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Key components of many-core processors

« Interconnection network

c M

<

connecting many modules on a chip achieving high throughput and low

latency
ain memory and caches

Caches are used to reduce latency and to lower network traffic
A parallel program has private data and shared data

New issues are cache coherence and memory consistency

* Core

High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization

(lock, unlock, barrier)

System

Chip

Core Core Core Core

Procl Proc2 Proc3 Proc4

¢ [) ¢ [)
Caches Caches Caches Caches
v v v v
| Interconnection network |
) )
\ 4 \ 4
Main memory (DRAM) I/0

Shared memory many-core architecture
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On-Chip Interconnection network requirements X
\

 Connecting many modules on a chip achieving high
throughput and low latency
« Topology
« the number of ports, links, switches (HW resources)
 bus, ring bus, tree, fat-tree, crossbar, mesh, torus
« Circuit switching / packet switching

« Centralized control / distributed control with FIFO and flow
control (scalability)

* Routing
e deadlock free, livelock free
* in-order data delivery / out-of-order delivery
 adaptive routing, XY-dimension order routing

* Network-on-chip (NoC) router architecture
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Performance metrics of interconnection network x
\

* Network cost

* number of links on a switch to connect to the network (plus
one link o connect to the processor)

« width in bits per link, length of link
« Network bandwidth (NB)

 represents the best case

* bandwidth of each link x number of links
« Bisection bandwidth (BB)

* represents the worst case

« divide the machine in two parts, each with half the nodes and
sum the bandwidth of the links that cross the dividing line
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Bus Network

* N cores (
« Only 1simu
« NB (best case) = link (bus) bandwidth x 1

« All processors can snoop the bus

The case where core B sends a packet to someone

<

), N switch (O), 1link (the bus)
taneous transfer at a time

« BB (worst case) = link (bus) bandwidth x 1
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Exercise 1

 Bus Network with multiplexer (mux)
 onhe N-input mux for N cores

« Draw the bus network organization of 4 cores using a 4-
input mux.
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Ring Network x
\

* N cores, N switches, 2 links/switch, N links
« N simultaneous transfers

« NB (best case) = link bandwidth x N

« BB (worst case) = link bandwidth x 2

« Ifalinkis as fast as a bus, the ring is only twice as fast as a bus in the
worst case, but is N times faster in the best case

A S

=

The case where . = 2 L E
A ->F,B->A, C->B, F->D }_L A }_I ﬁ\ il

NS
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Cell Broadband Engine (2005)

« Cell Broadband Engine (2005)
« 8 core (SPE) + 1 core (PPE)
« each SPE has 256KB memory
« PS3, IBM Roadrunner (12k cores)

PlayStation3
from PlaySation.com (Japan)
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BIF Broadband interface
10IF /O interface

Figure 2. Element interconnect bus (EIB).

TEEE Micro, Cell Multiprocessor Communication Network: Built for Speed
Diagram created by IBM to promote the CBEP, ©2005 from WIKIPEDIA
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Intel Xeon Phi (2012)

T e ——— ——

Intel® Xeon Phi™ Coprocessor Block Diagram

PCle I/0

'_.""_']

[
... =

Table 2. Intel® Xeon Phi™ Product Family Specifications

FORM PEAK DOUBLE | PEAK MEMORY INTEL"
PRODUCT FACTOR &, BOARD NUMBER FREQUENCY | PRECISION MEMORY CAPACITY TURBO
NUMBER THERMAL TDP (WATTS) | OF CORES | (GHz) PERFORMANCE | BANDWIDTH | (GB) BOOST
SOLUTION* {GFLOP) (GB/s) TECHNOLOGY
I20P PCle, Passive | 300 57 1.1 1003 240 B MR
3120A PCle, Active | 300 57 11 1003 240 B NY/A
5110P PCle, Passive | 225 &0 1.053 1071 320 B MR
Dense form
51200 factor None | 245 60 1.053 1om 352 8 N/A
7110P PCle, Passive | 300 61 1.238 1208 352 16 Peak turbo
frequency:
7120% FCle, None 300 &1 1.238 1208 352 16 1.33 GHz

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo



Fat Tree (1)

« Trees are good structures. People in CS use them all the
time. Suppose we wanted to make a tree network.

