Fiscal Year 2024

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

8. Instruction Level Parallelism: Exploiting ILP
Using Multiple Issue and Speculation
&

www.arch.cs.titech.ac.jp/lecture/ACA/

Room No. W8E-308, Lecture (Face-to-face) Kenji Kise, Department of Computer Science
Mon 13:30-15:10, Thr 13:30-15:10 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, ScienSg okyo 1

Out-of-order execution (OoO execution)

\
 Inin-order execution model, all instructions are executed in x
the order that they appear as (1), (2), (3), (4) ...
This can lead to unnecessary stalls. @

« Instruction (3) stalls waiting for insn (2) to go first,
even though it does not have a data dependence.

« With out-of-order execution, @ @
« Using register renaming to eliminate output dependence
and antidependence, just having true data dependence \
« A processor executes instructions in an order governed by the

availability of input data and execution units, and the
processor can avoid being idle while waiting for the preceding (1) add x5,x1,x2

instruction to complete. (2) add x9,x5,x3
. . . (3) 1w x4, 4(x7)
insn (3) is allowed to be executed before the insn (2) () add x8,x9,x4
« A key design philosophy behind OoO execution to extract
ILP by executing instructions as quickly as possible. Data flow graph

« Scoreboarding (CDC6600 in 1964)
ﬁv « Tomasulo algorithm (IBM System/360 Model 91 in 1967)
C

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 2

Recommended Reading

Focused Value Prediction \

« Sumeet Bandishte, Jayesh Gaur, Zeev Sperber, Lihu Rappoport, Adi Yoaz, and Sreenivas
Subramoney, Intel

« ACM/IEEE 47th International Symposium on Computer Architecture (ISCA), pp. 79-91, 2020

A quote:

"Value Prediction was proposed to speculatively break true data dependencies, thereby allowing Out of
Order (OOOQ) processors to achieve higher instruction level parallelism (ILP) and gain performance.
State-of-the-art value predictors try to maximize the number of instructions that can be value
predicted, with the belief that a higher coverage will unlock more ILP and increase performance.

In this paper we motivate towards lower coverage, but focused, value prediction. Instead of
aggressively increasing the coverage of value prediction, at the cost of higher area and power, we
motivate refocusing value prediction as a mechanism to achieve an early execution of instructions that
frequently create performance bottlenecks in the OOO processor.

Simulation results on 60
diverse workloads show that we deliver 3.3% performance gain over a baseline similar to the Intel
Skylake processor.

Recommended Reading

Front End 4 wide fetch and decode , TAGE/ITTAGE branch predic-
tors [24], 20 cycles mis-prediction penalty, 64KB, 8-way
L1 instruction cache, 4 wide rename into OOO with macro

18% 40% and micro fusion
-FVP lPC -.-FVP Coverage Execution | 224 ROB entries, 64 Load Queue entries, 60 Store Queue

entries and 97 Issue Queue entries. 8§ Execution units

16% o (ports) including 2 load ports, 3 store address ports (2
35% 35% shared with load ports), 1 store-data port, 4 ALU ports,
¥ 3 FP/AVX ports, 2 branch ports. 8 wide retire and full
c support for bypass. Aggressive memory disambiguation
) 14% 31% o predictor. Out of order load scheduling to L1
v 30% Caches 32 KB, 8-way LI data caches with latency of 5 cycles,
E 256 KB 16-way L2 cache (private) with a round-trip
o 12% latency of 15 cycles. 8 MB, 16 way shared LLC with
~ 25% data round-trip latency of 40 cycles. Aggressive multi-
o 259 stream prefetching into the L2 and LLC. PC based stride
= (o)) prefetcher at L1
% 10% %D Memory Two DDR4-2133 channels, two ranks per channel, eight
“ 20% 5 banks per rank, and a data bus width per channel of 64
7] > g bits. 2 KB row buffer per bank with 15-15-15-39 (tCAS-
B 8% 18% (@) tRCD-tRP-tRAS) timing parameters
16% ©
] 15% TABLE II
c 5.7% CORE PARAMETERS FOR SIMULATION
m
E 4.6% 10% Benchmarks Category
o] 1 h, bzip2, , mcf, h264ref,
€ 4% 3.3% perlbench, bzip gce, me 64re SPEC INT 2006
o gobmk,hmmer, sjeng, libquantum, (ISPECO6)
o 2.6% omnetpp, astar, xalancbmk
5% bwaves, gamess, milc, zeusmp,
2% 0.9% soplex, povray, calculix, gemsfdtd, SPEC FP 2006
* tonto, wrf, sphinx3 gromacs, ’ (FSPEC06)
. - % cactusADM, leslie3D, namd, deall
0% Q

