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From multi-core era to many-core era

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005
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Intel Sandy Bridge, January 2011

• 4 to 8 core
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Intel Skylake-X, Core i9-7980XE, 2017

• 18 core
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2021.11 Intel Alder Lake processor
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2022.11 AMD EPYC 9654 processor with 96 cores
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Distributed Memory Multi-Processor Architecture

• A PC cluster or parallel computers for higher performance

• Each memory module is associated with a processor

• Using explicit send and receive functions (message passing) to obtain the data 
required.

• Who will send and receive data? How?
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Cell Broadband Engine (2005)

• Cell Broadband Engine (2005)
• 8 core (SPE) + 1 core (PPE)

• each SPE has 256KB local memory

• PS3, IBM Roadrunner(12k)

Diagram created by IBM to promote the CBEP, ©2005 from WIKIPEDIA

PlayStation3 の写真は
PlaySation.com (Japan) から

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed
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Shared Memory Multi-Processor Architecture

• All the processors can access the same address space of the main memory 
(shared memory) through an interconnection network.

• The shared memory or shared address space (SAS) is used as a means for 
communication between the processors.

• What are the means to obtain the shared data?

• What are the advantages and disadvantages of shared memory?
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System

Chip

Shared memory many-core architecture

• The single-chip integrates many cores (conventional processors) and an 
interconnection network.

• The shared memory or shared address space (SAS) is used as a means 
for communication between the processors.

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core
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Intel Skylake-X, Core i9-7980XE, 2017
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The free lunch is over

• Programmers have to worry much about performance and concurrency

• Parallel programming & multi-processor (multi-core) architectures

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005
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Growth in clock rate F of microprocessors

From CAQA 5th edition

Intel 4004 clocked at 740KHz in 1971
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Instruction window

Multiprogramming

• Several independent programs (processes) run at the same time.
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Instruction window

Parallel programming

• Several dependent threads run at the same time on a multi-processor 
(many-core) system.
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Program, process, and thread

• A process is an instance of a program that is being executed whereas a thread is part of 
a process.

• A process can have more than one thread. All the threads within one process are 
interrelated to each other. Threads have some common information, such as code 
segment, data segment, heap, etc., that is shared to their threads. But contains its own 
stack and registers (PC and x0 – x32 registers).

https://zenn.dev/farstep/articles/process-thread-difference

thread

thread thread
Multiprogramming

Parallel programming
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Sample of a wrong parallel program using pthread

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a=a+1; }

};

int func2(){

int i;

for(i=0; i<N; i++){ a=a+1; }

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, 

(void *)func1, NULL);

pthread_create(&t2, NULL, 

(void *)func2, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a=a+1; }

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL,

(void *)func1, NULL);

pthread_create(&t2, NULL, 

(void *)func1, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

% gcc main1.c –O0 –lpthread –lm –o a.out1 
% ./a.out1
main: 20000000

#include <stdio.h>

#include <pthread.h>

#define N 10000000

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a=a+1; }

};

int func2(){

int i;

for(i=0; i<N; i++){ a=a+1; }

};

int main(){

func1();

func2();

printf("main: %d¥n", a);

return 0;

}

main1.c
sequential program

main2.c
parallel program with func1 and func2

main3.c
parallel program with func1

Single Program Multiple Data (SPMD)
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Sample of some parallel programs using pthread

% gcc main1.c –O0 –lpthread –lm –o a.out1 
% ./a.out1
main: 20000000

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

int func1(){

int i;

for(i=0; i<N; i++){ 

pthread_mutex_lock(&m);

a=a+1; 

pthread_mutex_unlock(&m);

}

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, 

(void *)func1, NULL);

pthread_create(&t2, NULL, 

(void *)func1, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

main4.c
parallel program with func1, lock, and unlock

main1.c
sequential program

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a=a+1; }

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL,

(void *)func1, NULL);

pthread_create(&t2, NULL, 

(void *)func1, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

main3.c
parallel program with func1

#include <stdio.h>

#include <pthread.h>

#define N 10000000

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a=a+1; }

};

int func2(){

int i;

for(i=0; i<N; i++){ a=a+1; }

};

int main(){

func1();

func2();

printf("main: %d¥n", a);

return 0;