« Any time A wants to send to C, it ties up the upper links, so
that B can't send to D.

* The bisection bandwidth on a tree is horrible - 1 link, at all

times

« The solution is to "thicken' the upper links.
* More links as the tree gets thicker increases the bisection

bandwidth

A

B

C
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Fat Tree i\%

* N cores, log(N-1) x logN switches, 2 up + 4 down = 6
links/switch, N x logN links

* N simultaneous transfers
« NB = link bandwidth x N log N
BB = link bandwidth x 4

DS

N=4 N=38
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Crossbar (Xbar) Network

N
N
N
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cores, N? switches (unidirectional), 2 links/switch,

2 links

simultaneous transfers
NB = link bandwidth x N (best case)
BB = link bandwidth x N (worst case)

91919 [0
91919 9

A 4

91919 19
clclclE

»
)

A

Crossbar telephone exchange &
of1903 for four subscribers
(vertical bars), having four cross-
bar talking circuits (horizontal
bars), and one bar to connect the
operator (T). The lowest cross-bar
connects idle stations to ground to
enable the signaling indicators (F).
The switch is operated manually
with metal pins that create a
connection between the
horizontally and vertically arranged
bars.[1]
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Crossbar (Xbar) Network with mux

—

N N-input multiplexers
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Mesh Network

* N cores, N switches, 5 links/switch

« N simultaneous transfers
NB = link bandwidth x N (best case)
BB = link bandwidth x N2 (worst case)

N =4 N = 16
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2D and 3D Mesh / Torus Network

Torus

16



Intel Single-Chip Cloud Computer (2009)
\

« To research multi-core processors and parallel processing.

Inside the SCC

Dual-core SCDC Tile

L2 Cache

L2 Cache

« 2D mesh network with 256
GB/s bisection bandwidth

* 4 Integrated DDR3 memory
controllers (64GB addressable)
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A many-core architecture
with 2D Mesh NoC

Intel Single-Chip Cloud Computer (48 Core)
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Epiphany-V: A 1024 core 64-bit RISC SoC (2016)

ey,

North IO

RISC -
cpy  NOC

MEMORY

RISC

ac
cPU NOC

MEMORY

Summary of Epiphany-V features:

1024 64-bit RISC processors

64-bit memory architecture

64/32-bit IEEE floating point support

64MB of distributed on-chip memory

1024 programmable 1/0 signals

Three 136-bit wide 2D mesh NOCs

2052 Independent Power Domains

Support for up to 1 billion shared memory processors
Binary compatibility with Epiphany IIT1/IV chips

E L w

RISC

CPU NOC

MEMORY

RISC

CPU NOC

MEMORY

-

Function

Value (mm~2)

Share of Total Die Area

SRAM

Register File

FPU

NOC

10 Logic

“Other” Core Stuft
10 Pads

Always on Logic

62.4
15.1
11.8
12.1
6.5
5.1
3.9
0.66

53.3%
12.9%
10.1%
10.3%
5.6%
4.4%
3.3%
0.6%

Table 5: Epiphany-V Area Breakdown

Custom ISA extensions for deep learning, communication, and cryptography
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Intel Skylake-X, Core i9-7980XE (2017)

« 18 core
« 2D mesh topology

(-

CORE i9

X-series
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Intel Xeon Scalable Processor

New Mesh Interconnect Architecture

Broadwell EX 24-core die Skylake-SP 28-core die

2% UPI x20 PCle* x16 %16 <g Ix UPIx20
PCle x16
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SKX Core SKX Core | | SKX Core