nab, cam4, pop2, roms, leela,
FSPECO6 ISPECO6 Server SPEC17 Geomean cactubssn, xz, gee, mef, xalanc, SPEC17
exchange2, omnetpp, perlbench,
bwaves, 1bm, fotonik3d
Fig. 6. Performance and Coverage of FVP on Skylake lammps [4], hplinpack [3],
tpce, spark, cassandra [1],
specjbb [5]. specjenterprise,
hadoop [2], specpower [6]
FVP (Focused Value Prediction, proposal) TABLE Il

APPLICATIONS USED IN THIS STUDY

Server

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Branch prediction miss and aggressive recovery

« Instruction 3 is a miss predicted branch and its target insn is 20

« When insn 3 is executed, it recovers by flushing instructions after insn 3 and restarts

Cycle 7

IF ID Renaming Instruction window Issue | Execute
Lo || LJLeflell5] >[1]

Lol | LIl JL4]l7] (1| >
__ roB| | [| [8]7]e[5]4]3]2]1]

IF ID Renaming Instruction window Issue | Execute | Commit Retire
L L] L] D
LI O L) O] (1] »] |

roe| | | | [| | | | [3]2]1]

Recovery by flushing instructions on the wrong path (may take several cycles)

IF ID Renaming Instruction window Issue Execute | Commit Reftire
LI O] L] » L]
HiSN g . (1 1] [

roe| | | | [| | | | J3fe] |

Restart by fetching instructions using the correct PC

Instruction pipeline of OoO execution processor

3
* Allocating instructions to instruction window is called dispatch 2%
« Issue or fire wakes up instructions and their executions begin

« Incommit stage, the computed values are written back to ROB
(reorder buffer)

« The last stage is called retire or graduate.
The completed consecutive instructions can be retired.
The result is written back to register file (architectural register file
of 32 registers) using a logical register number from x0 to x31.

Instruction
window
eteh | Decode ::r?;fr:rii; Dl Out-of-order back-end
In-order front-end Issue E&‘Z;‘ffy/ Commit
I
ROB[[[[T [T T [T T[] NAlC

ﬁ’ In-order retirement [
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 6

The key idea for OoO execution (last lecture)

window and reorder buffer (ROB)

In-order front-end, OoO execution core, in-order retirement using instruction

In commit stage, the computed

Cycle 6 IF ID Renaming Instruction window Issue values are written back to ROB
@ [7] 1] 1[e][5] (reorder buffer)

L8)| Ll Jla]l2] Head of the FIFO
__ rosl | | [[| lelsl4lsfeld]

Cycle 7 IF ID Renaming | | Instruction window Issue | Execute The completed consecutive
5 @ G| OEEE| B D] e
wol| | (I |] D [51| registerfie

ROR | | | | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1' Completed consecutive insns

Cycle 8 IF ID Renaming Instruction window Issue | Execute | Commit // Reftire
(| L [8][6][5] > 2]

(2]} | [J{10][9][7] [1| » L[] {LAI [|
os T o5 [s]7 e [s4Ialeli]/

Cycle 9 IF ID Renaming Instruction window Issue | Execute /Commi‘r Retire
[13]| | (e[> [«)]

1)) | CJo)6]71][]l LA O
~@‘Q' ro[12[11]10] 98|76 [5]43]2] |

7

Architectural register file

Register dataflow

« In-flight instructions are ones processing in a processor

Cycle 8

\

@) @

Y@

Data flow graph
IF ID Renaming Instruction window Issue | Execute | Commit Retire
(1t | _J[8][6][5] > [2]
(1201 | |__J[10][9 [7] 1| »] | |
RoB| | Jo]o|8f7]6]5]4]3[2]1]
Front-end Back-end
- o~ g N —
Instructions to be executed for an application Instruction window 000 Core Retired insns
| | | |16]15]14]13|12|11|10|9]|8|7]6]|B[4[3]2]1] |]

Af_a'

Newer instructions

—

In-flight instructions

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Case 1: Register dataflow from a far previous instn

* One source operand of insn I2 is from a retired instruction Ia.

\

Because Ia is retired long ago, the physical destination register has been freed.

The tag of the source register x3 can not be renamed at the renaming stage for
I2, still having the logical register tag x3.

