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Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput and low 
latency 

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware 
mechanism to support thread 
synchronization 
(lock, unlock, barrier)

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Shared memory many-core architecture
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On-Chip Interconnection network requirements 

• Connecting many modules on a chip achieving high 
throughput and low latency 
• Topology

• the number of ports, links, switches (HW resources)

• bus, ring bus, tree, fat-tree, crossbar, mesh, torus

• Circuit switching / packet switching
• Centralized control / distributed control with FIFO and flow 

control (scalability)

• Routing
• deadlock free, livelock free

• in-order data delivery / out-of-order delivery

• adaptive routing, XY-dimension order routing

• Network-on-chip (NoC) router architecture
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Performance metrics of interconnection network 

• Network cost
• number of links on a switch to connect to the network (plus 

one link to connect to the processor)

• width in bits per link, length of link

• Network bandwidth (NB) 
• represents the best case

• bandwidth of each link x number of links

• Bisection bandwidth (BB)
• represents the worst case

• divide the machine in two parts, each with half the nodes and 
sum the bandwidth of the links that cross the dividing line
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Bus Network

• N cores (    ),  N switch  (    ),  1 link (the bus)

• Only 1 simultaneous transfer at a time

• NB (best case) = link (bus) bandwidth x 1

• BB (worst case)  = link (bus) bandwidth x 1

• All processors can snoop the bus

Core or 
processor node

A B C D E F

A B C D E F

The case where core B sends a packet to someone
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Exercise 1

• Bus Network with multiplexer (mux)

• one N-input mux for N cores

• Draw the bus network organization of 4 cores using a 4-
input mux.
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Ring Network

• N cores, N switches, 2 links/switch, N links

• N simultaneous transfers

• NB (best case) = link bandwidth x N

• BB (worst case) = link bandwidth x 2

• If a link is as fast as a bus, the ring is only twice as fast as a bus in the 
worst case, but is N times faster in the best case

A B C E FD

A B C E FD
The case where
A -> F, B->A, C->B, F->D
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Cell Broadband Engine (2005)

• Cell Broadband Engine (2005)
• 8 core (SPE) + 1 core (PPE)

• each SPE has 256KB memory

• PS3, IBM Roadrunner (12k cores)

Diagram created by IBM to promote the CBEP, ©2005 from WIKIPEDIA

PlayStation3
from PlaySation.com (Japan)

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed
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Intel Xeon Phi (2012)
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Fat Tree (1)

• Trees are good structures. People in CS use them all the 
time. Suppose we wanted to make a tree network.

• Any time A wants to send to C, it ties up the upper links, so 
that B can't send to D. 

• The bisection bandwidth on a tree is horrible - 1 link, at all 
times

• The solution is to 'thicken' the upper links. 

• More links as the tree gets thicker increases the bisection 
bandwidth

C DA B

N = 4
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Fat Tree

• N cores, log(N-1) x logN switches, 2 up + 4 down = 6 
links/switch, N x logN links

• N simultaneous transfers

• NB = link bandwidth x N log N

• BB = link bandwidth x 4

N = 4 N = 8



CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 13

Crossbar (Xbar) Network

• N cores, N2 switches (unidirectional), 2 links/switch, 
N2 links

• N simultaneous transfers

• NB = link bandwidth x N (best case)

• BB = link bandwidth x N (worst case)

D

C

B

A

Wikipedia
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Crossbar (Xbar) Network with mux

C

B

A

A symbol of XbarD

C

B

A

D

• N N-input multiplexers 
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Mesh Network

• N cores, N switches, 5 links/switch

• N simultaneous transfers

• NB = link bandwidth x N (best case)

• BB = link bandwidth x N1/2 (worst case)

N = 16N = 4



CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 16

2D and 3D Mesh / Torus Network

2D Mesh

Torus3D Mesh
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Intel Single-Chip Cloud Computer (2009)

• To research multi-core processors and parallel processing.