Core

CHA/SF/LLC

=
SKX Core SKX Core | | SKX Core SKX Core | | SKX Core

SKX Core

CHA - Caching and Home Agent ; SF - Snoop Filter; LLC - Last Level Cache;
SKX Core- Skylake Server Core; UPI - Intel® UltraPath Interconnect

Content Under Embargo Until 1:00 PM PST June 15, 2017

Intel Press Workshops — June 2017
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Bus vs. Networks on Chip (NoC) of mesh topology
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Typical NoC architecture of mesh topology
D, —— _— .y, ——— — \

« NoC requirements: low latency, high throughput, low cost

* Packet based data transmission via NoC routers and
XY-dimension order routing

PM PM PM PM
0,3 1,3 2,3

Packet
(tag + data)




Packet organization (Flit encoding) X
\

A flit (flow control unit or flow control digit) is a link-level
atomic piece that forms a network packet.

A packet has one head flit and some body flits.
For simplicity, assume that a packet has only one flit.
Later we see a packet which has some flits.
Each flit has typical three fields:
Payload (data)
Route information Packet (fag + data)
Virtual channel identifier (VC)

Flit Route info VC Payload
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Packet organization (Flit encoding)

A
A flit (flow control unit or flow control digit) is a link-level %%

atomic piece that forms a network packet.

A packet has one head flit and some body flits.
Each flit has typical three fields:

payload(data) or route information(tag)
flit type : head, body, tail, etc.

virtual channel identifier

Head flit VC | Type

Route info

Body flit | VC | Type

Payload

Head and body flit formats

Af_a'

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Packet (tag + a‘ra)
Head flit
Body flit
Body flit fi{ |1/
Tail flit [N/
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Routing
T

Y

—

e —

« XY dimension order routing (DOR), and YX DOR

51

D2

52

| PP

53
Y
Y Dl D3
X (a) XY routing

Dl D3

(b) Y X routing
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Simple NoC router architecture

« Routing computation for XY-dimension order

Node (3, 3) N
Flit Route info "/ Payload Packet from
node (1, 3) to
node (3, 1) PM
N (Y-) Node (3, 3) N (Y-)
E (X+) E (X+)
S (Y+) S (Y+) (
| x BB
W (X-) dest (3,1) W (X-) 1 22 8
on on B [BIlaiE
(Module) (Module) § = - -
PM ] [ PM PM PM
0,0 L1, 0 2.0 3,0

@’ NoC router
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Simple NoC router architecture
e — —_— .y,

 Buffering and arbitration
 time stamp based, round robin, etc.

N (Y-) FIFO N (Y-)
(T \

E (X+) E (X+)

S (Y+

2 T X

W (X-)
EEEN

PM

(Module)

@’ NoC router
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Simple NoC router architecture

« Flow control (back pressure)

« When the destination router's input buffer
is full, the packet cannot be sent.

N (Y-) N (¥-)
(T 111 >
E (X+) E (X+)
[T 1T >
S (Y+) S (Y+) N (¥-)
[T TT1 X TTTH—
/ FIFO full?
W (X-) W (X-)
HEEN
PM PM
(Module) (Module)

South router

@’ NoC router
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo



Simple NoC router architecture

« Problem: Head-of-line (HOL) blocking
« The first (head) packet in the same buffer

blocks the movement of subsequent packets.

N (Y-)

(TTT]

N (Y-)

E (X+)

S (Y+)

E (X+)

W (X-)

S (Y+)

N (Y-)

W (X-)

PM
(Module)

FIFO

PM
(Module)
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Two (physical) networks to mitigate HOL ?

