
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 1

Advanced Computer Architecture

7. Instruction Level Parallelism:
Dynamic Scheduling

Ver. 2025-01-08aFiscal Year 2024

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No. W8E-308, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 2

Exploiting Instruction Level Parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution

• Register renaming

• Dynamic scheduling

• Memory data flow

• Out-of-order execution

• Another obstacle is instruction cache

(1) add x5,x1,x2
(2) add x9,x5,x3
(3) lw x4, 4(x7)
(4) add x8,x9,x4

(3) lw x4, 4(x7)
(1) add x5,x1,x2
(2) add x9,x5,x3
(4) add x8,x9,x4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 3

True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the
value of insn i.

x3 = 10 x3 = 10

x5 = 2 x3 = 10

x3 = x3 x x5 (1) x3 = 20

x4 = x3 + 1 (2) x3 = 20

x3 = x5 + 3 (3) x3 = 5

x7 = x3 + R4 (4) x3 = 5

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 2 + 3 (3)

26 = 5 + 21 (4)

20 = 10 x 2 (1)

21 = 20 + 1 (2)

41 = 20 + 21 (4)

55 = 2 + 3 (3)

x3 = 10 x3 = 10

x5 = 2 x3 = 10

x3 = x3 x x5 (1) x3 = 20

x4 = x3 + 1 (2) x3 = 20

x7 = x3 + x4 (4) x3 = 20

x3 = x5 + 3 (3) x3 = 5

wrong sequence reordering (3) and (4)

i

j

j

i

i

j

j

i

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 4

Output dependence

• Insn i and j write the same register, WAW (write after write)

• Program order must be preserved to ensure that the value finally
written corresponds to instruction j.

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 2 + 3 (3)

26 = 5 + 21 (4)

5 = 2 + 3 (3)

6 = 5 + 1 (2)

20 = 10 x 2 (1)

41 = 20 + 21 (4)

x3 = 10 x3 = 10

x5 = 2 x3 = 10

x3 = x5 + 3 (3) x3 = 5

x4 = x3 + 1 (2) x3 = 5

x3 = x3 x x5 (1) x3 = 20

x7 = x3 + x4 (4) x3 = 20

wrong sequence reordering (1) and (3)

x3 = 10 x3 = 10

x5 = 2 x3 = 10

x3 = x3 x x5 (1) x3 = 20

x4 = x3 + 1 (2) x3 = 20

x3 = x5 + 3 (3) x3 = 5

x7 = x3 + R4 (4) x3 = 5

i

j i

j

i

j i

j

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 5

Antidependence

• Insn i reads a register that insn j writes, WAR (write after read)

• Program order must be preserved to ensure that i reads the
correct value.

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 2 + 3 (3)

26 = 5 + 21 (4)

20 = 10 x 2 (1)

5 = 2 + 3 (3)

6 = 5 + 1 (2)

11 = 5 + 6 (4)

x3 = 10 x3 = 10

x5 = 2 x3 = 10

x3 = x3 x x5 (1) x3 = 20

x4 = x3 + 1 (2) x3 = 20

x3 = x5 + 3 (3) x3 = 5

x7 = x3 + x4 (4) x3 = 5

i

j

wrong sequence reordering (2) and (3)

i

j

x3 = 10 x3 = 10

x5 = 2 x3 = 10

x3 = x3 x x5 (1) x3 = 20

x3 = x5 + 3 (3) x3 = 5

x4 = x3 + 1 (2) x3 = 5

x7 = x3 + x4 (4) x3 = 5

i

j

i

j

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 6

Data dependence and register renaming

• True data dependence (RAW)

• Name (false) dependences

• Output dependence (WAW)

• Antidependence (WAR)

x3 = x3 x x5 (1)

x4 = x3 + 1 (2)

x3 = x5 + 3 (3)

x7 = x3 + x4 (4)
(3)

(4)

(1)

(2)

RAW
RAW

RAW

RAW

WAW

WAR

WAR

x3 = x3 x x5 (1)

x4 = x3 + 1 (2)

x8 = x5 + 3 (3)

x7 = x8 + x4 (4)

(3)

(4)

(1)

(2)

RAW
RAW

RAW

RAW

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 7

Hardware register renaming

• Logical registers (architectural registers) which are ones defined by
ISA

• x0, x1, … x31

• Physical registers

• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a unique
physical register dynamically in the renaming stage

