Fiscal Year 2024

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

7. Instruction Level Parallelism:
Dynamic Scheduling

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No. W8E-308, Lecture (Face-to-face) Kenji Kise, Department of Computer Science
Mon 13:30-15:10, Thr 13:30-15:10 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, ScienSg okyo 1

I ——— ——

e —

Exploiting Instruction Level Parallelism (ILP) x
— §§

* A superscalar has to handle some flows efficiently to exploit ILP

« Control flow (control dependence)

« To execute ninstructions per clock cycle, the processor has to

fetch at least ninstructions per cycle.

* The main obstacles are branch instruction (BNE)

* Prediction
« Another obstacle is instruction cache

 Register data flow (data dependence)

« Qut-of-order execution (1)

* Register renaming g;

« Dynamic scheduling (4)

* Memory data flow (3)
« Out-of-order execution (1)

(2)
e Another obstacle is instruction cache (4

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

add
add

add

1w

add
add
add

x5,x1,x2
x9,x5,x3
x4, 4(x7)
x8,x9,x4

x4, 4(x7)
x5,x1,x2
x9,x5,x3
x8,x9,x4

; RAW
"

True data dependence

* Insniwrites aregister that insn j reads, RAW (read after write

* Program order must be preserved to ensure insn j receives the
value of insn i.

\

wrong sequence reordering (3) and (4)

x3 = 10 x3 = 10 x3 = 10 x3 = 10
X5 = 2 X3 = 10 X5 = 2 X3 10
x3 = x3 x x5 (1) x3 = 20 x3 = x3 x x5 (1) x3 = 20
= x3 + 1 (2) x3 = 20 x4 = x3 + 1 (2) x3 = 20
|— x5 + 3 (3) x3 =5 J x7 =(x3)+ x4 (4) x3 = 20
J+ RA (4) X3 =5 iGA=x5+3 (3) x3 =5
20 = 10 X 2 (1) 20 = 10 x 2 (1)
21 = 20 + 1 (2) 21 = 20 + 1 (2)
i -2 +3 (3) j 41 =Qe)+ 21 (4)
j%+ 21 (4) i (5=2 +3 (3)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Output dependence
\
* Insniand jwrite the same register, WAW (write after write) X

* Program order must be preserved to ensure that the value finally

written corresponds to instruction j.
wrong sequence reordering (1) and (3)

3 = 10 x3 = 10 x3 = 10 x3 = 10
X5 = 2 X3 = 10 X5 = 2 X3 = 10
i@= x3 x x5 (1) x3 = 20 J®= X5 + 3 (3) x3 =5
lx4 - x3+1 (2) x3 =20 x4 =x3+1 (2) x3 =5
j(x3)=x5+3 (3) x3=5 i (x3)=x3 x x5 (1) x3 = 20
7 =x3+R4 (4) x3 =5 X7 = x3 + x4 (4) x3 = 20
|.-1@x2 (1) @=2 + 3 (3)
|21 = 20 + 1 (2) 5 + 1 (2)
J<::)= 2 43 (3) {lID= X 2 (1)
=5 + 21 (4) 20 + 21 (4)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 4

Antidependence

* Insnireads aregister that insn j writes, WAR (write after read

* Program order must be preserved to ensure that i reads the
correct value.

\

wrong sequence reordering (2) and (3)

<

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

x3 = 10 x3 = 10 x3 = 10 x3 = 10
X5 = 2 x3 = 10 X5 = 2 x3 = 10
x3 = x3 x x5 (1) x3 = 20 x3 = x3 x x5 (1) x3 = 20
i x4 =(x3)+ 1 (2) x3 =20 | |[J(x3)= x5+ 3 (3) x3 =5
iG3y= x5 +3 (3) x3 =5 i x4 =(x3)+ 1 (2) x3 =5
X7 = x3 +x4 (4) x3 =5 X7 =x3 +x4 (4) x3 =5
20 = 10 X 2 (1) 20 = 10 X 2 (1)
i =q||p+ 1 (2) i(5)=2 +3 (3)
\1(::)_.2 + 3 (3) 6 (5)+1 (2)
=5 + 21 (4) 11 =5 + 6 (4)

