-back cache

• after the value 7 of u has been written by core A,
core A’s cache contains the new value, but core C’s cache and
the main memory do not

55

Core A reads u

Core C reads u

Core A stores 7
into u

Cache contents
for core A

Cache contents
for core C

Main memory
contents for U

7

5

5

5

5

5 5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 7

Cache coherence and enforcing coherence

• Cache coherence
• All reads by any core must return the most recently written

value

• Writes to the same location by any two cores are seen in the
same order by all cores

• Cache coherence protocols
• (1) Snooping (write invalidate / write update)

• Each cache tracks sharing status of each cache line

• (2) Directory based
• Sharing status of each cache line kept in one location

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 8

Snooping coherence protocols using bus network

• Write invalidate
• On write, invalidate all other copies by an invalidate broadcast

• Use bus itself to serialize
• Write cannot complete until bus access is obtained

• Write update

• On write, update all copies

Core A reads u

Core A writes
a 7 to u

Contents of
core A’s cache

Contents of
core B’s cache

Core B reads u

Core B reads u

Contents of
main memory location u

5

5

5

5

5

5 5

7

Cache miss for u

Cache miss for u

Cache miss for u

Invalidation for u 5

7 7 7

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 9

Bus Network

• N cores (), N switch (), 1 link (the bus)

• Only 1 simultaneous transfer at a time

• NB (best case) = link (bus) bandwidth x 1

• BB (worst case) = link (bus) bandwidth x 1

• All processors can snoop the bus

Core or processor node

A B C D E F

A B C D E F

The case where core B sends a packet to someone

Snoop Snoop Snoop Snoop Snoop Snoop

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 10

Bus Network with multiplexer (mux)

C

B

A

D

C

B

A

D

The bus network organization of 4 cores using a 4-input mux.

Snoop

Snoop

Snoop

Snoop

• One N-input multiplexer for N cores

• Arbitration, node ID, centralized control

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 11

Snooping coherence protocols using bus network

• A write invalidate, cache coherence protocol for a private write-back cache
showing the states and state transitions for each block in the cache

Modified

MSI (Modified, Shared, Invalid) protocol

Modified

SI

M

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 12

Cache miss and the addressed block is invalid

• Core A

• Source: Core

• State: Invalid

• Request: Read miss (u)

• Function: Place read miss on bus

Bus

A

I
I
I

B

I
I
I

C

I
I
I

D

I
I
I

Bus

A

u=5S

Source: Core
Request: Read miss (u)

u=5

B

I
I
I

C

I
I
I

D

I
I
I

No action

Snoop Snoop Snoop

load a block from memory

read miss (u)

I
I

No action No action

Source: Core
Request: Read miss (u)

u=5

u=5

Main
memory

Event: Core A reads u

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 13

Cache miss and the addressed block is invalid

• Core B

• Source: Core

• State: Invalid

• Request: Read miss (u)

• Function: Place read miss on bus

Bus

A B

I
I
I

C

I
I
I

D

I
I
I

Bus

A

u=5S

Source: Core
Request: Read miss (u)

u=5

B

I
I

u=5S

C

I
I
I

D

I
I
I

No action

Snoop Snoop Snoop

load a block from memory or allow shared cache to service data

read miss (u)

I
I

No action /
service data No action

u=5S

I
I

Source: Core
Request: Read miss (u)

u=5

place cache
block on bus

u=5

u=5

Event: Core B reads u

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 14

Cache miss and the addressed block is invalid

• Core D

• Source: Core

• State: Invalid

• Request: Read miss (u)

• Function: Place read miss on bus

Bus

A B C

I
I
I

D

I
I
I

Bus

A

u=5S

Source: Core
Request: Read miss (u)

u=5

B

I
I

u=5S

C

I
I
I

D
No action

Snoop Snoop Snoop

read miss (u)

I
I

u=5S

I
I

u=5S

I
I

No action /
service data

I
I

u=5S

Source: Core
Request: Read miss (u)

load a block from memory or allow shared cache to service data

u=5

place cache
block on bus

No action

u=5

u=5

Event: Core D reads u

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 15

Snooping coherence protocols using bus network

• The coherence mechanism of a private cache (using word processor for core).