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Commit Retire

Typical instruction pipeline of high-performance superscalar processor

dequeue & allocate collect & enqueue

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 8

Exercise 1

• Register renaming by hand

• Rename the following instruction stream using physical registers
of p9, p10, p11, and p12 for I0, I1, I2, and I3, respectively

• assuming that x1, x2, and x4 are renamed to p1, p2, and p4
respectively in advance

I0: sub x5,x1,x2

I1: add x9,x5,x4

I2: or x5,x5,x2

I3: and x2,x9,x1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 9

The main hardware for register renaming

• Assume that we have 128 physical registers from p0 to p127

• a physical register is identified with a 7-bit register number (physical reg ID)

• Free tag buffer

• 7-bit width and 128-entry FIFO memory

• having reg IDs of free (not allocated) physical registers

• Register map table

• 7-bit width and 32-entry RAM

• each logical register has its renamed physical reg ID

9101112

Free tag buffer (FIFO)

head

Register map table

0

1

2

3

4

5

6

7

8

31

tail

7 bit

7 bit
128-entry

32-
entry

dequeue

enqueue

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 10

Example behavior of register renaming (1/4)

• Renaming the first instruction I0

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

0

1

2

3

4

5

6

7

8

9

10

31

dst = x5
src1 = x1
src2 = x2

dst = p9
src1 = p1
src2 = p2

I0: sub p9,p1,p2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 11

Example behavior of register renaming (2/4)

• Renaming the second instruction I1

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

Cycle 2

101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

dst = x9
src1 = x5
src2 = x4

dst = p10
src1 = p9
src2 = p4

I0: sub p9,p1,p2
I1: add p10,p9,p4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 12

Example behavior of register renaming (3/4)

• Renaming instruction I2

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

Cycle 3

1112

Free tag buffer

head

13

0

Register map table

1

2

3

4

9->11

6

7

8

10

0

1

2

3

4

5

6

7

8

9

10

31

dst = x5
src1 = x5
src2 = x2

dst = p11
src1 = p9
src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4
I2: or p11,p9,p2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 13

Example behavior of register renaming (4/4)

• Renaming instruction I3

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

Cycle 4

12

Free tag buffer

head

13

0

Register map table

1

2->12

3

4

11

6

7

8

10

0

1

2

3

4

5

6

7

8

9

10

31

dst = x2
src1 = x9
src2 = x1

dst = p12
src1 = p10
src2 = p1

I0: sub p9,p1,p2
I1: add p10,p9,p4
I2: or p11,p9,p2
I3: and p12,p10,p1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 14

Renaming two instructions per cycle for superscalar

• Renaming instruction I0 and I1

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

dst = x5
src1 = x1
src2 = x2

dst = p9
src1 = p1
src2 = p2

I0: sub p9,p1,p2
I1: add p10,p5,p4 (Wrong) dst = x9

src1 = x5
src2 = x4

dst = p10
src1 = p5
src2 = p4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 15

Renaming two instructions per cycle for n-way superscalar

• Renaming instruction I0 and I1 (n = 2)

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table (4R, 2W)

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

A_dst = x5
A_src1 = x1
A_src2 = x2

A_dst = p9
A_src1 = p1
A_src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4

B_dst = x9
B_src1 = x5
B_src2 = x4

B_dst = p10
B_src1 = p9

B_src2 = p4

M
u
x

If B_src1==A_dst, use tag from free tag bufferI0

I1

M
u
x

If B_src2==A_dst, use tag from free tag buffer

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 16

Exercise 2

• Renaming instruction I0, I1, and I2 (n = 3)

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

draw the hardware organization
and the example behabior of cycle 1
renaming three instructions.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 17

Pollack’s Rule

• Pollack's Rule states that microprocessor "performance
increase due to microarchitecture advances is roughly
proportional to the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

WIKIPEDIA

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 18

Hardware register renaming

• Logical registers (architectural registers) which are ones defined by
ISA

• x0, x1, … x31

• Physical registers

• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a unique
physical register dynamically in the renaming stage

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Commit Retire

Typical instruction pipeline of high-performance superscalar processor

dequeue & allocate collect & enqueue

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 19

Exercise 1

• Register renaming by hand

• Rename the following instruction stream using physical registers
of p9, p10, p11, and p12 for I0, I1, I2, and I3, respectively