Data dependence and register renaming

* True data dependence (RAW)

* Name (false) dependences
 Output dependence (WAW)
« Antidependence (WAR)

X3 = x3 x x5 (1)
x4 = x3 + 1 (2)
X3 = x5+ 3 (3)
X7 = X3 + x4 (4)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

X3
x4
X8
X7

= x3 x x5 (1)
=x3 + 1 (2)
= x5 + 3 (3)
= X8 + x4 (4)

Hardware register renaming

A
 Logical registers (architectural registers) which are ones defined by
ISA

« x0, x1, ... x31
 Physical registers
« Assuming plenty of registers are available, p0O, p1, p2, ...

« A processor renames (converts) each logical register to a unique
physical register dynamically in the renaming stage

Typical instruction pipeline of scalar processor

IF ID EX MEM WB

Typical instruction pipeline of high-performance superscalar processor

IF ID Renaming | Dispatch Issue | Execute | Commit Retire

&’ dequeue & allocate collect & enqueue
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 7

Exercise 1
N

 Register renaming by hand

« Rename the following instruction stream using physical registers
of p9, pl10, pll, and p12 for IO, I1, I2, and I3, respectively

« assuming that x1, x2, and x4 are renamed to p1, p2, and p4
respectively in advance

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

The main hardware for register renaming %\%
\

« Assume that we have 128 physical registers from pO to p127
« a physical register is identified with a 7-bit register number (physical reg ID)
* Free tag buffer

« 7-bit width and 128-entry FIFO memory Register map table
* having reg IDs of free (not allocated) physical registers 0)
« Register map table 1
 7-bit width and 32-entry RAM 2
« each logical register has its renamed physical reg ID i
° " 32-
Free tag buffer (FIFO) 6 entry
enqueue 7
7bi‘r{ =) 12|11|10 9P 3
T T dequeue
tail head
\ . 31)
Y - —

128-entry
7 bit
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 9

Example behavior of register renaming (1/4)

« Renaming the first instruction I0

Cycle 1

10:
I1:
I12:
I3:

sub
add
or

and

x5,x1,x2
X9,x5,x4
x5, x5,x2
X2,X%X9,x1

Free tag buffer

13

12

11

10| 9

ot

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

dst

srcl
src2

X5

x1l —
X2

Register map table

9 (%]
— 2 2

3 3

4 4

5.7, 50 | | | » dst = p9
.................. 6 Bt —> crcl = pl
................. o ww7 [rer - o2

8 8

9

10 I10: sub p9,pl,p2

31

10

Example behavior of register renaming (2/4)

« Renaming the second instruction Il

Cycle 2

10:
I1:
I12:
I13:

sub
add
or

and

x5,x1,x2
X9,x5,x4
x5, x5,x2
X2,X%X9,x1

Free tag buffer

13

12|1110 i

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

dst =
srcl =
src2 =

Register map table

X9

x5 —
x4

31

...................... » dst = plo
.......... srcl = po
> src2 = p4

I0: sub p9,pl,p2
I1: add p10,p9,p4s

\

11

Example behavior of register renaming (3/4)

« Renaming instruction I2

Cycle 3

10:
I1:
12:
I13:

sub
add
or

and

x5,x1,x2
X9, x5,x4
X5, x5,x2
X2,X%X9,x1

Free tag buffer

13

12

11

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

I

head

dst

srcl
src2

sy

Register map table

X5

° (%
! 1
— 2 ;
> 3
* 4
»5 p9->11
........................... e
.............................. =
8 8
9 G
10

x5 —
X2

31

...................... » dst = pl1l
.......... srcl = po
> src2 = p2

I0: sub p9,pl,p2
I1: add p10,p9,p4s
I2: or pl1,p9,p2

\

12

Example behavior of register renaming (4/4)

* Renaming instruction I3

Cycle 4

10:
I1:
I12:
I3:

sub
add
or

and

X5,x1,Xx2
X9, x5, x4
X5,x5,x2
X2,X%X9,x1

Free tag buffer

13

<

12
Thead
dst
srcl
src2

Register map table

° %)
2 w2->12
fg“ 3
<,]
5 11
6 | 6.
.. o
i 7 :
> 9 =
10
X2
9 |
x1
31

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

I1:
12:
I13:

pl2
plo

pl

sub p9,pl,p2
add plo,p9,psd

or

pll,p9,p2

\

and pl2,pl0,pl

13

Renaming two instructions per cycle for superscalar

« Renaming instruction I0 and Il

dst
srcl
src2

dst
srcl
src2

I1: add plo,p5,p4 (Wrong)