Ia: add x3,x0,x0
* Where does the operand x3 of I2 come from? I1: sub pNZ
I2: add plo,p9,x3
I3: or pl1,x4,x5
I4: and pl2,plo,pll
Cycle 8 IF ID Renaming Instruction window Issue | Execute | Commit Retire
(1| [J[8]l6][5] >H ||
(12 | [J[20][9][7]] » [||
rRoB| [[to]9[8[7]6[5]4[3][2]1]
Instructions to be executed Front-end Instruction window 000 Core Retired insns
L] 1T | | lwe|s|14|13]12]11|10|9|8|7]6]|5][4]3|2]1]1b|1a] | |
Newer instructions N

S
In-flight instructions
Data dependence

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 9

Case 1: Register dataflow from RF

* One source operand of insn I2 is from a retired instruction Ia. \

« Because Ia is retired long ago, the physical destination register has been freed.
The tag of the source register x3 can not be renamed at the renaming stage for
T2, still having the logical register tag x3.

Ia: add x3,x0,x0

« Where does the operand x3 of I2 come from? I1: sub pNZ

I2: add plo,p9,x3

I3: or pl1,x4,x5
I4: and pl2,plo,pll

Cycle 8 IF ID Renaming Instruction window Issue | Execute | Commit Retire
(ul) | |_J[8][e][5] => B]

[12]| | [][10][9][7] (1] »[] L
ros| | [iof9fsf7]e[5][4]3]2]1] [_RF]

Instructions to be executed

Front-end

Instruction window

000 Core

Retired insns

| |16|15]14[13]12]| 11

10/9/8|7]|6]|5

Ib|Ia| | |

Newer instructions

41321

—

In-flight instructions

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Data dependence

10

Example behavior of register renaming and valid bit

« A processor remembers a set of renamed logical registers.
« If x1is not renamed for in-flight insn, it uses x1 instead of pl.

Cycle 1

10:
I1:
I12:
I3:

sub
add
or

and

x5,x1,x2
X9,x5,x4
x5, x5,x2
X2,X%X9,x1

Free tag buffer

13

12

11

10| 9

ann?

<

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

dst
srcl
src2

Register map table yqlid bit

X5

x1l —
X2

0

\

1

31

3
aQ
"
+
I
<
O

n
)
N
=
]
X
=

v
wn
)
(@]
N

Il
©
N

I0: sub p9,x1,p2

11

Case 2: Register dataflow

« Assume that one source operand pl10 of insn I5 is from I2 which is not retired.

The operand is generated a few clock cycles (tens of cycles sometimes) earlier.

Cycle 9

Because I2 is not retired, RF does not have the operand.

Because I2 is committed, the operand is stored in ROB. Ia: add x3,x0,Xx8
I1: sub p9,x1,x2
* Where does the operand of I5 come from? Lo add f,le):pg):x_,,
I3: or pI\,x4,x5
I4: and pl2,8l0,pll
I5: nor pl3,pl0,pl2
IF ID Renaming Instruction window Issue | Execute | Commit Retire
L3 | L Jl8][e2][11] B >[4
(4] |][]l 9][7] (el 1] [||
ro|12|11]10]9[8|7]6 [543]2] |
Instructions to be executed Front-end Instruction window 000 Core Retired insns

AEEB'

Newer instructions

18[17]16 15|14 |13

12[11]10]9]8]7

elslal3[2[1] [[|

-~

—

In-flight instructions

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Data dependence

\

12

Case 2: Register dataflow from ROB

« Assume that one source operand pl10 of insn I5 is from I2 which is not retired.

The operand is generated a few clock cycles (tens of cycles sometimes) earlier.

Cycle 9

Because I2 is not retired, RF does not have the operand.

Because I2 is committed, the operand is stored in ROB. Ia: add x3,x0,Xx8
I1: sub p9,x1,x2
* Where does the operand of I5 come from? Lo add f,le):pg):x_,,
I3: or pI\,x4,x5
I4: and pl2,8l0,pll
I5: nor pl3,pl0,pl2
IF ID Renaming Instruction window Issue | Execute | Commit Retire
3] | s][e][u]—1| » [4]
(4] |][]l 9][7] (el 1] [||
ro|12|11]10] 98 |F]6[5|4]3]2] |
Instructions to be executed Front-end Instruction window 000 Core Retired insns

AEEB'

Newer instructions

18[17]16 15|14 |13

12[11]10]9]8]7

elslal3[2[1] [[|

-~

—

In-flight instructions

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Data dependence

\

13

Case 3: Register dataflow

« Assume that the other source operand pl12 of insn I5 is from I4 which is not

committed. The operand is generated in the previous clock cycle.