• assuming that x1, x2, and x4 are renamed to p1, p2, and p4
respectively in advance

I0: sub x5,x1,x2

I1: add x9,x5,x4

I2: or x5,x5,x2

I3: and x2,x9,x1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 20

Example behavior of register renaming and valid bit

• Renaming the first instruction I0

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

Register map table

5->9

0

1

2

3

4

5

6

7

8

9

10

31

dst = x5
src1 = x1
src2 = x2

dst = p9
src1 = x1
src2 = x2

I0: sub p9,x1,x2

0

0

1

valid bit

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 21

Recommended Reading

• Clockhands: Rename-free Instruction Set Architecture for Out-of-order Processors

• Toru Koizumi (NITech), Ryota Shioya, Shu Sugita, Taichi Amano, Yuya Degawa, Junichiro
Kadomoto, Hidetsugu Irie, Shuichi Sakai (U.Tokyo)

• 56th IEEE/ACM International Symposium on Microarchitecture (MICRO’23)

• A quote:
“Out-of-order superscalar processors are currently the only architecture that speeds up irregular
programs, but they suffer from poor power efficiency. To tackle this issue, we focused on how to
specify register operands. Specifying operands by register names, as conventional RISC does, requires
register renaming, resulting in poor power efficiency and preventing an increase in the front-end
width. In contrast, a recently proposed architecture called STRAIGHT specifies operands by inter-
instruction distance, thereby eliminating register renaming. However, STRAIGHT has strong
constraints on instruction placement, which generally results in a large increase in the number of
instructions.

• We propose Clockhands, a novel instruction set architecture that has multiple register groups and
specifies a value as “the value written in this register group 𝑘 times before.” Clockhands does not
require register renaming as in STRAIGHT. In contrast, Clockhands has much looser constraints on
instruction placement than STRAIGHT, allowing programs to be written with almost the same number
of instructions as Conventional RISC. We implemented a cycle-accurate simulator, FPGA
implementation, and first-step compiler for Clockhands and evaluated benchmarks including SPEC CPU.
On a machine with an eight-fetch width, the evaluation results showed that Clockhands consumes 7.4%
less energy than RISC while having performance comparable to RISC. This energy reduction increases
significantly to 24.4% when simulating a futuristic up-scaled processor with a 16-fetch width, which
shows that Clockhands enables a wider front-end.”

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 22

Recommended Reading

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 23

Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution

• Register renaming

• Dynamic scheduling

• Memory data flow

• Out-of-order execution

• Another obstacle is data cache

(1) add x5,x1,x2
(2) add x9,x5,x3
(3) lw x4, 4(x7)
(4) add x8,x9,x4

(3) lw x4, 4(x7)
(1) add x5,x1,x2
(2) add x9,x5,x3
(4) add x8,x9,x4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 24

Out-of-order execution (OoO execution)

• In in-order execution model, all instructions are executed in
the order that they appear as (1), (2), (3), (4) ...
This can lead to unnecessary stalls.

• Instruction (3) stalls waiting for insn (2) to go first,
even though it does not have a data dependence.

• With out-of-order execution,

• Using register renaming to eliminate output dependence
and antidependence, just having true data dependence

• A processor executes instructions in an order governed by the
availability of input data and execution units, and the
processor can avoid being idle while waiting for the preceding
instruction to complete.

• insn (3) is allowed to be executed before the insn (2)

• A key design philosophy behind OoO execution to extract
ILP by executing instructions as quickly as possible.

• Scoreboarding (CDC6600 in 1964)

• Tomasulo algorithm (IBM System/360 Model 91 in 1967)

(3)

(4)

Data flow graph

(1)

(2)

(1) add x5,x1,x2
(2) add x9,x5,x3
(3) lw x4, 4(x7)
(4) add x8,x9,x4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 25

Instruction pipeline of OoO execution processor

• Allocating instructions to instruction window is called dispatch

• Issue or fire wakes up instructions and their executions begin

• In commit stage, the computed values are written back to ROB
(reorder buffer)

• The last stage is called retire or graduate. The completed consecutive
instructions can be retired.
The result is written back to register file (architectural register file)
using a logical register number.