}
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Sample of some parallel programs using pthread

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

int func1(){

int i;

for(i=0; i<N; i++){ 

pthread_mutex_lock(&m);

a=a+1; 

pthread_mutex_unlock(&m);

}

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, 

(void *)func1, NULL);

pthread_create(&t2, NULL, 

(void *)func1, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

main4.c
parallel program with func1, lock, and unlock

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

int func1(){

int i;

int my_a = 0;

for(i=0; i<N; i++){ 

my_a=my_a+1; 

}

pthread_mutex_lock(&m);

a = a + my_a; 

pthread_mutex_unlock(&m);

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, 

(void *)func1, NULL);

pthread_create(&t2, NULL, 

(void *)func1, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

main5.c : parallel program with func1, local sum, lock, and unlock



CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 19

Four steps in creating a parallel program

1. Decomposition of computation in tasks

2. Assignment of tasks to processes

3. Orchestration of data access, comm, synch.

4. Mapping processes to processors (cores)

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program
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s
s
i
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n
m
e
n
t
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c
o
m
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i
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n
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g
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t
r
a
t
i
o
n

Adapted from Parallel Computer Architecture, David E. Culler

0.   Preparing an optimized sequential program (baseline)
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Simulating ocean currents

• Model as two-dimensional grids
• Discretize in space and time

• finer spatial and temporal resolution enables greater accuracy

• Many different computations per time step
• Concurrency across and within grid computations

• We use one-dimensional grids for simplicity

(a) Cross sections (b) Spatial discretization of a cross section
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Sequential version as the baseline

• A sequential program main6.c and the execution result

• Computations in blue color are fully parallel

#define N 8      /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

void solve () {

int i, done = 0;

while (!done) {

float diff = 0.0;

for (i=1; i<=N; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

for (i=1; i<=N; i++) A[i] = B[i];

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("| diff=%6.2f¥n", diff); /* for debug */

}

}

int main() {

int i;

for (i=1; i<N-1; i++) A[i] = 100+i*i; // initialize

for (i=0; i<=N+1; i++) printf("%6.2f ", A[i]);

printf("¥n");

solve();

}

0.00 101.00 104.00 109.00 116.00 125.00 136.00   0.00   0.00   0.00

0.00  68.26 104.56 109.56 116.55 125.54  86.91  45.29   0.00   0.00 | diff=129.32

0.00  57.55  94.03 110.11 117.10 109.56  85.83  44.02  15.08 0.00 | diff= 55.76

0.00  50.48  87.15 106.97 112.14 104.06  79.72  48.26  19.68   0.00 | diff= 42.50

0.00  45.83  81.45 101.99 107.62  98.54  77.27  49.17  22.63   0.00 | diff= 31.68

0.00  42.38  76.35  96.92 102.61  94.38  74.92  49.64  23.91   0.00 | diff= 26.88

0.00  39.54  71.81  91.87  97.87  90.55  72.91  49.44  24.49   0.00 | diff= 23.80

0.00  37.08  67.67  87.10  93.34  87.02  70.89  48.90  24.62   0.00 | diff= 22.12

0.00  34.88  63.89  82.62  89.06  83.67  68.87  48.09  24.48   0.00 | diff= 21.06

0.00  32.89  60.40  78.44  85.03  80.45  66.81  47.10  24.17   0.00 | diff= 20.26

0.00  31.07  57.19  74.55  81.23  77.35  64.72  45.98  23.73   0.00 | diff= 19.47

0.00  29.39  54.21  70.92  77.63  74.36  62.62  44.77  23.21   0.00 | diff= 18.70

0.00  27.84  51.46  67.52  74.23  71.47  60.52  43.49  22.64   0.00 | diff= 17.95

0.00  26.41  48.89  64.34  71.00  68.67  58.43  42.17  22.02   0.00 | diff= 17.23

0.00  25.07  46.50  61.35  67.94  65.97  56.37  40.84  21.38   0.00 | diff= 16.53

0.00  23.83  44.26  58.54  65.02  63.36  54.34  39.49  20.72   0.00 | diff= 15.85

