
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 1

Advanced Computer Architecture

12. Thread Level Parallelism: 
Cache Coherence Protocol

Ver. 2025-01-30aFiscal Year 2024

Course number: CSC.T433
School of Computing, 
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp 

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No. W8E-308, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10



CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 2

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput and low 
latency 

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware 
mechanism to support thread 
synchronization 
(lock, unlock, barrier)

Shared memory many-core architecture

System
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Main memory (DRAM) I/O

Core Core Core Core
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Four-Way Set Associative Cache

• One word/block, 28 = 256 sets where each with four ways (each with one block)
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Cache writing policy

• Write-through

• writing is done synchronously both to the cache and to the main 
memory. All stores update the main memory and memory bandwidth 
becomes a performance bottleneck.

• Write-back

• initially, writing is done only to the cache. The write to the main 
memory is postponed until the modified content is about to be 
replaced by another cache block.

• reduces the required network and memory bandwidth.

• preferable for manycore.

• we assume the use of write-back

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Shared memory many-core architecture
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Cache coherence problem

• In this example behavior of five events,

• Cores see different values for shared data u after event 3

• With write-back caches, value written back to memory depends on which 
cache line flushes or writes back

• main memory may see stale (out-of-date) value for a long time

• Unacceptable for programming, and its frequent!
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Cache coherence problem

• Cores may see different values through their caches

• assuming a write-back cache

• after the value 7 of u has been written by core A, 
core A’s cache contains the new value, but core C’s cache and 
the main memory do not

55

Core A reads u

Core C reads u

Core A stores 7
into u

Cache contents
for core A

Cache contents
for core C

Main memory
contents for U

7

5

5

5

5

5 5
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Cache coherence and enforcing coherence

• Cache coherence 
• All reads by any core must return the most recently written 

value

• Writes to the same location by any two cores are seen in the 
same order by all cores

• Cache coherence protocols
• (1) Snooping (write invalidate / write update)

• Each cache tracks sharing status of each cache line

• (2) Directory based
• Sharing status of each cache line kept in one location
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Snooping coherence protocols using bus network

• Write invalidate
• On write, invalidate all other copies by an invalidate broadcast

• Use bus itself to serialize
• Write cannot complete until bus access is obtained

• Write update

• On write, update all copies

Core A reads u

Core A writes 
a 7 to u

Contents of 
core A’s cache

Contents of 
core B’s cache

Core B reads u

Core B reads u

Contents of 
main memory location u
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Invalidation for u 5
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Bus Network

• N cores (    ),  N switch  (    ),  1 link (the bus)

• Only 1 simultaneous transfer at a time

• NB (best case) = link (bus) bandwidth x 1

• BB (worst case)  = link (bus) bandwidth x 1

• All processors can snoop the bus

Core or processor node

A B C D E F

A B C D E F

The case where core B sends a packet to someone

Snoop Snoop Snoop Snoop Snoop Snoop



CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 10

Bus Network with multiplexer (mux)

C

B

A

D

C

B

A

D

The bus network organization of 4 cores using a 4-input mux.

Snoop

Snoop

Snoop

Snoop

• One N-input multiplexer for N cores

• Arbitration, node ID, centralized control
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Snooping coherence protocols using bus network

• A write invalidate, cache coherence protocol for a private write-back cache 
showing the states and state transitions for each block in the cache

Modified

MSI (Modified, Shared, Invalid) protocol

Modified

SI

M
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Cache miss and the addressed block is invalid

• Core A 

• Source: Core

• State: Invalid

• Request: Read miss (u)

• Function: Place read miss on bus
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Cache miss and the addressed block is invalid

• Core B

• Source: Core

• State: Invalid

• Request: Read miss (u)

• Function: Place read miss on bus
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Cache miss and the addressed block is invalid

• Core D

• Source: Core

• State: Invalid

• Request: Read miss (u)

• Function: Place read miss on bus
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Snooping coherence protocols using bus network

• The coherence mechanism of a private cache (using word processor for core). 

Coh1

Coh2

Coh3

Coh4

Coh5
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Exercise 1

• Coh1 (Core A)

• Source: Core

• State: Shared

• Request: Write hit (u)

• Function: Place invalidate on bus

• Coh3 (Core B, D)

• Source: Bus

• State: Shared

• Request: Invalidate

• Function: attempt to write shared block; 
invalidate the block

Bus

A

I
I

u=5S

Source: Core
Request: Write hit (u)

u=7

B

I
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u=5S
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I
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invalidate Snoop Snoop Snoop

Draw the behavior of this request

u=5

Event: 
Core A writes u
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Coherence 1 (Coh1) and Coherence3 (Coh3)

• Coh1 (Core A)

• Source: Core

• State: Shared

• Request: Write hit (u)

• Function: Place invalidate on bus

Bus
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Request: Write hit (u)
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• Coh3 (Core B, D)

• Source: Bus

• State: Shared

• Request: Invalidate

• Function: attempt to write shared block; 
invalidate the block
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A

u=7M
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Request: Inv.