Instruction
Fetch

Instruction
Decode

Register
Renaming

Dispatch

Issue
Execute/
Memory

Commit

Retire

In-order front-end
Out-of-order back-end

In-order retirement

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 26

Instruction window

Instruction window

Aside: What is a window?

• A window is a space in the wall of a building or in the side of a vehicle,
which has glass in it so that light can come in and you can see out. (Collins)

Instructions to be executed for an application

Large instruction window

Instruction window

(a)

(b)

(c)

Instruction window

8 5

7

6

4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 27

Instruction window

The key idea for OoO execution (1/3)

• In-order front-end, OoO execution core, in-order retirement using instruction
window and reorder buffer (ROB)

IF ID Renaming

1

2

Cycle 1

IF ID Renaming

3

4

5

6

Cycle 4

7

8

IF ID Renaming

5

6

Cycle 5

7

8

9

10

I1: sub p9,p1,p2
I2: add p10,p9,p3
I3: or p11,p4,p5
I4: and p12,p10,p11

(3)

(4)

Data flow graph

(1)

(2)

p9

p10
p11

1

2

3

4

IF ID Renaming

1

2

3

4

5

6

Cycle 3

In-order front-end

IF ID Renaming

1

2

3

4

Cycle 2

Instruction window

1

2

assume that instructions cannot
exit the instruction window until cycle 5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 28

The key idea for OoO execution (2/3)

• In-order front-end, OoO execution core, in-order retirement using instruction
window and reorder buffer (ROB)

I1: sub p9,p1,p2
I2: add p10,p9,p3
I3: or p11,p4,p5
I4: and p12,p10,p11

(3)

(4)

Data flow graph

(1)

(2)

p9

p10
p11

Instruction windowIF ID Renaming

5

6

Cycle 5

7

8

9

10

1

2

3

4

Instruction windowIF ID Renaming

7

8

Cycle 6

9

10

11

12

5

2

6

4

Issue

1

3

Instruction windowIF ID Renaming

89

10

Cycle 7

11

12

13

14

5

7

6

4

Issue

2

Execute

1

3

Instruction windowIF ID Renaming

8

10

11

12

Cycle 8

13

14

15

16

5

7

6

9

Issue

4

Execute

2

Commit

1

3

We assume that I1 and I3 can be issued at cycle 6 by dependence.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 29

The key idea for OoO execution (3/3)

• In-order front-end, OoO execution core, in-order retirement using instruction
window and reorder buffer (ROB)

Instruction windowIF ID Renaming

7

8

Cycle 6

9

10

11

12

5

2

6

4

Issue

1

3

Instruction windowIF ID Renaming

89

10

Cycle 7

11

12

13

14

5

7

6

4

Issue

2

Execute

1

3

Instruction windowIF ID Renaming

8

10

11

12

Cycle 8

13

14

15

16

5

7

6

9

Issue

4

Execute

2

Commit

1

3

6 5 4 3 2 1ROB

8 7 6 5 4 3 2 1ROB

10 9 8 7 6 5 4 3 2 1ROB

Instruction windowIF ID Renaming

8

10

13

14

Cycle 9

15

16

17

18

11

7

12

9

Issue

5

6

Execute

4

Commit

2

12 11 10 9 8 7 6 5 4 3 2ROB

Retire

1

Retire

2

3

RF

RF

Architectural register file

Head of the FIFO

Completed consecutive insns

In commit stage, the computed
values are written back to ROB
(reorder buffer)

The completed consecutive
instructions can be retired.
The result is written back to
register file.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 30

