
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 1

Advanced Computer Architecture

8. Instruction Level Parallelism: Exploiting ILP
Using Multiple Issue and Speculation

Ver. 2025-01-16aFiscal Year 2024

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No. W8E-308, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 2

Out-of-order execution (OoO execution)

• In in-order execution model, all instructions are executed in
the order that they appear as (1), (2), (3), (4) ...
This can lead to unnecessary stalls.

• Instruction (3) stalls waiting for insn (2) to go first,
even though it does not have a data dependence.

• With out-of-order execution,

• Using register renaming to eliminate output dependence
and antidependence, just having true data dependence

• A processor executes instructions in an order governed by the
availability of input data and execution units, and the
processor can avoid being idle while waiting for the preceding
instruction to complete.

• insn (3) is allowed to be executed before the insn (2)

• A key design philosophy behind OoO execution to extract
ILP by executing instructions as quickly as possible.

• Scoreboarding (CDC6600 in 1964)

• Tomasulo algorithm (IBM System/360 Model 91 in 1967)

(3)

(4)

Data flow graph

(1)

(2)

(1) add x5,x1,x2
(2) add x9,x5,x3
(3) lw x4, 4(x7)
(4) add x8,x9,x4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 3

Recommended Reading

• Focused Value Prediction

• Sumeet Bandishte, Jayesh Gaur, Zeev Sperber, Lihu Rappoport, Adi Yoaz, and Sreenivas
Subramoney, Intel

• ACM/IEEE 47th International Symposium on Computer Architecture (ISCA), pp. 79-91, 2020

• A quote:
“Value Prediction was proposed to speculatively break true data dependencies, thereby allowing Out of
Order (OOO) processors to achieve higher instruction level parallelism (ILP) and gain performance.
State-of-the-art value predictors try to maximize the number of instructions that can be value
predicted, with the belief that a higher coverage will unlock more ILP and increase performance.
Unfortunately, this comes at increased complexity with implementations that require multiple
different types of value predictors working in tandem, incurring substantial area and power cost.
In this paper we motivate towards lower coverage, but focused, value prediction. Instead of
aggressively increasing the coverage of value prediction, at the cost of higher area and power, we
motivate refocusing value prediction as a mechanism to achieve an early execution of instructions that
frequently create performance bottlenecks in the OOO processor. Since we do not aim for high
coverage, our implementation is light-weight, needing just 1.2 KB of storage. Simulation results on 60
diverse workloads show that we deliver 3.3% performance gain over a baseline similar to the Intel
Skylake processor. This performance gain increases substantially to 8.6% when we simulate a
futuristic up-scaled version of Skylake. In contrast, for the same storage, state-of-the-art value
predictors deliver a much lower speedup of 1.7% and 4.7% respectively. Notably, our proposal is
similar to these predictors in performance, even when they are given nearly eight times the storage
and have 60% more prediction coverage than our solution.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 4

Recommended Reading

FVP (Focused Value Prediction, proposal)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 5

Branch prediction miss and aggressive recovery

• Instruction 3 is a miss predicted branch and its target insn is 20

• When insn 3 is executed, it recovers by flushing instructions after insn 3 and restarts

Instruction windowIF ID Renaming

89

10

Cycle 7

11

12

13

14

5

7

6

4

Issue

2

Execute

1

3

Instruction windowIF ID RenamingCycle 8 Issue Execute

2

Commit

1

3

8 7 6 5 4 3 2 1ROB

3 2 1ROB

Retire

1

RF

Recovery by flushing instructions on the wrong path (may take several cycles)

Instruction windowIF ID RenamingCycle 9

20

21

Issue Execute Commit

2

3 2ROB

Retire

2

3

RF

Restart by fetching instructions using the correct PC

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 6

Instruction
window

Instruction pipeline of OoO execution processor

• Allocating instructions to instruction window is called dispatch

• Issue or fire wakes up instructions and their executions begin

• In commit stage, the computed values are written back to ROB
(reorder buffer)

• The last stage is called retire or graduate.
The completed consecutive instructions can be retired.
The result is written back to register file (architectural register file
of 32 registers) using a logical register number from x0 to x31.