Cycle 1 Register map table
I0: sub x5,x1,x2 0 0
I1: add x9,x5,x4 > 1 1
I2: or x5,x5,x2 .9 2
I3: and x2,x9,x1 3 3 | e >
Free tag buffer > 4 R :
O e o SN
13112]11]10| g fesp . c
T R 7 7 >
head | el 8 8 i
dst = x5 gr ->10]
srcl = x1 10
src2 = x2
I0: sub p9,pl,p2
dst = x9
srcl = x5
src2 = x4 — 31

—

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

\

14

Renaming two instructions per cycle for n-way superscalar

« Renaming instruction I0 and I1 (n = 2)

\

plo
po

p4

Cycle 1 Register map table (4R, 2W)
I0: sub x5,x1,x2 0 0
I1: add x9,x5,x4 1 1
I2: or x5,x5,x2) 2
I3: and x2,x9,x1 3 3 | e , A dst =
e M S > A 1 =
Free tag buffer 4 | 4 g > A_src
................ » A src2 =
I s s b 5-5>9
13|12(11]10| 9™ 6 6
A s B o e e Bdst -
v S N e e v {g— B_src1 -
I@ A det e | 9 § _>1@ If B_srcl==A_dst, use tag from free tag buffer
_ SR I I I B A S e B_src2 =
A_srcl = x1 100 | e ——» °—
A_SPCZ = X2 If B_src2==A_dst, use tag from free tag buffer
T1 B_dst = x9 I10: sub p9,pl1,p2
B_srcl = X5 I1: add p10,p9,ps
B_SF‘CZ = X4 — 31

<

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

15

Exercise 2

« Renaming instruction IO, I1, and I2 (n = 3)

Cycle 1

I0: sub
I1: add
I2: or
I3: and

x5,x1,x2
xX9,x5,x4
x5,x5,x2
X2,X9,x1

Free tag buffer

13

12|11/10| 9

head

draw the hardware organization
and the example behabior of cycle 1
renaming three instructions.

16

Pollack's Rule

\

* Pollack’s Rule states that microprocessor "performance 2%
increase due to microarchitecture advances is roughly
proportional to the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

? WIKIPEDIA
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 17

Hardware register renaming

A
 Logical registers (architectural registers) which are ones defined by
ISA

« x0, x1, .. x31
 Physical registers
« Assuming plenty of registers are available, p0O, p1, p2, ...

« A processor renames (converts) each logical register to a unique
physical register dynamically in the renaming stage

Typical instruction pipeline of scalar processor

IF ID EX MEM WB

Typical instruction pipeline of high-performance superscalar processor

IF ID Renaming | Dispatch Issue | Execute | Commit Retire

ﬁ’ dequeue & allocate collect & enqueue
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 18

Exercise 1
N

« Register renaming by hand

« Rename the following instruction stream using physical registers
of p9, pl0, pl11, and p12 for IO, I1, I2, and I3, respectively

* assuming that x1, x2, and x4 are renamed to pl, p2, and p4
respectively in advance

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 19

Example behavior of register renaming and valid bit

« Renaming the first instruction I0

Cycle 1

10:
I1:
I12:
I3:

sub
add
or

and

x5,x1,x2
X9,x5,x4
x5, x5,x2
X2,X%X9,x1

Free tag buffer

13

12

11

10| 9

ot

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

dst

srcl
src2

X5

x1l —
X2

Register map table
valid bit

31

3
aQ
"
+
I
<
O

n
)
N
=
]
X
=

v
n
S
@]
N
1l
X
N

I10: sub p9,x1,x2

\

20

Recommended Reading

Clockhands: Rename-free Instruction Set Architecture for Out-of-order Processors \

« Toru Koizumi (NITech), Ryota Shioya, Shu Sugita, Taichi Amano, Yuya Degawa, Junichiro
Kadomoto, Hidetsugu Irie, Shuichi Sakai (U.Tokyo)