Exercise 3

• OoO execution

• Fill out the cycle by cycle processing behavior of these 12
instructions

• wakeup

• select

75

6

8 11

9 10

3

4

1
2

12

Data flow graph

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 31

Instruction window Issue Execute Commit

ROB

Retire

Cycle 1

Instruction window Issue Execute Commit

ROB

Retire

Cycle 2

Instruction window Issue Execute Commit

ROB

Retire

Cycle 3

Instruction window Issue Execute Commit

ROB

Retire

Cycle 4

Instruction window Issue Execute Commit

ROB

Retire

Cycle 5

Instruction window Issue Execute Commit

ROB

Retire

Cycle 6

Instruction window Issue Execute Commit

ROB

Retire

Cycle 7

Instruction window Issue Execute Commit

ROB

Retire

Cycle 8

Instruction window Issue Execute Commit

ROB

Retire

Cycle 9

Instruction window Issue Execute Commit

ROB

Retire

Cycle 10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 32

Prediction miss and recovery

• Assume that instruction 3 is a miss predicted branch and its target insn is 20

• When insn 3 is retired, it recovers by flushing all instructions and restart

• Register file (and PC) has the architecture state after insn 3 is executed

Instruction windowIF ID Renaming

8

10

13

14

Cycle 9

15

16

17

18

11

7

12

9

Issue

5

6

Execute

4

Commit

2

12 11 10 9 8 7 6 5 4 3 2ROB

Retire

2

3

RF

Instruction windowIF ID RenamingCycle 10 Issue Execute Commit

ROB

Retire

RF

Recovery by flushing instructions on the wrong path (may take several cycles)

Instruction windowIF ID RenamingCycle 11

20

21

Issue Execute Commit

ROB

Retire

RF

Restart by fetching instructions using the correct PC

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 33

Branch prediction miss and aggressive recovery

• Instruction 3 is a miss predicted branch and its target insn is 20

• When insn 3 is executed, it recovers by flushing instructions after insn 3 and restarts

Instruction windowIF ID Renaming

89

10

Cycle 7

11

12

13

14

5

7

6

4

Issue

2

Execute

1

3

Instruction windowIF ID RenamingCycle 8 Issue Execute

2

Commit

1

3

8 7 6 5 4 3 2 1ROB

3 2 1ROB

Retire

1

RF

Recovery by flushing instructions on the wrong path (may take several cycles)

Instruction windowIF ID RenamingCycle 9

20

21

Issue Execute Commit

2

3 2ROB

Retire

2

3

RF

Restart by fetching instructions using the correct PC

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 34

Instruction window

Instruction window

Aside: What is a window?

• A window is a space in the wall of a building or in the side of a vehicle,
which has glass in it so that light can come in and you can see out. (Collins)

Instructions to be executed for an application

Large instruction window

Instruction window

(a)

(b)

(c)

Instruction window

8 5

7

6

4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 35

Instruction pipeline of OoO execution processor

• Allocating instructions to instruction window is called dispatch

• Issue or fire wakes up instructions and their executions begin

• In commit stage, the computed values are written back to ROB
(reorder buffer)

• The last stage is called retire or graduate. The completed consecutive
instructions can be retired.
The result is written back to register file (architectural register file)
using a logical register number.

Instruction
Fetch

Instruction
Decode

Register
Renaming

Dispatch

Issue
Execute/
Memory

Commit

Retire

In-order front-end
Out-of-order back-end

In-order retirement

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 36

Recommended Reading

• Focused Value Prediction

• Sumeet Bandishte, Jayesh Gaur, Zeev Sperber, Lihu Rappoport, Adi Yoaz, and Sreenivas
Subramoney, Intel

• ACM/IEEE 47th International Symposium on Computer Architecture (ISCA), pp. 79-91, 2020

• A quote:
“Value Prediction was proposed to speculatively break true data dependencies, thereby allowing Out of
Order (OOO) processors to achieve higher instruction level parallelism (ILP) and gain performance.
State-of-the-art value predictors try to maximize the number of instructions that can be value
predicted, with the belief that a higher coverage will unlock more ILP and increase performance.
Unfortunately, this comes at increased complexity with implementations that require multiple
different types of value predictors working in tandem, incurring substantial area and power cost.
In this paper we motivate towards lower coverage, but focused, value prediction. Instead of
aggressively increasing the coverage of value prediction, at the cost of higher area and power, we
motivate refocusing value prediction as a mechanism to achieve an early execution of instructions that
frequently create performance bottlenecks in the OOO processor. Since we do not aim for high
coverage, our implementation is light-weight, needing just 1.2 KB of storage. Simulation results on 60
diverse workloads show that we deliver 3.3% performance gain over a baseline similar to the Intel
Skylake processor. This performance gain increases substantially to 8.6% when we simulate a
futuristic up-scaled version of Skylake. In contrast, for the same storage, state-of-the-art value
predictors deliver a much lower speedup of 1.7% and 4.7% respectively. Notably, our proposal is
similar to these predictors in performance, even when they are given nearly eight times the storage
and have 60% more prediction coverage than our solution.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 37

Recommended Reading