Instruction
Fetch

Instruction
Decode

Register
Renaming

Dispatch

Issue
Execute/
Memory

Commit

Retire

In-order front-end

Out-of-order back-end

In-order retirement
RF

ROB

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 7

The key idea for OoO execution (last lecture)

• In-order front-end, OoO execution core, in-order retirement using instruction
window and reorder buffer (ROB)

Instruction windowIF ID Renaming

7

8

Cycle 6

9

10

11

12

5

2

6

4

Issue

1

3

Instruction windowIF ID Renaming

89

10

Cycle 7

11

12

13

14

5

7

6

4

Issue

2

Execute

1

3

Instruction windowIF ID Renaming

8

10

11

12

Cycle 8

13

14

15

16

5

7

6

9

Issue

4

Execute

2

Commit

1

3

6 5 4 3 2 1ROB

8 7 6 5 4 3 2 1ROB

10 9 8 7 6 5 4 3 2 1ROB

Instruction windowIF ID Renaming

8

10

13

14

Cycle 9

15

16

17

18

11

7

12

9

Issue

5

6

Execute

4

Commit

2

12 11 10 9 8 7 6 5 4 3 2ROB

Retire

1

Retire

2

3

RF

RF

Architectural register file

Head of the FIFO

Completed consecutive insns

In commit stage, the computed
values are written back to ROB
(reorder buffer)

The completed consecutive
instructions can be retired.
The result is written back to
register file.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 8

OoO Core

Register dataflow

• In-flight instructions are ones processing in a processor

Instruction window

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Instructions to be executed for an application

Newer instructions

In-flight instructions

Instruction windowIF ID Renaming

8

10

11

12

Cycle 8

13

14

15

16

5

7

6

9

Issue

4

Execute

2

Commit

1

3

10 9 8 7 6 5 4 3 2 1ROB

Retire

1

RF

1

Retired insns

(3)

(4)

Data flow graph

(1)

(2)

Back-endFront-end

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 9

Case 1: Register dataflow from a far previous instn

• One source operand of insn I2 is from a retired instruction Ia.

• Because Ia is retired long ago, the physical destination register has been freed.
The tag of the source register x3 can not be renamed at the renaming stage for
I2, still having the logical register tag x3.

• Where does the operand x3 of I2 come from?

OoO CoreFront-end Instruction window

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Instructions to be executed

Newer instructions

In-flight instructions

Instruction windowIF ID Renaming

8

10

11

12

Cycle 8

13

14

15

16

5

7

6

9

Issue

4

Execute

2

Commit

1

3

10 9 8 7 6 5 4 3 2 1ROB

Retire

RF

1 Ib Ia

Retired insns

Ia: add x3,x0,x0
I1: sub p9,x1,x2
I2: add p10,p9,x3
I3: or p11,x4,x5
I4: and p12,p10,p11

Data dependence

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 10

Case 1: Register dataflow from RF

• One source operand of insn I2 is from a retired instruction Ia.

• Because Ia is retired long ago, the physical destination register has been freed.
The tag of the source register x3 can not be renamed at the renaming stage for
I2, still having the logical register tag x3.

• Where does the operand x3 of I2 come from?

OoO CoreFront-end Instruction window

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Instructions to be executed

Newer instructions

In-flight instructions

Instruction windowIF ID Renaming

8

10

11

12

Cycle 8

13

14

15

16

5

7

6

9

Issue

4

Execute

2

Commit

1

3

10 9 8 7 6 5 4 3 2 1ROB

Retire

RF

1 Ib Ia

Retired insns

Ia: add x3,x0,x0
I1: sub p9,x1,x2
I2: add p10,p9,x3
I3: or p11,x4,x5
I4: and p12,p10,p11

Data dependence

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 11

Example behavior of register renaming and valid bit

• A processor remembers a set of renamed logical registers.

• If x1 is not renamed for in-flight insn, it uses x1 instead of p1.

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

Register map table

2

5->9

0

1

2

3

4

5

6

7

8

9

10

31

dst = x5
src1 = x1
src2 = x2

dst = p9
src1 = x1
src2 = p2

I0: sub p9,x1,p2

0

1

1

valid bit

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 12

OoO Core

Case 2: Register dataflow

• Assume that one source operand p10 of insn I5 is from I2 which is not retired.
The operand is generated a few clock cycles (tens of cycles sometimes) earlier.

• Because I2 is not retired, RF does not have the operand.
Because I2 is committed, the operand is stored in ROB.

• Where does the operand of I5 come from?