« 56th IEEE/ACM International Symposium on Microarchitecture (MICRO'23)

A quote:

"Out-of-order superscalar processors are currently the only architecture that speeds up irregular
programs, but they suffer from poor power efficiency. To tackle this issue, we focused on how to
specify register operands. Specifying operands by register names, as conventional RISC does, requires
register renaming, resulting in poor power efficiency and preventing an increase in the front-end
width. In confrast, a recently proposed architecture called STRAIGHT specifies operands by inter-
instruction distance, thereby eliminating register renaming. However, STRAIGHT has strong
constraints on instruction placement, which generally results in a large increase in the number of
instructions.

We propose Clockhands, a novel instruction set architecture that has multiple register groups and
specifies a value as "the value written in this register group k times before.” Clockhands does not
require register renaming as in STRAIGHT. In contrast, Clockhands has much looser constraints on
instruction placement than STRAIGHT, allowing programs to be written with almost the same number
of instructions as Conventional RISC. We implemented a cycle-accurate simulator, FPGA
implementation, and first-step compiler for Clockhands and evaluated benchmarks including SPEC CPU.
On a machine with an eight-fetch width, the evaluation results showed that Clockhands consumes 7.4%
less energy than RISC while having performance comparable o RISC. This energy reduction increases
significantly to 24.4% when simulating a futuristic up-scaled processor with a 16-fetch width, which
shows that Clockhands enables a wider front-end.”

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

21

Recommended Reading

(b) A RISC (RISC-V) assembly

(a) A simple code
void iota(int arr[], int N) {
inti;
for(i=0;i<N; ++i){
arr[i] =i;
}
}
(c) STRAIGHT assembly
iota:
ble [3], zero, .L1
spaddi -8
addi zero,0 #i
sd [4], O(sp) # RetAddr
mv [6] # &arr[i]
mv [8] #N
j L3
L2:
addi [6],4 # &arr]i]
mv (6] # N relay
nop # dist. adjust
.L3:
SW [5], O([3])
addiw [6],1 H#H++i
bne [1], [4], .L2
Id O(sp)
spaddi 8
L1
ret [2]

iota:
ble al,zero,.L1
addi a5,zero,0 #i
.L3:
sw a5, 0(a0)
addiw a5, a5, 1 H#++i
addi a0, a0, 4 # &arrli]
bne al, a5, .L3
.L1:
ret ra 7
(d) Clockhands assembly
iota:
ble s[2], zero, .L1
addi t,zero,0 #i
mv t,s[1] # &arrli]
.L3:
sw t[1], O(t[0])
addiw t, t[1],1 # ++i
addi t,t[1],4 # &arr][i]
bne t[1],s[2], .L3
L1:
ret s[0] 7

Figure 1: (a) Simple code written in C. (b) Assembly code com-
piled for RISC-V, a conventional RISC architecture. a0, a1,
and a5 are logical register names. (c) Assembly code compiled
for STRAIGHT, an existing rename-free architecture. The
shaded parts indicate instructions that have been added com-
pared with the RISC-V code. In STRAIGHT, the destination
register of an instruction is not specified and is implicitly
assigned from a ring buffer. A source operand of an instruc-
tion is specified by an inter-instruction distance, such as [1],
[3]1, and [6] (e.g., [3] represents a reference to the result of
three previous instructions.). (d) Assembly code compiled
for Clockhands, our proposed architecture. t and s represent
the names of hands (i.e., register groups). In Clockhands, the
destination register of an instruction is specified by a hand
identifier. A source register of an instruction is specified by
combining a hand identifier and an inter-register distance,
denoted as [2] (e.g., t[2] represents a reference to the result
of three previous registers in the hand t.).

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

22

e, e —— ——

* A superscalar has to handle some flows efficiently to exploit ILP

« Control flow (control dependence)

« To execute ninstructions per clock cycle, the processor has to
fetch at least ninstructions per cycle.