Source: Bus
Request: Inv.
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I
I

u=5
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Event: 
Core A writes u
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Snooping coherence protocols using bus network

Coh1

Coh2

Coh3

Coh4

Coh5

• The coherence mechanism of a private cache (using word processor for core). 
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Coherence 2 (Coh2)

• Core C

• Source: Core

• State: Invalid

• Request: Read miss (u)

• Function: Place read miss on bus

• Coh2 (Core A)

• Source: Bus

• State: Modified

• Request: Read miss (u)

• Function: attempt to shared data; place cache 
block on bus and change state to shared
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Event: 
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Snooping coherence protocols using bus network

• The coherence mechanism of a private cache

Coh1

Coh2

Coh3

Coh4

Coh5
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Coherence 4 (Coh4)

• Core B

• Source: Core

• State: Invalid

• Request: Write miss (u)

• Function: Place write miss on bus

• Coh4 (Core A, C)

• Source: Bus

• State: Shared

• Request: Write miss (u)

• Function: attempt to write shared block; 
invalidate the cache block

Bus
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u=7

u=7

Event: 
Core B writes u
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Snooping coherence protocols using bus network

• The coherence mechanism of a private cache

Coh1

Coh2

Coh3

Coh4

Coh5
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Snooping coherence protocols using bus network

• A write invalidate, cache coherence protocol for a private write-back cache 
showing the states and state transitions for each block in the cache

Modified

MSI (Modified, Shared, Invalid) protocol

Modified

SI

M
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Snooping coherence protocols using bus network

• The basic coherence protocol

• MSI (Modified, Shared, Invalid) protocol

• Extensions

• MESI (Modified, Exclusive, Shared, Invalid) protocol

• MOESI (MESI + Owned) protocol
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Intel Single-Chip Cloud Computer (2009)

• To research multi-core processors and parallel processing.

Intel Single-Chip Cloud Computer (48 Core)
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Directory protocols

• Snooping coherence protocols are based on the use of bus 
network. 
What are the protocols for mesh topology NoC? 

• Directory protocols

• A logically-central directory keeps track of where the copies 
of each cache block reside. 
Caches consult this directory to ensure coherence.

Mesh Network
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Snooping coherence protocol and one with directory

Bus

A

I
I

u=5S

Source: Core
Request: Write hit

u=7

B

I
I

u=5S

C

I
I
I

D

I
I

u=5S
invalidate (broadcast) Snoop Snoop Snoop

A

I
I

u=5S

Source: Core
Request: Write hit

u=7

B

I
I

u=5S

C

I
I
I

D

I
I

u=5S

Shared by A, B, Du

On-Chip Interconnection network
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(1) Access directory

(2) send invalidate to proper caches

Centralized control

Distributed control

Event: 
Core A 
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Core A 
writes u
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• Temporal Locality (Locality in Time):

• Keep most recently accessed data items closer to the processor

• Spatial Locality (Locality in Space)

• Move blocks consisting of contiguous words to the upper levels 
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Coherence influences the cache miss rate

• Coherence misses

• True sharing misses

• False sharing misses
• When shared data u and unshared data w are allocated in the same 

block, they are both treated as shared data.

u=5S

u=7M

w=6
u=7

u=5S

I

A B

invalidate u

u=5S

u=7M

u=7

u=5S

I

A B

w=6

w=6

invalidate u and w

cache line of one word
cache line of two words  (multiword block)
u and w are in the same cache block

w=6S

w=6S

read w, hit read w, 
false shaing miss

Senario:  A reads u ->  B reads u ->  B reads w ->  A writes u  -> B reads w 
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Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput and low 
latency 

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware 
mechanism to support thread 
synchronization 
(lock, unlock, barrier)

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Shared memory many-core architecture
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Snooping coherence protocols using bus network

• A write invalidate, cache coherence protocol for a private write-back cache 
showing the states and state transitions for each block in the cache

Modified

MSI (Modified, Shared, Invalid) protocol

Modified
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Snooping coherence protocols using bus network

• The coherence mechanism of a private cache (using word processor for core). 

Coh1

Coh2

Coh3

Coh4

Coh5
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Orchestration 

• LOCK and UNLOCK around critical section

• Lock provides exclusive access to the locked data.

• Set of operations we want to execute atomically

• BARRIER ensures all reach here
float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0;       /* variable  in shared memory */

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_barrier_t barrier;

void solve_pp (int pid) {

int i, done = 0;                    /* private variables */

int mymin = (pid==0) ? 1 : 5;       /* private variable  */

int mymax = (pid==0) ? 4 : 8;       /* private variable  */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

pthread_mutex_lock(&m);

diff = diff + mydiff;

pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier);  // Barrier 1

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier);  // Barrier 2

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

pthread_barrier_wait(&barrier);  // Barrier 3

}

}

(1) load diff
(2) add
(3) store diff

These operations must be executed 
atomically

After all cores update the diff,  
if statement  must be executed. 

if (diff <TOL) done = 1;