Front-end Instruction window

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed

Newer instructions

In-flight instructions

1

Retired insns

Data dependence

Instruction windowIF ID Renaming

8

10

13

14

Cycle 9

15

16

17

18

11

7

12

9

Issue

5

6

Execute

4

Commit

2

12 11 10 9 8 7 6 5 4 3 2ROB

Retire

1

RF

Ia: add x3,x0,x0
I1: sub p9,x1,x2
I2: add p10,p9,x3
I3: or p11,x4,x5
I4: and p12,p10,p11
I5: nor p13,p10,p12

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 13

OoO Core

Case 2: Register dataflow from ROB

• Assume that one source operand p10 of insn I5 is from I2 which is not retired.
The operand is generated a few clock cycles (tens of cycles sometimes) earlier.

• Because I2 is not retired, RF does not have the operand.
Because I2 is committed, the operand is stored in ROB.

• Where does the operand of I5 come from?

Front-end Instruction window

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed

Newer instructions

In-flight instructions

1

Retired insns

Data dependence

Instruction windowIF ID Renaming

8

10

13

14

Cycle 9

15

16

17

18

11

7

12

9

Issue

5

6

Execute

4

Commit

2

12 11 10 9 8 7 6 5 4 3 2ROB

Retire

1

RF

Ia: add x3,x0,x0
I1: sub p9,x1,x2
I2: add p10,p9,x3
I3: or p11,x4,x5
I4: and p12,p10,p11
I5: nor p13,p10,p12

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 14

Case 3: Register dataflow

• Assume that the other source operand p12 of insn I5 is from I4 which is not
committed. The operand is generated in the previous clock cycle.

• Because I4 is not retired, RF does not have the operand.
Because I4 is not committed, ROB does not have the operand.

• Where does the operand of I5 come from?

OoO CoreFront-end Instruction window

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed

Newer instructions

In-flight instructions

1

Retired insns

Data dependence

Instruction windowIF ID Renaming

8

10

13

14

Cycle 9

15

16

17

18

11

7

12

9

Issue

5

6

Execute

4

Commit

2

12 11 10 9 8 7 6 5 4 3 2ROB

Retire

1

RF

Ia: add x3,x0,x0
I1: sub p9,x1,x2
I2: add p10,p9,x3
I3: or p11,x4,x5
I4: and p12,p10,p11
I5: nor p13,p10,p12

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 15

Case 3: Register dataflow from ALUs

• Assume that the other source operand p12 of insn I5 is from I4 which is not
committed. The operand is generated in the previous clock cycle.

• Because I4 is not retired, RF does not have the operand.
Because I4 is not committed, ROB does not have the operand.

• Where does the operand of I5 come from?

OoO CoreFront-end Instruction window

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed

Newer instructions

In-flight instructions

1

Retired insns

Data dependence

Instruction windowIF ID Renaming

8

10

13

14

Cycle 9

15

16

17

18

11

7

12

9

Issue

6

Execute

4

Commit

2

12 11 10 9 8 7 6 5 4 3 2ROB

Retire

1

RF

Ia: add x3,x0,x0
I1: sub p9,x1,x2
I2: add p10,p9,x3
I3: or p11,x4,x5
I4: and p12,p10,p11
I5: nor p13,p10,p12

5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 16

Reorder buffer (ROB)

• Each ROB entry has following fields

• entry valid bit, data valid bit, data, target register number, etc.

• ROB provides the large physical registers for renaming

• in fact, physical register number is ROB entry number

• The value of a physical register may come from a matching ROB entry

32-bit DataIndex
Data
Valid

Entry
Valid

0

1

2

.

.

49

target reg number

1 0 - x10

I10: add p10,p3,p8 (add x10,x5,x6)

Instruction windowIF ID Renaming

8

10

11

12

Cycle 8

13

14

15

16

5

7

6

9

Issue

4

Execute

2

Commit

1

3

Retire

RF10 9 8 7 6 5 4 3 2 1ROB

1 1 Computed data of I1 x3

1 1 Computed data of I3 x5
1 0 - x4 RF

3

Retire

head

tail 10
1 0 x6

10
9

8
7

6
5

4
3

2
1

R
O

B

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 17

Datapath of OoO execution processor

Instruction cacheInstruction cache

Data cacheData cache

Integer

BranchBranch FP ALUFP ALU

Floating-point Memory

Reorder buffer (ROB)
Store
queue

Adr gen.Adr gen.Adr gen.Adr gen.ALUALU ALUALU

Register fileRegister file

RS

Branch handlerBranch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decodeInstruction decode