* The main obstacles are branch instruction (BNE)
* Prediction
* Another obstacle is instruction cache

 Register data flow (data dependence)

« Out-of-order execution (1) add x5,x1,x2 o
. . (2) add x9,x5,x3
d RZgISTCf‘ renaming (3) 1w x4, 4(x7) RAW
» Dynamic scheduling (4) add x8,x9,x4 @
* Memory data flow (3) Tu x4, 4(x7) -

Exploiting Instruction Level parallelism (ILP) x
\

o -nf- : (1) add x5,x1,x2
Out-of-order execution (2) add X5 x5 3

« Another obstacle is data cache (4) add x8,x9,x4

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 23

Out-of-order execution (OoO execution)

\
 Inin-order execution model, all instructions are executed in x
the order that they appear as (1), (2), (3), (4) ...
This can lead to unnecessary stalls. @

« Instruction (3) stalls waiting for insn (2) to go first,
even though it does not have a data dependence.

« With out-of-order execution, @ @
« Using register renaming to eliminate output dependence
and antidependence, just having true data dependence \
« A processor executes instructions in an order governed by the

availability of input data and execution units, and the
processor can avoid being idle while waiting for the preceding (1) add x5,x1,x2

instruction to complete. (2) add x9,x5,x3
. . . (3) 1w x4, 4(x7)
insn (3) is allowed to be executed before the insn (2) () add x8,x9,x4
« A key design philosophy behind OoO execution to extract
ILP by executing instructions as quickly as possible. Data flow graph

« Scoreboarding (CDC6600 in 1964)
ﬁv « Tomasulo algorithm (IBM System/360 Model 91 in 1967)
C

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 24

Instruction pipeline of OoO execution processor x
\

* Allocating instructions to instruction window is called dispatch
« Issue or fire wakes up instructions and their executions begin

« Incommit stage, the computed values are written back to ROB
(reorder buffer)

« The last stage is called retire or graduate. The completed consecutive
instructions can be retired.
The result is written back to register file (architectural register file)
using a logical register number.

Instruction | Instruction| Register Dispatch
Fetch Decode Renaming P Out-of d back-end
urt-or-order bpack-e
In-order front-end Execute/

Issue Commit

Memory

Retire

&’ In-order retirement
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 25

Aside: What is a window?

\
« A window is a space in the wall of a building or in the side of a vehicle,
which has glass in it so that light can come in and you can see out. (Collins)

Instruction window
| J[8][6][5]
L L el 7]

(a) Instruction window Instructions to be executed for an application

Large instruction window

I O I O A

(C) Instruction window Instruction window

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 26

The key idea for OoO execution (1/3)

« In-order front-end, OoO execution core, in-order retirement using instruction
window and reorder buffer (ROB)

Cycle 1

Cycle 2

Cycle 3

Cycle 4

IF ID Renaming
HSNE
] ||| In-order front-end

IF ID Renaming
]

]

IF ID Renaming
6]

IF ID Renaming Instruction window
El g
Le]| [ad] | LI I[2]

IF ID Renaming Instruction window
[9] El g EE
Lo Jf | LI Jla]l2]

I1:
I12:
I3:
14:

sub p9,pl,p2
add plo,p9,p3
or pll,p4,p5
and pl2,plo,pll

N9

\ p1e
pll ‘IIIID

Data flow graph

assume that instructions cannot
exit the instruction window until cycle 5

\

27

The key idea for OoO execution (2/3)

« TIn-order front-end, OoO execution core, in-order retirement using instruction
window and reorder buffer (ROB)

Cycle 5

Cycle 6

Cycle 7

Cycle 8

Af_a'

IF ID Renaming Instruction window I1:
B (5] | (G .
Lo || LIl J4l2] I3:
I14:
IF ID Renaming Instruction window Issue
Lof) Lz) | L dLe][s]
L || LIl Jt4d(2]
We assume that I1 and I3 can be issued at cycle 6 by dependence.
IF ID Renaming Instruction window Issue | Execute
El e E >[1]
o) | OO@E| O >E]
IF ID Renaming Instruction window Issue Execute | Commit
El R e E >[2]
L2 | L_J[of[9][7] (1] »]

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

sub p9,pl,p2
add pl10,p9,p3
or pll,p4,p5
and pl2,pl0,pll

N9

plo

pll ‘IIIID

Data flow graph

\

28

The key idea for OoO execution (3/3)

window and reorder buffer (ROB)

