Fiscal Year 2024

Ver. 2025-01-27a

Course number: CSC.T433 School of Computing, Graduate major in Computer Science

Advanced Computer Architecture

11. Thread Level Parallelism: On-Chip Interconnection Network

www.arch.cs.titech.ac.jp/lecture/ACA/ Room No. W8E-308, Lecture (Face-to-face) Mon 13:30-15:10, Thr 13:30-15:10

Kenji Kise, Department of Computer Science kise _at_ c.titech.ac.jp

Key components of many-core processors

- Interconnection network
 - connecting many modules on a chip achieving high throughput and low latency
- Main memory and caches
 - Caches are used to reduce latency and to lower network traffic
 - A parallel program has private data and shared data
 - New issues are cache coherence and memory consistency
- Core
 - High-performance superscalar processor providing a hardware mechanism to support thread synchronization (lock, unlock, barrier)

Shared memory many-core architecture

Key components of many-core processors

- Interconnection network
 - connecting many modules on a chip achieving high throughput and low latency
- Main memory and caches
 - Caches are used to reduce latency and to lower network traffic
 - A parallel program has private data and shared data
 - New issues are cache coherence and memory consistency
- Core
 - High-performance superscalar processor providing a hardware mechanism to support thread synchronization (lock, unlock, barrier)

Shared memory many-core architecture

On-Chip Interconnection network requirements

- Connecting many modules on a chip achieving high throughput and low latency
 - Topology
 - the number of ports, links, switches (HW resources)
 - bus, ring bus, tree, fat-tree, crossbar, mesh, torus
 - Circuit switching / packet switching
 - Centralized control / distributed control with FIFO and flow control (scalability)
 - Routing
 - deadlock free, livelock free
 - in-order data delivery / out-of-order delivery
 - adaptive routing, XY-dimension order routing
 - Network-on-chip (NoC) router architecture

Performance metrics of interconnection network

- Network cost
 - number of links on a switch to connect to the network (plus one link to connect to the processor)
 - width in bits per link, length of link
- Network bandwidth (NB)
 - represents the best case
 - bandwidth of each link x number of links
- Bisection bandwidth (BB)
 - represents the worst case
 - divide the machine in two parts, each with half the nodes and sum the bandwidth of the links that cross the dividing line

Bus Network

- N cores (), N switch (), 1 link (the bus)
- Only 1 simultaneous transfer at a time
 - NB (best case) = link (bus) bandwidth x 1
 - BB (worst case) = link (bus) bandwidth x 1
- All processors can snoop the bus

The case where core B sends a packet to someone

Exercise 1

- Bus Network with multiplexer (mux)
- one N-input mux for N cores
- Draw the bus network organization of 4 cores using a 4input mux.

Ring Network

- N cores, N switches, 2 links/switch, N links
- N simultaneous transfers
 - NB (best case) = link bandwidth x N
 - BB (worst case) = link bandwidth x 2
- If a link is as fast as a bus, the ring is only twice as fast as a bus in the worst case, but is N times faster in the best case

Cell Broadband Engine (2005)

- Cell Broadband Engine (2005)
 - 8 core (SPE) + 1 core (PPE)
 - each SPE has 256KB memory
 - PS3, IBM Roadrunner (12k cores)

PlayStation3 from PlaySation.com (Japan)

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed

Diagram created by IBM to promote the CBEP, ©2005 from WIKIPEDIA

Intel Xeon Phi (2012)

Table 2. Intel® Xeon Phi[™] Product Family Specifications

MEMORY FORM PEAK DOUBLE PEAK INTEL* CAPACITY FREQUENCY PRODUCT FACTOR &, MEMORY TURBO BOARD NUMBER PRECISION (GB) NUMBER THERMAL TDP (WATTS) OF CORES (GHz) PERFORMANCE BANDWIDTH BOOST SOLUTION⁴ (GFLOP) (GB/s) TECHNOLOGY 57 3120P 1.1 N/A PCIe, Passive 300 1003 240 6 57 300 6 N/A 3120A PCIe, Active 1.1 1003 240 PCIe, Passive 225 60 1.053 320 5110P 1011 8 N/A Dense form 245 60 N/A 5120D 1.053 1011 352 8 factor, None Peak turbo 7110P PCIe, Passive 300 61 1.238 1208 352 16 frequency: 61 7120X PCIe, None 300 1.238 1208 352 16 1.33 GHz

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Intel[®] Xeon Phi[™] Coprocessor Block Diagram

Fat Tree (1)

- Trees are good structures. People in CS use them all the time. Suppose we wanted to make a tree network.
- Any time A wants to send to C, it ties up the upper links, so that B can't send to D.
 - The bisection bandwidth on a tree is horrible 1 link, at all times
- The solution is to 'thicken' the upper links.
 - More links as the tree gets thicker increases the bisection bandwidth

Fat Tree

- N cores, log(N-1) x logN switches, 2 up + 4 down = 6 links/switch, N x logN links
- N simultaneous transfers
 - NB = link bandwidth $x N \log N$
 - BB = link bandwidth x 4

Crossbar (Xbar) Network

- N cores, N² switches (unidirectional), 2 links/switch, N² links
- N simultaneous transfers
 - NB = link bandwidth $\times N$ (best case)
 - BB = link bandwidth x N (worst case)

Crossbar (Xbar) Network with mux

• N N-input multiplexers

Mesh Network

- N cores, N switches, 5 links/switch
- N simultaneous transfers
 - NB = link bandwidth x N (best case)
 - BB = link bandwidth $\times N^{1/2}$ (worst case)

2D and 3D Mesh / Torus Network

Intel Single-Chip Cloud Computer (2009)

• To research multi-core processors and parallel processing.