« Because I4 is not retired, RF does not have the operand.

Cycle 9

Because T4 is not committed, ROB does nhot have the operand. 1a: add x3,xe,xe
I1: sub p9,x1,x2
* Where does the operand of I5 come from? I2- add E1e,p9,x3
I3: or pl1,x4,x5
I4: and pl12,pl0,pll
I5: nor pl13,pl0,pl2
IF ID Renaming Instruction window Issue | Execute | Commit Retire
L3 | L Jl8][e2][11] B >[4
(4] |][]l 9][7] (el 1] [||
Roe[12[11[10] 98] 7] 6 5] 4[3]2] |
Instructions to be executed Front-end Instruction window 000 Core Retired insns

Af_a'

Newer instructions

18[17]16 15|14 |13

12[11]10]9]8]7

] []]

6|5]4[3]2

S
In-flight instructions

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Data dependence

\

14

Case 3: Register dataflow from ALUs

« Assume that the other source operand pl12 of insn I5 is from I4 which is not

committed. The operand is generated in the previous clock cycle.

« Because I4 is not retired, RF does not have the operand.

Cycle 9

Because T4 is not committed, ROB does nhot have the operand. 1a: add x3,xe,xe
I1: sub p9,x1,x2
* Where does the operand of I5 come from? I2- add El@,p9,x3
I3: or pl1,x4,x5
I4: and pl12,pl0,pll
I5: nor pl13,pl0,pl2
IF ID Renaming Instruction window Issue | Execute | Commit Retire
3] | [l][2][u] | T 4]
(4] |][]l 9][7] [e]] P11 [||
roe[12[11]10] 98] 7] b 5] 4 [3|[2] |
Instructions to be executed Front-end Instruction window 000 Core Retired insns

Af_a'

Newer instructions

18[17]16 15|14 |13

12[11]10]9]8]7

] []]

6|5]4[3]2

—

In-flight instructions

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Data dependence

\

15

Reorder buffer (ROB)

« Each ROB entry has following fields
« entry valid bit, data valid bit, data, target register number, etc.
« ROB provides the large physical registers for renaming
 in fact, physical register number is ROB entry number

« The value of a physical register may come from a matching ROB entry

Cycle

<

] Entry Data
B Index vjlid Valid 32-bit Data target reg number
— 0
< | head —— 1 1 1 Computed data of I1 - 3
o 2 1 0 2 x4 | gF
o | 1 1 Computed data of I3 X5 Retire
'~ | 1 0 X6
S |w] tail —> 10 1 2 10
o ? .
S
] 49
I10: add plo,p3,p8 (add x10,x5,x6)
8 IF ID Renaming Instruction window Issue | Execute | Commit Retire
(1] | [J[8][6][5] > [2] [|
[12]) | [J[10][9][7] (1| »[] [|
RoB| | [10[9]8]7]6[5[4[3]2]1]

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

16

Datapath of OoO execution processor

Instruction cache

f

\ 4

A

Branch handler

Instruction fetch

v

Instruction decode

Instruction flow

Renaming
» Register file > Dispatch
RS Integer Floating-point | Memory Memory dataflow
¥ ¥ ¥ ¥ ¥ | —
LIt LIt iityd LI i] [L11T]] [T T 111 [ILITIT]]||TInhstructionwindow
v v v v
| A | | AU | | Branch | FP ALU | Adrgen. | | Adrgen. |
\ 4 A 4 ¢
A 4 A 4
NSNS EEEEEEEE LI T T TT T[]
v Store ! !
Reorder buffer (ROB) queue h bata cache
P Register dataflow v v
P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo Reservation station (RS) 17

Instruction fetch unit of 2-way super-scalar

« High-bandwidth instruction delivery using prediction, and speculation

IF

stage

A

'ID, EX+, WB
'stage

Next PC generator (mux)

prediction miss

(2) Target address

lPC’ branch history

Taken/
Untaken

(1) Branch Target PC
 for recovery

~ Pipeline registers

(Branch Target Buffer)

P Branch predictor
ﬁi-“;smiss (3) PC+8
Instructions
— & ,
BTB ‘ Instruction memory (cache)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

A 4

»
»

18

Datapath of 00O execution processor (partially)

Instruction cache

f

Branch handler

\ 4

A

Instruction fetch

v

Instruction decode

Renaming

Instruction flow

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo Reservation station (RS)