Coh1

Coh2

Coh3

Coh4

Coh5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 16

Exercise 1

• Coh1 (Core A)

• Source: Core

• State: Shared

• Request: Write hit (u)

• Function: Place invalidate on bus

• Coh3 (Core B, D)

• Source: Bus

• State: Shared

• Request: Invalidate

• Function: attempt to write shared block;
invalidate the block

Bus

A

I
I

u=5S

Source: Core
Request: Write hit (u)

u=7

B

I
I

u=5S

C

I
I
I

D

I
I

u=5S
invalidate Snoop Snoop Snoop

Draw the behavior of this request

u=5

Event:
Core A writes u

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 17

Coherence 1 (Coh1) and Coherence3 (Coh3)

• Coh1 (Core A)

• Source: Core

• State: Shared

• Request: Write hit (u)

• Function: Place invalidate on bus

Bus

A

I
I

u=5S

Source: Core
Request: Write hit (u)

u=7

B

I
I

u=5S

C

I
I
I

D

I
I

u=5S
invalidate

• Coh3 (Core B, D)

• Source: Bus

• State: Shared

• Request: Invalidate

• Function: attempt to write shared block;
invalidate the block

Bus

A

u=7M

Source: Core
Request: Write hit (u)

u=7

B

I
I
I

C

I
I
I

D

I
I
I

invalidate

Source: Bus
Request: Inv.

Source: Bus
Request: Inv.

No action

Snoop Snoop Snoop

I
I

u=5

u=5

Event:
Core A writes u

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 18

Snooping coherence protocols using bus network

Coh1

Coh2

Coh3

Coh4

Coh5

• The coherence mechanism of a private cache (using word processor for core).

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 19

Coherence 2 (Coh2)

• Core C

• Source: Core

• State: Invalid

• Request: Read miss (u)

• Function: Place read miss on bus

• Coh2 (Core A)

• Source: Bus

• State: Modified

• Request: Read miss (u)

• Function: attempt to shared data; place cache
block on bus and change state to shared

Bus

A

I
I

u=7M

Source: Core
Request: Read miss (u)

cache miss

B

I
I
I

C

I
I
I

D

I
I
I

read miss (u)

Bus

A

I
I

u=7S

Source: Core
Request: Read miss (u)

B

I
I
I

C

I
I

u=7S

D

I
I
I

u=7

Source: Bus
Request: Read miss

No action No action

date

Snoop Snoop Snoop

write to the main memory

place cache
block on bus

u=5

u=7

Event:
Core C reads u

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 20

Snooping coherence protocols using bus network

• The coherence mechanism of a private cache

Coh1

Coh2

Coh3

Coh4

Coh5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 21

Coherence 4 (Coh4)

• Core B

• Source: Core

• State: Invalid

• Request: Write miss (u)

• Function: Place write miss on bus

• Coh4 (Core A, C)

• Source: Bus

• State: Shared

• Request: Write miss (u)

• Function: attempt to write shared block;
invalidate the cache block

Bus

A

I
I

u=7S

Source: Core
Request: Write miss

B

I
I
I

C

I
I

u=7S

D

I
I
I

write miss (u)

Bus

A

I
I
I

Source: Core
Request: Write miss

B

I
I

u=9M

C

I
I
I

D

I
I
I

No action

load a block from the main memory or allow shared cache to service data

Source: Bus
Request: Write miss

Source: Bus
Request: Write miss

u=9

u=9

Snoop Snoop Snoop

u=7

u=7

Event:
Core B writes u

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 22

Snooping coherence protocols using bus network

• The coherence mechanism of a private cache

Coh1

Coh2

Coh3

Coh4

Coh5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 23

Snooping coherence protocols using bus network

• A write invalidate, cache coherence protocol for a private write-back cache
showing the states and state transitions for each block in the cache