DispatchDispatch

RenamingRenaming

Instruction fetchInstruction fetch

Reservation station (RS)

Instruction window

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 18

Instruction fetch unit of 2-way super-scalar

• High-bandwidth instruction delivery using prediction, and speculation

Instruction memory (cache)

PC

(2) Target address

Pipeline registers

Next PC generator (mux)

Branch predictor

PC, branch history (1) Branch Target PC
for recovery

IF stage ID, EX+, WB
stage

+

Taken/
Untaken

(3) PC + 8
8

BTB
(Branch Target Buffer)

BTB
hit/miss

Instructions

prediction miss

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 19

Datapath of OoO execution processor (partially)

Instruction cacheInstruction cache

Branch handlerBranch handler

Instruction flow

Instruction decodeInstruction decode

RenamingRenaming

Instruction fetchInstruction fetch

Reservation station (RS)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 20

Renaming two instructions per cycle for n-way superscalar

• Renaming instruction I0 and I1 (n = 2)

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table (4R, 2W)

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

A_dst = x5
A_src1 = x1
A_src2 = x2

A_dst = p9
A_src1 = p1
A_src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4

B_dst = x9
B_src1 = x5
B_src2 = x4

B_dst = p10
B_src1 = p9

B_src2 = p4

M
u
x

If B_src1==A_dst, use tag from free tag bufferI0

I1

M
u
x

If B_src2==A_dst, use tag from free tag buffer

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 21

Instruction window

Instruction window

Aside: What is a window?

• A window is a space in the wall of a building or in the side of a vehicle,
which has glass in it so that light can come in and you can see out. (Collins)

Instructions to be executed for an application

Large instruction window

Instruction window

(a)

(b)

(c)

Instruction window

8 5

7

6

4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 22

Datapath of OoO execution processor (partially)

Instruction cacheInstruction cache

Integer Floating-point Memory

Reorder buffer (ROB)

Register fileRegister file

RS

Branch handlerBranch handler

Register dataflow

Instruction flow

Instruction decodeInstruction decode

DispatchDispatch

RenamingRenaming

Instruction fetchInstruction fetch

Reservation station (RS)

Instruction window

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 23

Reservation station (RS)

• To simplify the wakeup and select logic at issue stage, each functional
unit (ALU) has own instruction window, an entry for such an an
instruction window is called reservation station (RS).

• Each reservation station has

• entry valid bit, src1 tag, src1 data, src1 ready, src2 tag, src2 data, src2
ready, destination physical register number (dst), operation, …

• The computed data (outcome) with its dst as tag is broadcasted to all RSs.

issue

(a) Centralized instruction window (b) Distributed instruction window using RS

issue

ALU1 ALU2

instruction window for ALU1 and ALU2 IW for ALU1 IW for ALU1

Reservation station

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

For operand src1 For operand src2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 24

Datapath of OoO execution processor (partially)

Instruction cacheInstruction cache

Integer

BranchBranch FP ALUFP ALU

Floating-point

Reorder buffer (ROB)

ALUALU ALUALU

Register fileRegister file

RS

Branch handlerBranch handler

Register dataflow

Instruction flow

Instruction decodeInstruction decode

DispatchDispatch

RenamingRenaming

Instruction fetchInstruction fetch

Reservation station (RS)

Instruction window

Broadcast

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 25

Example behavior of reservation stations

A B C D

issue

IW for ALU1 IW for ALU1

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

For operand src1 For operand src2

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

For operand src1 For operand src2

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

For operand src1 For operand src2

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

For operand src1 For operand src2

RS_A

RS_B

RS_C

RS_D

I1: sub p9,x1,x2
I2: add p10,p9,x3
I3: or p11,x4,x5
I4: and p12,p10,p11
I5: nor p13,p10,p12

Cycle 0

dispatch at most two instructions, one to A or B and the other to C or D

dispatch

dispatch I1, I2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 26

Example behavior of reservation stations

A B C D

IW for ALU1 IW for ALU1

1 x1 value of x1

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

1 x2 value of x2 1 p9 I1: sub

For operand src1 For operand src2

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

For operand src1 For operand src2

1 p9

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

0 x3 value of x3 1 p10 I2: add

For operand src1 For operand src2

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

For operand src1 For operand src2

RS_A

RS_B

RS_C

RS_D

I1: sub p9,x1,x2
I2: add p10,p9,x3
I3: or p11,x4,x5
I4: and p12,p10,p11
I5: nor p13,p10,p12

dispatch at most two instructions, one to A or B and the other to C or D

Cycle 1
dispatch I3, I4
issue I1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 27

