
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 1

Advanced Computer Architecture

10. Multi-Processor: Distributed Memory
and Shared Memory Architecture, Parallel Programming

Ver. 2025-01-22aFiscal Year 2024

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No. W8E-308, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 2

From multi-core era to many-core era

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 3

Intel Sandy Bridge, January 2011

• 4 to 8 core

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 4

Intel Skylake-X, Core i9-7980XE, 2017

• 18 core

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 5

2021.11 Intel Alder Lake processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 6

2022.11 AMD EPYC 9654 processor with 96 cores

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 7

Distributed Memory Multi-Processor Architecture

• A PC cluster or parallel computers for higher performance

• Each memory module is associated with a processor

• Using explicit send and receive functions (message passing) to obtain the data
required.

• Who will send and receive data? How?

PC2 PC3 PC4PC1

Chip Chip Chip Chip

Proc1 Proc2 Proc4

Caches Caches Caches

Interconnection network

Memory
(DRAM)

Proc3

Caches

Memory
(DRAM)

Memory
(DRAM)

Memory
(DRAM)

PC cluster

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 8

Cell Broadband Engine (2005)

• Cell Broadband Engine (2005)
• 8 core (SPE) + 1 core (PPE)

• each SPE has 256KB local memory

• PS3, IBM Roadrunner(12k)

Diagram created by IBM to promote the CBEP, ©2005 from WIKIPEDIA

PlayStation3 の写真は
PlaySation.com (Japan) から

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 9

Shared Memory Multi-Processor Architecture

• All the processors can access the same address space of the main memory
(shared memory) through an interconnection network.

• The shared memory or shared address space (SAS) is used as a means for
communication between the processors.

• What are the means to obtain the shared data?

• What are the advantages and disadvantages of shared memory?

System

Interconnection network

Main memory (DRAM) I/O

Chip Chip Chip Chip

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 10

System

Chip

Shared memory many-core architecture

• The single-chip integrates many cores (conventional processors) and an
interconnection network.

• The shared memory or shared address space (SAS) is used as a means
for communication between the processors.

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Intel Skylake-X, Core i9-7980XE, 2017

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 11

The free lunch is over

• Programmers have to worry much about performance and concurrency

• Parallel programming & multi-processor (multi-core) architectures

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 12

Growth in clock rate F of microprocessors

From CAQA 5th edition

Intel 4004 clocked at 740KHz in 1971

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 13

Instruction window

Multiprogramming

• Several independent programs (processes) run at the same time.

Instruction window
(c)

Instruction window

8 5

7

6

4

Instruction window
(d)

Instruction window

program A (Process A)

program B (Process B)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 14

Instruction window

Parallel programming

• Several dependent threads run at the same time on a multi-processor
(many-core) system.

Instruction window
(c)

Instruction window

8 5

7

6

4

Instruction window
(e)

Instruction window

thread A

thread B
data dependency

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 15

Program, process, and thread

• A process is an instance of a program that is being executed whereas a thread is part of
a process.

• A process can have more than one thread. All the threads within one process are
interrelated to each other. Threads have some common information, such as code
segment, data segment, heap, etc., that is shared to their threads. But contains its own
stack and registers (PC and x0 – x32 registers).

https://zenn.dev/farstep/articles/process-thread-difference

thread

thread thread
Multiprogramming

Parallel programming

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 16

Sample of a wrong parallel program using pthread

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a=a+1; }

};

int func2(){

int i;

for(i=0; i<N; i++){ a=a+1; }

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL,

(void *)func1, NULL);

pthread_create(&t2, NULL,

(void *)func2, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a=a+1; }

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL,

(void *)func1, NULL);

pthread_create(&t2, NULL,

(void *)func1, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

% gcc main1.c –O0 –lpthread –lm –o a.out1
% ./a.out1
main: 20000000

#include <stdio.h>

#include <pthread.h>

#define N 10000000

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a=a+1; }

};

int func2(){

int i;

for(i=0; i<N; i++){ a=a+1; }

};

int main(){

func1();

func2();

printf("main: %d¥n", a);

return 0;

}

main1.c
sequential program

main2.c
parallel program with func1 and func2

main3.c
parallel program with func1

Single Program Multiple Data (SPMD)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 17