Modified

MSI (Modified, Shared, Invalid) protocol

Modified

SI

M

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 24

Snooping coherence protocols using bus network

• The basic coherence protocol

• MSI (Modified, Shared, Invalid) protocol

• Extensions

• MESI (Modified, Exclusive, Shared, Invalid) protocol

• MOESI (MESI + Owned) protocol

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 25

Intel Single-Chip Cloud Computer (2009)

• To research multi-core processors and parallel processing.

Intel Single-Chip Cloud Computer (48 Core)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 26

Directory protocols

• Snooping coherence protocols are based on the use of bus
network.
What are the protocols for mesh topology NoC?

• Directory protocols

• A logically-central directory keeps track of where the copies
of each cache block reside.
Caches consult this directory to ensure coherence.

Mesh Network

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 27

Snooping coherence protocol and one with directory

Bus

A

I
I

u=5S

Source: Core
Request: Write hit

u=7

B

I
I

u=5S

C

I
I
I

D

I
I

u=5S
invalidate (broadcast) Snoop Snoop Snoop

A

I
I

u=5S

Source: Core
Request: Write hit

u=7

B

I
I

u=5S

C

I
I
I

D

I
I

u=5S

Shared by A, B, Du

On-Chip Interconnection network

Directory
(hardware close to cache)

(1) Access directory

(2) send invalidate to proper caches

Centralized control

Distributed control

Event:
Core A
writes u

Event:
Core A
writes u

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 28

8

Index

Data (4 word)

Index TagValid

0

1

2

.

.

.

253

254

255

Byte
offset

20

20
Tag

Hit Data

32

Block offset

Two caches of different block sizes

20Tag 10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

20

Data

32

Hit

cache line of one word cache line of four words (multiword block)

• Temporal Locality (Locality in Time):

• Keep most recently accessed data items closer to the processor

• Spatial Locality (Locality in Space)

• Move blocks consisting of contiguous words to the upper levels

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 29

Coherence influences the cache miss rate

• Coherence misses

• True sharing misses

• False sharing misses
• When shared data u and unshared data w are allocated in the same

block, they are both treated as shared data.

u=5S

u=7M

w=6
u=7

u=5S

I

A B

invalidate u

u=5S

u=7M

u=7

u=5S

I

A B

w=6

w=6

invalidate u and w

cache line of one word
cache line of two words (multiword block)
u and w are in the same cache block

w=6S

w=6S

read w, hit read w,
false shaing miss

Senario: A reads u -> B reads u -> B reads w -> A writes u -> B reads w

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 30

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput and low
latency

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization
(lock, unlock, barrier)

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Shared memory many-core architecture

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 31

Snooping coherence protocols using bus network

• A write invalidate, cache coherence protocol for a private write-back cache
showing the states and state transitions for each block in the cache

Modified

MSI (Modified, Shared, Invalid) protocol

Modified

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 32

Snooping coherence protocols using bus network

• The coherence mechanism of a private cache (using word processor for core).

Coh1

Coh2

Coh3

Coh4

Coh5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 33

Orchestration

• LOCK and UNLOCK around critical section

• Lock provides exclusive access to the locked data.

• Set of operations we want to execute atomically

• BARRIER ensures all reach here
float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable in shared memory */

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_barrier_t barrier;

void solve_pp (int pid) {

int i, done = 0; /* private variables */

int mymin = (pid==0) ? 1 : 5; /* private variable */

int mymax = (pid==0) ? 4 : 8; /* private variable */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

pthread_mutex_lock(&m);

diff = diff + mydiff;

pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier); // Barrier 1

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier); // Barrier 2

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

pthread_barrier_wait(&barrier); // Barrier 3

}

}

(1) load diff
(2) add
(3) store diff

These operations must be executed
atomically

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