\

19

Renaming two instructions per cycle for n-way superscalar

« Renaming instruction I0 and I1 (n = 2)

\

plo
po

p4

Cycle 1 Register map table (4R, 2W)
I0: sub x5,x1,x2 0 0
I1: add x9,x5,x4 1 1
I2: or x5,x5,x2) 2
I3: and x2,x9,x1 3 3 | e , A dst =
e M S > A 1 =
Free tag buffer 4 | 4 g > A_src
................ » A src2 =
I s s b 5-5>9
13|12(11]10| 9™ 6 6
A s B o e e Bdst -
v S N e e v {g— B_src1 -
I@ A det e | 9 § _>1@ If B_srcl==A_dst, use tag from free tag buffer
_ SR I I I B A S e B_src2 =
A_srcl = x1 100 | e ——» °—
A_SPCZ = X2 If B_src2==A_dst, use tag from free tag buffer
T1 B_dst = x9 I10: sub p9,pl1,p2
B_srcl = X5 I1: add p10,p9,ps
B_SF‘CZ = X4 — 31

<

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

20

Aside: What is a window?

\
« A window is a space in the wall of a building or in the side of a vehicle,
which has glass in it so that light can come in and you can see out. (Collins)

Instruction window
| J[8][6][5]
L L el 7]

(a) Instruction window Instructions to be executed for an application

Large instruction window

I O I O A

(C) Instruction window Instruction window

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 21

Datapath of 00O execution processor (partially)

Instruction cache

f

\ 4

A

Branch handler

Instruction fetch

v

Instruction decode

Instruction flow

v v . .
[T T T CLITT1] Instruction window

Renaming
» Register file > Dispatch
Integer Floating-point | Memory
RS |]]]]
L Z L 2 L Z L Z

cI LIl Cerrfry i rry T[]
HEEEEEEEEEEEEEEEEEE

Reorder buffer (ROB)

= Register dataflow

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo Reservation station (RS)

\

22

Reservation station (RS)

« To simplify the wakeup and select logic at issue stage, each functional
unit (ALU) has own instruction window, an entry for such an an
instruction window is called reservation station (RS).

 Each reservation station has

« entry valid bit, srcl tag, srcl data, srcl ready, src2 tag, src2 data, src2
ready, destination physical register number (dst), operation, ...

« The computed data (outcome) with its dst as tag is broadcasted to all RSs.

instruction window for ALU1 and ALU2 IW for ALUl IW for ALU1
L] L L] FI\
ISsue ‘1' ISsue v & Reservation station
ALU1 ALU2
(a) Centralized instruction window (b) Distributed instruction window using RS
valid srcl tag srcl data srclready src2 tag src2 data src2 ready dst operation

ﬁ’ For operand srcl For operand src2
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 23

Datapath of 00O execution processor (partially)

\

Instruction flow

Instruction cache

f \4
Branch handler |« Instruction fetch
v
Instruction decode
Renaming
» Register file > Dispatch
Integer Floating-point |
Row, I I I I — .
[TTT11] T[] [CIIIT] [CII1T1] [TT1T1] [ITTT1T1] Instruction window
v v v v
| AU | | ALU | | Branch | | FPALU
\ 4 \ 4 ¢
(T I I I I IITITITITIT] Broadcast
Reorder buffer (ROB)
= Register dataflow

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo Reservation station (RS) 24

Example behavior of reservation stations

Cycle O dispatch ¥ v I

. I2:
dispatch I1, I2 IW for ALL.” AlB C | D] IW for ALUI 15
issue e

\ 4 T5:

sub p9\kxA1,x2

add p10,p9,x3

nor pl3,plo,pl2

dispatch at most two instructions, one to A or B and the other to C or D

valid srcl tag srcl data srclready src2 tag src2 data src2 ready dst operation

RS_A |
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_B [
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_C |
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_D |
~@ 2 For operand srcl For operand src2

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

25

Example behavior of reservation stations

Cycle 1

dispatch I3, T4
issue Il

IW for ALU1

|I|¢E|

IW for ALU1

EF

\ 4

I1: sub p9,x1,x2
I2: add p?é?pQ,xB
I3:
I14:

\

I5: nor pl3,pl0,pl2
dispatch at most two instructions, one to A or B and the other to C or D
valid srcl tag srcl data srclready src2 tag src2 data src2 ready dst operation
RS_A |1| «xi value of x1 1 I x2 value of x2 1 p9 | Il:sub
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_B [
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
Rs.c [1] o o] x3 valueof x3 | 1 | pl0 | I2:add
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_D [