A many-core architecture with 2D Mesh NoC

Intel Single-Chip Cloud Computer (48 Core)

Epiphany-V: A 1024 core 64-bit RISC SoC (2016)

RISC CPU NOC

MEMORY

NOC

Summary of Epiphany-V features:

- 1024 64-bit RISC processors
- 64-bit memory architecture
- 64/32-bit IEEE floating point support
- 64MB of distributed on-chip memory
- 1024 programmable I/O signals
- Three 136-bit wide 2D mesh NOCs
- 2052 Independent Power Domains
- Support for up to 1 billion shared memory processors
- Binary compatibility with Epiphany III/IV chips

South IO

• Custom ISA extensions for deep learning, communication, and cryptography

Function	Value (mm^2)	Share of Total Die Area
SRAM	62.4	53.3%
Register File	15.1	12.9%
FPU	11.8	10.1%
NOC	12.1	10.3%
IO Logic	6.5	5.6%
"Other" Core Stuff	5.1	4.4%
IO Pads	3.9	3.3%
Always on Logic	0.66	0.6%

Intel Skylake-X, Core i9-7980XE (2017)

- 18 core
- 2D mesh topology

Intel Xeon Scalable Processor

[his slide under embargo until 1:00 PM PDT June 15, 201]

New Mesh Interconnect Architecture

Broadwell EX 24-core die

Skylake-SP 28-core die

2x UPI x 20	PCle* x16	PCle x16 DMI x 4 CBDMA	On Pkg PCle x16	1x UPI x 20	PCIe x16
CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC
SKX Core	SKX Core	SKX Core	SKX Core	SKX Core	SKX Core
DDR4 NC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	MC DDR4
DDR 4	SKX Core	SKX Core	SKX Core	SKX Core	DDR4
CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC
SKX Core	SKX Core	SKX Core	SKX Core	SKX Core	SKX Core
CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC
SKX Core	SKX Core	SKX Core	SKX Core	SKX Core	SKX Core
CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC
SKX Core	SKX Core	SKX Core	SKX Core	SKX Core	SKX Core

CHA – Caching and Home Agent ; SF – Snoop Filter; LLC – Last Level Cache; SKX Core – Skylake Server Core; UPI – Intel® UltraPath Interconnect

MESH IMPROVES SCALABILITY WITH HIGHER BANDWIDTH AND REDUCED LATENCIES

Intel Press Workshops - June 2017

Content Under Embargo Until 1:00 PM PST June 15, 2017

Bus vs. Networks on Chip (NoC) of mesh topology

intersection

Typical NoC architecture of mesh topology

- NoC requirements: low latency, high throughput, low cost
- Packet based data transmission via NoC routers and XY-dimension order routing

Packet organization (Flit encoding)

- A flit (flow control unit or flow control digit) is a link-level atomic piece that forms a network packet.
 - A packet has one head flit and some body flits.
- For simplicity, assume that a packet has only one flit.
 - Later we see a packet which has some flits.
- Each flit has typical three fields:
 - Payload (data)
 - Route information
 - Virtual channel identifier (VC)

Flit Route info VC Payload

Packet organization (Flit encoding)

- A flit (flow control unit or flow control digit) is a link-level atomic piece that forms a network packet.
 - A packet has one head flit and some body flits.
- Each flit has typical three fields:
 - payload(data) or route information(tag)
 - flit type : head, body, tail, etc.
 - virtual channel identifier

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Packet (tag + data)

• XY dimension order routing (DOR), and YX DOR

• Routing computation for XY-dimension order

• Buffering and arbitration

NoC router

time stamp based, round robin, etc.

W

- Flow control (back pressure)
 - When the destination router's input buffer is full, the packet cannot be sent.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Ν

PM

- Problem: Head-of-line (HOL) blocking
 - The first (head) packet in the same buffer blocks the movement of subsequent packets.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Ν

PM

Two (physical) networks to mitigate HOL?

Datapath of Virtual Channel (VC) NoC router

• To mitigate head-of-line (HOL) blocking, virtual channels are used

Bus vs. Networks on Chip (NoC) of mesh topology

To mitigate head-of-line (HOL) blocking

Virtual Channel

Pipelining the NoC router microarchitecture

Typical NoC architecture of mesh topology

- NoC requirements: low latency, high throughput, low cost
- Packet based data transmission via NoC routers and XY-dimension order routing

Bus vs. Networks on Chip (NoC) of mesh topology

Distributed system

Packet (tag + data)

intersection

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

FIFO

Average packet latency of mesh NoCs

- 5 stage router pipeline
- Uniform traffic (destination nodes are selected randomly)

On-Chip Interconnection network requirements

- Connecting many modules on a chip achieving high throughput and low latency
 - Topology
 - the number of ports, links, switches (HW resources)
 - bus, ring bus, tree, fat-tree, crossbar, mesh, torus
 - Circuit switching / packet switching
 - Centralized control / distributed control with FIFO and flow control (scalability)
 - Routing
 - deadlock free, livelock free
 - in-order data delivery / out-of-order delivery
 - adaptive routing, XY-dimension order routing
 - Network-on-chip (NoC) router architecture

Key components of many-core processors

- Interconnection network
 - connecting many modules on a chip achieving high throughput and low latency
- Main memory and caches
 - Caches are used to reduce latency and to lower network traffic
 - A parallel program has private data and shared data
 - New issues are cache coherence and memory consistency
- Core
 - High-performance superscalar processor providing a hardware mechanism to support thread synchronization (lock, unlock, barrier)

Shared memory many-core architecture

Bus Network with multiplexer (mux)

- One N-input multiplexer for N cores
- Arbitration, node ID, centralized control