N (Y-)

E (X+)

S (Y+)

W (X-)

PM

(Module

HOL blocking

— (- - -

B iy MR
N o g
i iy R
D T

N (Y-)

E (X+)

S (Y+)

FIFO full

W (X-)

PM

Simple NoC router
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N (Y-)

E (X+)

S (Y+)

W (X-)
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Datapath of Virtual Channel (VC) NoC router

« To mitigate head-of-line (HOL) blocking, virtual channels are used

N (Y-) N (¥-)
— (T — =
X
E (X+) E (X+)
—{ [T }F— -
S (Y+) S (¥+)
[ TTTF—— f--Fom
) FIFO full
. /
W (X) HOL blicl«f% I, W (>:<-)
PM PM
(Module) (Module)
—{ [T [ }F— -

<

Simple NoC router

Flit

Route info Ve

Payload

N (Y-)

(T vCco
vel
[T T T

E (X+)

I:l:l:l:‘ vca2

S (Y+)

W (X-)

PM
(Module)

——

N (Y-)

E (X+)

S (Y+)

—_

FIFO full

W (X-)

PM

(Module)

VC NoC router
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Bus vs. Networks on Chip (NoC) of mesh topology

\ m = ———

To mitigate
head-of-line (HOL) blocking

Virtual Channel
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Pipelining the NoC router microarchitecture

Af_a'

“A Delay Model and Speculative Architecture for Pipelined Routers,” L. S. Peh and W. J. Dally,
Proc. of the 7th Int'| Symposium on High Performance Computer Architecture, January, 2001.
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Typical NoC architecture of mesh topology
D, —— _— .y, ——— — \

« NoC requirements: low latency, high throughput, low cost

* Packet based data transmission via NoC routers and
XY-dimension order routing

PM PM PM PM
0,3 1,3 2,3

Packet
(tag + data)




Bus vs. Networks on Chip (NoC) of mesh topology

Distributed system

[ITTT]
FIFO

K CSC.T433 Advanced Computer Architecture,

‘_—\ e — iy,

intersection
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Average packet latency of mesh NoCs

« b stage router pipeline
« Uniform traffic (destination nodes are selected randomly)

Saturation
200 1 XY 800
-%-YX
150 4 -*-LEF 600

—— LEF++

Avg. packet latency (cycles)
=
=

Avg. packet latency (cycles)
b

30 A 200 -
D T I T T 1 U T T T T 1
0.00 007 0.14 021 028 035 0.00 0.0 002 003 004 0.05
Injection rate (flits/node/cycle) Injection rate (flits/node/cycle)
(a) Average packet latency under uniform traffic (a) Average packet latency under uniform traffic
8x8 NoC 64x64 NoC (4096 nodes)
@ Thiem Van Chu, Myeonggu Kang, Shi FA and Kenji Kise: Enhanced Long Edge First Routing Algorithm and Evaluation in Large-Scale Networks-on-Chip,
IEEE 11th International Symposium on Embedded Multicore/Many-core Systems-on-Chip, (September 2017).
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On-Chip Interconnection network requirements X
\

 Connecting many modules on a chip achieving high
throughput and low latency
« Topology
« the number of ports, links, switches (HW resources)
 bus, ring bus, tree, fat-tree, crossbar, mesh, torus
« Circuit switching / packet switching

« Centralized control / distributed control with FIFO and flow
control (scalability)

* Routing
e deadlock free, livelock free
* in-order data delivery / out-of-order delivery
 adaptive routing, XY-dimension order routing

* Network-on-chip (NoC) router architecture
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Key components of many-core processors

« Interconnection network

<

connecting many modules on a chip achieving high throughput and low

latency

New issues are cache coherence

System

Chip

Core

Core

Core

Core

Procl

Proc2

Proc3

Proc4

¢ [} ¢ [}
Caches Caches Caches Caches
v v v v
[ Interconnection network |
) )
\ 4 \ 4
Main memory (DRAM) I/0

Shared memory many-core architecture
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Bus Network with multiplexer (mux)

* One N-input multiplexer for N cores
* Arbitration, node ID, centralized control

<

A

q L 4

VVYVYY

D

The bus network organization of 4 cores using a 4-input mux.
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