=

For operand srcl

For operand src2

)

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

26

Example behavior of reservation stations

CYCIZ 2 IW for ALUl IW for ALU1 I1: sub pQ,x1,x2
. I2: add pl19,p9,x3
AlB cC|D I
F:llSpClTCh 15,16 I:‘l:l I%:I I3: or plNx4,x5
issue I2, I3 I4: and p12,p10,p1l
execute Il I1(p9) v I5: nor pl3,pl10,Pp12

dispatch at most two instructions, one to A or B and the other to C or D

\

valid srcl tag srcl data srclready src2 tag src2 data src2 ready dst operation
RS A [0 l T1: sub
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_B 1| x4 value of x4 1 I x5 value of x5 1 pll | I3:or
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS C 1 p9 value of p9 1 I x3 value of x3 1 pl0 | I2:add
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_D [1] pt0 o | pu o| ptz2 |14 and

=

)

For operand srcl

For operand src2

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

27

Example behavior of reservation stations

CYCIZ 3 IW for ALUL IW for ALU1 I1: sub pQ,x1,x2

) AlB c1b I2: add pl19,p9,x3
dISpGTCh I7,1I8 I? I? I3: or pl 4, x5
issue I4 I4: and p12,pl10,p11
execute I2, I3 I3 (pll) W 12 (p10) I5: nor p13,plod,p12

dispatch at most two instructions, one to A or B and the other to C or D

\

=)

)

valid srcl tag srcl data srclready src2 tag src2 data src2 ready dst operation
RS_A [1] p10 [valueofpto [1] p12 01 p13 |15 nor
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_B |i/0 I I3: or
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS C 1/O| I I2: add
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_D |1| pi0 value of p10 1 I pll value of pl1 1 pl2 | I4:and

For operand srcl

For operand src2

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

28

Exercise 1

\
« Example behavior of reservation stations %%
I1: sub p9,x1,x2
diapatch |, J
I2: add
A|lB C|D
iSSLI.Ie:\l:I I:l,:l I3:
SV 3: or
I4: and
I5: nor pl3,pll,pl2
16: add pl4,plo,x7

29

Datapath of OoO execution processor

Instruction cache

f

\ 4

A

Branch handler

Instruction fetch

v

Instruction decode

Instruction flow

Renaming
» Register file > Dispatch
Integer Floating-point | Memory
RS |] |] |]
L Z L 2 L Z L Z L Z L 2
[TI11] [TI111] [III1] [CII11] [T111] [ITI11]
v v v v
| A | | AU | | Branch | FP ALU | Adrgen. | | Adrgen. |
\ 4 A 4 ¢
A 4 A 4
HNEEEEEEEEEEEEEEEEE LIT T T T[]
v Store ! !
Reorder buffer (ROB) queue h bata cache
o Register dataflow ! v

Memory dataflow

Instruction window

Reservation station (RS) 30

Instruction Level Parallelism (ILP) X
\
1w X5, 0(x2) (1)

addi x6, x5, 4 (2)

(o
sw X6, 0(x3) (3) @

? true data
dependency

1w X7, 0(x4) (4) @
?
ambiguous
data dependency
@@;SC.T«% Advance d Computer Architecture, Department of Computer Science, Science Tokyo 31

Memory dataflow and branches x
\

e The update of a data cache cannot be recovered easily.
So, cache update is done at the retire stage in-order manner by
using store queue.
Because of the ambiguous memory dependency, load and store
instructions can be executed in-order manner.

« About 30% (or less) of executed instructions are load and stores.
« Even if they are executed in-order, IPC of 3 can be achieved.
* Branch instructions can be executed in-order manner.

« About 20% (or less) of executed instructions are jump and branch
instructions.

« Out-or-order branch execution and aggressive miss recovery may
cause false recovery (recovery by a branch on the false control
path).

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 32

Pollack's Rule

\

* Pollack’s Rule states that microprocessor "performance 2%
increase due to microarchitecture advances is roughly
proportional to the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

? WIKIPEDIA
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 33

Exercise 1

<

Cycle O dispatch I1,I2

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_A
RS_B |

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_C |
RS_D |

valid_srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_A
RS_B |

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_C |
RS_D |

valid_srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_A
RS_B |

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_C |
RS_D |

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Exercise 1

<

Cycle O dispatch I1,I2

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_A
RS_B |

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_C |
RS_D |

valid_srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_A
RS_B |

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_C |
RS_D |

valid_srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_A
RS_B |

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_C |
RS_D |

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