In-order front-end, OoO execution core, in-order retirement using instruction

In commit stage, the computed
Cycle 6 IF ID Renaming Instruction window Issue values are written back to ROB
Lol Lz | L Ledls] (reorder buffer)
L || LI Jted2] Head of the FIFO
__ roel | [[[[lelsl4lslele]
Cycle 7 IF ID Renaming | | Instruction window Issue | Execute The completed consecutive
13 1 9 31615 > > 1 instructions can be retired.
The result is written back to
Gof| | L[] | L[| D[] registerfie
ROB | | | | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1' Completed consecutive insns
Cycle 8 IF ID Renaming | | Instruction window Issue | Execute | Commit // Retie |
(| L Jl8]le][5] > 2]
2] | L J[10][9][7] (1] »[] {LAI |
rRoOB[| |10|9|8|7|6|5|4|3|2|1/
Cycle 9 IF ID Renaming Instruction window Issue | Execute /Commi‘r Reftire
y
(3| LJL8]{s2][1] > JEY
[4]) | L J[o][9][7] [6] >@ []
= rog[12[11[10] 9[8[7] 6] 5] 4]3] 2] |

Architectural register file

29

Exercise 3

e 000 execution

* Fill out the cycle by cycle processing behavior of these 12
instructions

wakeup
e select

@/ Data flow graph

\

30

Cycle 1

Instruction window

Cycle 6

Retire

||
[

Instruction window

Cycle 2

Cycle 7

Instruction window

Retire

||
||

Instruction window

Commit

[]
[]

Retire

||
||

|ROB

Cycle 3

|ROB

Cycle 8

Instruction window

Execute

[]
[]

Commit

[]
[]

Retire

||
||

Instruction window

Execute

[]
[]

Commit

[]
[]

Retire

||
||

|ROB

Cycle 4

L

|ROB

Cycle 9

Instruction window

Execute

[]
[]

Commit

[]
[]

Retire

||
||

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

||
||

L

|ROB

Cycle 5

L

|ROB

Cycle 10

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

||
||

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

[]
[]
[|

lROB

[]
[]
[|

|ROB

||
||

Prediction miss and recovery

« Assume that instruction 3 is a miss predicted branch and its target insn is 20 \
* When insn 3 is retired, it recovers by flushing all instructions and restart
« Register file (and PC) has the architecture state after insn 3 is executed

Cycle 9 IF ID Renaming Instruction window Issue | Execute | Commit Retire
[3)] [L8 [12][1] > [4]

@ | JeB@| e O .
rRoB{12|11]10/9|8|7|6|5|4]3]2]| |

Cycle 10 IF ID Renaming Instruction window Issue | Execute | Commit Reftire
L L Ly L] L L L
HpEEpEE . I 200 []
roe| | | | [[| | T B[]

Recovery by flushing instructions on the wrong path (may take several cycles)

Cycle 11 IF ID Renaming Instruction window Issue | Execute | Commit Reftire
I Ly I] L] [Il

LI L I] L1 »C] [L
roB| | | | [[| | T B [||

™

) Af_a' Restart by fetching instructions using the correct PC

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 32

Branch prediction miss and aggressive recovery

« Instruction 3 is a miss predicted branch and its target insn is 20

« When insn 3 is executed, it recovers by flushing instructions after insn 3 and restarts

Cycle 7

IF ID Renaming Instruction window Issue | Execute
Lo || LJLeflell5] >[1]

Lol | LIl JL4]l7] (1| >
__ roB| | [| [8]7]e[5]4]3]2]1]

IF ID Renaming Instruction window Issue | Execute | Commit Retire
L L] L] D
LI O L) O] (1] »] |

roe| | | | [| | | | [3]2]1]

Recovery by flushing instructions on the wrong path (may take several cycles)

IF ID Renaming Instruction window Issue Execute | Commit Reftire
LI O] L] » L]
HiSN g . (1 1] [

roe| | | | [| | | | J3fe] |

Restart by fetching instructions using the correct PC

Aside: What is a window?