Intel Single-Chip Cloud Computer (48 Core)
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Epiphany-V: A 1024 core 64-bit RISC SoC (2016)
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Intel Skylake-X, Core i9-7980XE (2017)

• 18 core

• 2D mesh topology
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Intel Xeon Scalable Processor
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Bus vs. Networks on Chip (NoC) of mesh topology

intersection
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Typical NoC architecture of mesh topology

• NoC requirements: low latency, high throughput, low cost

• Packet based data transmission via NoC routers and 
XY-dimension order routing

PM: Processing Module or Core,  
R: Router
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Packet organization (Flit encoding)

• A flit (flow control unit or flow control digit) is a link-level 
atomic piece that forms a network packet. 

• A packet has one head flit and some body flits.

• For simplicity, assume that a packet has only one flit.

• Later we see a packet which has some flits.

• Each flit has typical three fields:

• Payload (data)

• Route information

• Virtual channel identifier (VC)

VCRoute infoFlit Payload

Packet (tag + data)
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Packet organization (Flit encoding)

• A flit (flow control unit or flow control digit) is a link-level 
atomic piece that forms a network packet. 

• A packet has one head flit and some body flits.

• Each flit has typical three fields:

• payload(data) or route information(tag)

• flit type : head, body, tail, etc.

• virtual channel identifier

VC Type Route info

VC Type Payload

Head flit

Body flit

Head and body flit formats

Packet (tag + data)

Head flit

Body flit

Body flit

Body flit

Head flit

Body flit

Body flit

Tail  flit
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Routing

• XY dimension order routing (DOR), and YX DOR

x

y
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Simple NoC router architecture

• Routing computation for XY-dimension order
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node (3, 1)
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Node (3, 3)

dest (3, 1)
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Simple NoC router architecture

• Buffering and arbitration
• time stamp based, round robin, etc.
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Simple NoC router architecture

• Flow control (back pressure)
• When the destination router's input buffer 

is full, the packet cannot be sent.
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Simple NoC router architecture

• Problem: Head-of-line (HOL) blocking
• The first (head) packet in the same buffer 

blocks the movement of subsequent packets.
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Two (physical) networks to mitigate HOL ?

Simple NoC router
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Datapath of Virtual Channel (VC) NoC router

• To mitigate head-of-line (HOL) blocking, virtual channels are used
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Bus vs. Networks on Chip (NoC) of mesh topology

Virtual Channel

To mitigate 
head-of-line (HOL) blocking
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Pipelining the NoC router microarchitecture
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“A Delay Model and Speculative Architecture for Pipelined Routers,” L. S. Peh and W. J. Dally,
Proc. of the 7th Int’l Symposium on High Performance Computer Architecture, January, 2001.
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Typical NoC architecture of mesh topology

• NoC requirements: low latency, high throughput, low cost

• Packet based data transmission via NoC routers and 
XY-dimension order routing
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Bus vs. Networks on Chip (NoC) of mesh topology

FIFO

Packet
(tag + data)

Distributed system

intersection
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Average packet latency of mesh NoCs

• 5 stage router pipeline

• Uniform traffic (destination nodes are selected randomly)

8x8 NoC 64x64 NoC (4096 nodes)

Thiem Van Chu, Myeonggu Kang, Shi FA and Kenji Kise: Enhanced Long Edge First Routing Algorithm and Evaluation in Large-Scale Networks-on-Chip, 
IEEE 11th International Symposium on Embedded Multicore/Many-core Systems-on-Chip, (September 2017).

Saturation
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On-Chip Interconnection network requirements 

• Connecting many modules on a chip achieving high 
throughput and low latency 
• Topology

• the number of ports, links, switches (HW resources)

• bus, ring bus, tree, fat-tree, crossbar, mesh, torus

• Circuit switching / packet switching
• Centralized control / distributed control with FIFO and flow 

control (scalability)

• Routing
• deadlock free, livelock free

• in-order data delivery / out-of-order delivery

• adaptive routing, XY-dimension order routing

• Network-on-chip (NoC) router architecture
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Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput and low 
latency 

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware 
mechanism to support thread 
synchronization 
(lock, unlock, barrier)
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Bus Network with multiplexer (mux)

C

B

A

D

C

B

A

D

• One N-input multiplexer for N cores

• Arbitration, node ID, centralized control

The bus network organization of 4 cores using a 4-input mux.