Sample of some parallel programs using pthread

% gcc main1.c –O0 –lpthread –lm –o a.out1
% ./a.out1
main: 20000000

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

int func1(){

int i;

for(i=0; i<N; i++){

pthread_mutex_lock(&m);

a=a+1;

pthread_mutex_unlock(&m);

}

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL,

(void *)func1, NULL);

pthread_create(&t2, NULL,

(void *)func1, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

main4.c
parallel program with func1, lock, and unlock

main1.c
sequential program

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a=a+1; }

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL,

(void *)func1, NULL);

pthread_create(&t2, NULL,

(void *)func1, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

main3.c
parallel program with func1

#include <stdio.h>

#include <pthread.h>

#define N 10000000

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){ a=a+1; }

};

int func2(){

int i;

for(i=0; i<N; i++){ a=a+1; }

};

int main(){

func1();

func2();

printf("main: %d¥n", a);

return 0;

}

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 18

Sample of some parallel programs using pthread

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

int func1(){

int i;

for(i=0; i<N; i++){

pthread_mutex_lock(&m);

a=a+1;

pthread_mutex_unlock(&m);

}

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL,

(void *)func1, NULL);

pthread_create(&t2, NULL,

(void *)func1, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

main4.c
parallel program with func1, lock, and unlock

#include <stdio.h>

#include <pthread.h>

#define N 10000000 // ten million

int a = 0;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

int func1(){

int i;

int my_a = 0;

for(i=0; i<N; i++){

my_a=my_a+1;

}

pthread_mutex_lock(&m);

a = a + my_a;

pthread_mutex_unlock(&m);

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL,

(void *)func1, NULL);

pthread_create(&t2, NULL,

(void *)func1, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

main5.c : parallel program with func1, local sum, lock, and unlock

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 19

Four steps in creating a parallel program

1. Decomposition of computation in tasks

2. Assignment of tasks to processes

3. Orchestration of data access, comm, synch.

4. Mapping processes to processors (cores)

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

Adapted from Parallel Computer Architecture, David E. Culler

0. Preparing an optimized sequential program (baseline)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 20

Simulating ocean currents

• Model as two-dimensional grids
• Discretize in space and time

• finer spatial and temporal resolution enables greater accuracy

• Many different computations per time step
• Concurrency across and within grid computations

• We use one-dimensional grids for simplicity

(a) Cross sections (b) Spatial discretization of a cross section

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 21

Sequential version as the baseline

• A sequential program main6.c and the execution result

• Computations in blue color are fully parallel

#define N 8 /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

void solve () {

int i, done = 0;

while (!done) {

float diff = 0.0;

for (i=1; i<=N; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

for (i=1; i<=N; i++) A[i] = B[i];

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("| diff=%6.2f¥n", diff); /* for debug */

}

}

int main() {

int i;

for (i=1; i<N-1; i++) A[i] = 100+i*i; // initialize

for (i=0; i<=N+1; i++) printf("%6.2f ", A[i]);

printf("¥n");

solve();