0.00  22.68  42.17  55.88  62.24  60.85  52.34  38.14  20.05   0.00 | diff= 15.20

0.00  21.59  40.20  53.38  59.60  58.42  50.39  36.81  19.38   0.00 | diff= 14.58

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

+, +, x 

A[0] A[9]

i=4

+, +, x 

i=8

A

B
main6.c  sequential program
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Core 1

Decomposition and assignment

• Single Program Multiple Data (SPMD)

• Decomposition: there are eight tasks to compute B[ ]

• Assignment:  the first four tasks for core 0, and the last four tasks for core 1

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0;       /* variable  in shared memory */

void solve_pp (int pid) {

int i, done = 0;                    /* private variables */

int mymin = (pid==0) ? 1 : 5;       /* private variable  */

int mymax = (pid==0) ? 4 : 8;       /* private variable  */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

diff = diff + mydiff;

if (diff<TOL) done = 1;

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

}

}

int main() { /* solve this using two cores */

initialize shared data A and B;   

create thread1 and call solve_pp(0);

create thread2 and call solve_pp(1);

}

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Decomposition

Assignment

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Core 0

Computation for B[ ]

pid = 0 pid = 1

mymin = 1
mymax = 4

mymin = 5
mymax = 8
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Orchestration 

• LOCK and UNLOCK around critical section

• Lock provides exclusive access to the locked data.

• Set of operations we want to execute atomically

• BARRIER ensures all reach here
float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0;       /* variable  in shared memory */

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_barrier_t barrier;

void solve_pp (int pid) {

int i, done = 0;                    /* private variables */

int mymin = (pid==0) ? 1 : 5;       /* private variable  */

int mymax = (pid==0) ? 4 : 8;       /* private variable  */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

pthread_mutex_lock(&m);

diff = diff + mydiff;

pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier);  // Barrier 1

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier);  // Barrier 2

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

pthread_barrier_wait(&barrier);  // Barrier 3

}

}

(1) load diff
(2) add
(3) store diff

These operations must be executed 
atomically

After all cores update the diff,  
if statement  must be executed. 

if (diff <TOL) done = 1;
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Exercise 1

• Are these three barriers necessary in the parallel program?

• What happens if we remove Barrier 1?

• What happens if we remove Barrier 2?

• What happens if we remove Barrier 3?

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0;       /* variable  in shared memory */

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_barrier_t barrier;

void solve_pp (int pid) {

int i, done = 0;                    /* private variables */

int mymin = (pid==0) ? 1 : 5;       /* private variable  */

int mymax = (pid==0) ? 4 : 8;       /* private variable  */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

pthread_mutex_lock(&m);

diff = diff + mydiff;

pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier);  // Barrier 1

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier);  // Barrier 2

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

pthread_barrier_wait(&barrier);  // Barrier 3

}

}
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Parallel program after orchestration 

void solve_pp (void *p) {

int pid = *(int *)p;

int i, done = 0;                    /* private variables */

int mymin = 1 + (pid * N/ncores);   /* private variable  */

int mymax = mymin + N/ncores - 1;   /* private variable  */

while (!done) {

float mydiff = 0.0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

pthread_mutex_lock(&m);

diff = diff + mydiff;

pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier);

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier);

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

pthread_barrier_wait(&barrier);

}

}

#include <stdio.h>

#include <math.h>

#include <pthread.h>

#define N 8           /* the number of grids */

#define TOL 15.0      /* tolerance parameter */

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0;       /* variable  in shared memory */

int ncores = 2;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_barrier_t barrier;

int main(){

pthread_t t1, t2;

int pid0 = 0;

int pid1 = 1;

for (int i=1; i<N-1; i++) A[i] = 100+i*i;

pthread_barrier_init(&barrier, NULL, ncores);

pthread_create(&t1, NULL, (void *)solve_pp, (void*)&pid0);

pthread_create(&t2, NULL, (void *)solve_pp, (void*)&pid1);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

for (int i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("¥n");

return 0;

}

main7.c  parallel program

% gcc main7.c –O0 –lpthread –lm –o a.out7
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Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput and low 
latency 

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware 
mechanism to support thread 
synchronization 
(lock, unlock, barrier)

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Shared memory many-core architecture