Example behavior of reservation stations

A B C D

IW for ALU1 IW for ALU1

1/0

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

I1: sub

For operand src1 For operand src2

1 x4 value of x4

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

1 x5 value of x5 1 p11 I3: or

For operand src1 For operand src2

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

1 p10

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

0 p11 0 p12 I4: and

For operand src1 For operand src2

RS_A

RS_B

RS_C

RS_D

I1: sub p9,x1,x2
I2: add p10,p9,x3
I3: or p11,x4,x5
I4: and p12,p10,p11
I5: nor p13,p10,p12

dispatch at most two instructions, one to A or B and the other to C or D

1 p9 value of p9 1 x3 value of x3 1 p10 I2: add

For operand src1 For operand src2

I1 (p9)

Cycle 2
dispatch I5, I6
issue I2, I3
execute I1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 28

Example behavior of reservation stations

A B C D

IW for ALU1 IW for ALU1

1 p10 value of p10

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

1 p12 0 p13 I5: nor

For operand src1 For operand src2

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

For operand src1 For operand src2

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

1 p10 value of p10

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

1 p11 value of p11 1 p12 I4: and

For operand src1 For operand src2

RS_A

RS_B

RS_C

RS_D

I1: sub p9,x1,x2
I2: add p10,p9,x3
I3: or p11,x4,x5
I4: and p12,p10,p11
I5: nor p13,p10,p12

dispatch at most two instructions, one to A or B and the other to C or D

For operand src1 For operand src2

I3 (p11)

1/0 I3: or

1/0 I2: add

I2 (p10)

Cycle 3
dispatch I7, I8
issue I4
execute I2, I3

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 29

Exercise 1

• Example behavior of reservation stations

A B C D

issue

I1: sub p9,x1,x2

I2: add p10,p9,x3

I3: or p11,p10,x4

I4: and p12,x5,x6

I5: nor p13,p11,p12

I6: add p14,p10,x7

diapatch

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 30

Datapath of OoO execution processor

Instruction cacheInstruction cache

Data cacheData cache

Integer

BranchBranch FP ALUFP ALU

Floating-point Memory

Reorder buffer (ROB)
Store
queue

Adr gen.Adr gen.Adr gen.Adr gen.ALUALU ALUALU

Register fileRegister file

RS

Branch handlerBranch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decodeInstruction decode

DispatchDispatch

RenamingRenaming

Instruction fetchInstruction fetch

Reservation station (RS)

Instruction window

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 31

Instruction Level Parallelism (ILP)

(1)

(2)

(4)

(3)

lw x5, 0(x2) (1)

addi x6, x5, 4 (2)

sw x6, 0(x3) (3)

lw x7, 0(x4) (4)

true data
dependency

?

ambiguous
data dependency

?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 32

Memory dataflow and branches

• The update of a data cache cannot be recovered easily.
So, cache update is done at the retire stage in-order manner by
using store queue.
Because of the ambiguous memory dependency, load and store
instructions can be executed in-order manner.

• About 30% (or less) of executed instructions are load and stores.

• Even if they are executed in-order, IPC of 3 can be achieved.

• Branch instructions can be executed in-order manner.

• About 20% (or less) of executed instructions are jump and branch
instructions.

• Out-or-order branch execution and aggressive miss recovery may
cause false recovery (recovery by a branch on the false control
path).

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 33

Pollack’s Rule

• Pollack's Rule states that microprocessor "performance
increase due to microarchitecture advances is roughly
proportional to the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

WIKIPEDIA

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 34

Exercise 1

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

RS_A

RS_B

RS_C

RS_D

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

RS_A

RS_B

RS_C

RS_D

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

RS_A

RS_B

RS_C

RS_D

Cycle 1

Cycle 2

Cycle 3

Cycle 0 dispatch I1, I2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 35

Exercise 1

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

RS_A

RS_B

RS_C

RS_D

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

RS_A

RS_B

RS_C

RS_D

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

valid src1 tag src1 data src1 ready src2 tag src2 data src2 ready dst operation

RS_A

RS_B

RS_C

RS_D

Cycle 4

Cycle 5

Cycle 6

Cycle 0 dispatch I1, I2