}

0.00 101.00 104.00 109.00 116.00 125.00 136.00 0.00 0.00 0.00

0.00 68.26 104.56 109.56 116.55 125.54 86.91 45.29 0.00 0.00 | diff=129.32

0.00 57.55 94.03 110.11 117.10 109.56 85.83 44.02 15.08 0.00 | diff= 55.76

0.00 50.48 87.15 106.97 112.14 104.06 79.72 48.26 19.68 0.00 | diff= 42.50

0.00 45.83 81.45 101.99 107.62 98.54 77.27 49.17 22.63 0.00 | diff= 31.68

0.00 42.38 76.35 96.92 102.61 94.38 74.92 49.64 23.91 0.00 | diff= 26.88

0.00 39.54 71.81 91.87 97.87 90.55 72.91 49.44 24.49 0.00 | diff= 23.80

0.00 37.08 67.67 87.10 93.34 87.02 70.89 48.90 24.62 0.00 | diff= 22.12

0.00 34.88 63.89 82.62 89.06 83.67 68.87 48.09 24.48 0.00 | diff= 21.06

0.00 32.89 60.40 78.44 85.03 80.45 66.81 47.10 24.17 0.00 | diff= 20.26

0.00 31.07 57.19 74.55 81.23 77.35 64.72 45.98 23.73 0.00 | diff= 19.47

0.00 29.39 54.21 70.92 77.63 74.36 62.62 44.77 23.21 0.00 | diff= 18.70

0.00 27.84 51.46 67.52 74.23 71.47 60.52 43.49 22.64 0.00 | diff= 17.95

0.00 26.41 48.89 64.34 71.00 68.67 58.43 42.17 22.02 0.00 | diff= 17.23

0.00 25.07 46.50 61.35 67.94 65.97 56.37 40.84 21.38 0.00 | diff= 16.53

0.00 23.83 44.26 58.54 65.02 63.36 54.34 39.49 20.72 0.00 | diff= 15.85

0.00 22.68 42.17 55.88 62.24 60.85 52.34 38.14 20.05 0.00 | diff= 15.20

0.00 21.59 40.20 53.38 59.60 58.42 50.39 36.81 19.38 0.00 | diff= 14.58

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

+, +, x

A[0] A[9]

i=4

+, +, x

i=8

A

B
main6.c sequential program

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 22

Core 1

Decomposition and assignment

• Single Program Multiple Data (SPMD)

• Decomposition: there are eight tasks to compute B[]

• Assignment: the first four tasks for core 0, and the last four tasks for core 1

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable in shared memory */

void solve_pp (int pid) {

int i, done = 0; /* private variables */

int mymin = (pid==0) ? 1 : 5; /* private variable */

int mymax = (pid==0) ? 4 : 8; /* private variable */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

diff = diff + mydiff;

if (diff<TOL) done = 1;

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

}

}

int main() { /* solve this using two cores */

initialize shared data A and B;

create thread1 and call solve_pp(0);

create thread2 and call solve_pp(1);

}

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Decomposition

Assignment

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Core 0

Computation for B[]

pid = 0 pid = 1

mymin = 1
mymax = 4

mymin = 5
mymax = 8

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 23

Orchestration

• LOCK and UNLOCK around critical section

• Lock provides exclusive access to the locked data.

• Set of operations we want to execute atomically

• BARRIER ensures all reach here
float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable in shared memory */

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_barrier_t barrier;

void solve_pp (int pid) {

int i, done = 0; /* private variables */

int mymin = (pid==0) ? 1 : 5; /* private variable */

int mymax = (pid==0) ? 4 : 8; /* private variable */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

pthread_mutex_lock(&m);

diff = diff + mydiff;

pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier); // Barrier 1

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier); // Barrier 2

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

pthread_barrier_wait(&barrier); // Barrier 3

}

}

(1) load diff
(2) add
(3) store diff

These operations must be executed
atomically

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 24

Exercise 1

• Are these three barriers necessary in the parallel program?

• What happens if we remove Barrier 1?

• What happens if we remove Barrier 2?

• What happens if we remove Barrier 3?

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable in shared memory */

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_barrier_t barrier;

void solve_pp (int pid) {

int i, done = 0; /* private variables */

int mymin = (pid==0) ? 1 : 5; /* private variable */

int mymax = (pid==0) ? 4 : 8; /* private variable */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

pthread_mutex_lock(&m);

diff = diff + mydiff;

pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier); // Barrier 1

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier); // Barrier 2

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

pthread_barrier_wait(&barrier); // Barrier 3

}

}

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 25

Parallel program after orchestration

void solve_pp (void *p) {

int pid = *(int *)p;

int i, done = 0; /* private variables */

int mymin = 1 + (pid * N/ncores); /* private variable */

int mymax = mymin + N/ncores - 1; /* private variable */

while (!done) {

float mydiff = 0.0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

pthread_mutex_lock(&m);

diff = diff + mydiff;

pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier);

if (diff <TOL) done = 1;

pthread_barrier_wait(&barrier);

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

pthread_barrier_wait(&barrier);

}

}

#include <stdio.h>

#include <math.h>

#include <pthread.h>

#define N 8 /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable in shared memory */

int ncores = 2;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_barrier_t barrier;

int main(){

pthread_t t1, t2;

int pid0 = 0;

int pid1 = 1;

for (int i=1; i<N-1; i++) A[i] = 100+i*i;

pthread_barrier_init(&barrier, NULL, ncores);

pthread_create(&t1, NULL, (void *)solve_pp, (void*)&pid0);

pthread_create(&t2, NULL, (void *)solve_pp, (void*)&pid1);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

for (int i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("¥n");

return 0;

}

main7.c parallel program

% gcc main7.c –O0 –lpthread –lm –o a.out7

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 26

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput and low
latency

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization
(lock, unlock, barrier)

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Shared memory many-core architecture