« A window is a space in the wall of a building or in the side of a vehicle,

A

which has glass in it so that light can come in and you can see out. (Collins)

(c)

Instruction window

Instructions to be executed for an application

Instruction window
| J[8][6][5]
L L el 7]

Large instruction window

Instruction window

Instruction window

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

34

Instruction pipeline of OoO execution processor x
\

* Allocating instructions to instruction window is called dispatch
« Issue or fire wakes up instructions and their executions begin

« Incommit stage, the computed values are written back to ROB
(reorder buffer)

« The last stage is called retire or graduate. The completed consecutive
instructions can be retired.
The result is written back to register file (architectural register file)
using a logical register number.

Instruction | Instruction| Register Dispatch
Fetch Decode Renaming P Out-of d back-end
urt-or-order bpack-e
In-order front-end Execute/

Issue Commit

Memory

Retire

&’ In-order retirement
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 35

Recommended Reading
\
* Focused Value Prediction

« Sumeet Bandishte, Jayesh Gaur, Zeev Sperber, Lihu Rappoport, Adi Yoaz, and Sreenivas
Subramoney, Intel

« ACM/IEEE 47th International Symposium on Computer Architecture (ISCA), pp. 79-91, 2020

* A quote:
"Value Prediction was proposed to speculatively break true data dependencies, thereby allowing Out of
Order (OOOQ) processors to achieve higher instruction level parallelism (ILP) and gain performance.
State-of-the-art value predictors try to maximize the number of instructions that can be value
predicted, with the belief that a higher coverage will unlock more ILP and increase performance.

In this paper we motivate towards lower coverage, but focused, value prediction. Instead of
aggressively increasing the coverage of value prediction, at the cost of higher area and power, we
motivate refocusing value prediction as a mechanism to achieve an early execution of instructions that
frequently create performance bottlenecks in the OOO processor.

Simulation results on 60
diverse workloads show that we deliver 3.3% performance gain over a baseline similar to the Intel
Skylake processor.

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 36

Recommended Reading

Front End 4 wide fetch and decode , TAGE/ITTAGE branch predic-
tors [24], 20 cycles mis-prediction penalty, 64KB, 8-way
L1 instruction cache, 4 wide rename into OOO with macro

18% 40% and micro fusion
-FVP lPC -.-FVP Coverage Execution | 224 ROB entries, 64 Load Queue entries, 60 Store Queue

entries and 97 Issue Queue entries. 8§ Execution units

16% o (ports) including 2 load ports, 3 store address ports (2
35% 35% shared with load ports), 1 store-data port, 4 ALU ports,
¥ 3 FP/AVX ports, 2 branch ports. 8 wide retire and full
c support for bypass. Aggressive memory disambiguation
) 14% 31% o predictor. Out of order load scheduling to L1
v 30% Caches 32 KB, 8-way LI data caches with latency of 5 cycles,
E 256 KB 16-way L2 cache (private) with a round-trip
o 12% latency of 15 cycles. 8 MB, 16 way shared LLC with
~ 25% data round-trip latency of 40 cycles. Aggressive multi-
o 259 stream prefetching into the L2 and LLC. PC based stride
= (o)) prefetcher at L1
% 10% %D Memory Two DDR4-2133 channels, two ranks per channel, eight
“ 20% 5 banks per rank, and a data bus width per channel of 64
7] > g bits. 2 KB row buffer per bank with 15-15-15-39 (tCAS-
B 8% 18% (@) tRCD-tRP-tRAS) timing parameters
16% ©
] 15% TABLE II
c 5.7% CORE PARAMETERS FOR SIMULATION
m
E 4.6% 10% Benchmarks Category
o] 1 h, bzip2, , mcf, h264ref,
€ 4% 3.3% perlbench, bzip gce, me 64re SPEC INT 2006
o gobmk,hmmer, sjeng, libquantum, (ISPECO6)
o 2.6% omnetpp, astar, xalancbmk
5% bwaves, gamess, milc, zeusmp,
2% 0.9% soplex, povray, calculix, gemsfdtd, SPEC FP 2006
* tonto, wrf, sphinx3 gromacs, ’ (FSPEC06)
. - % cactusADM, leslie3D, namd, deall
0% Q

nab, cam4, pop2, roms, leela,
FSPECO6 ISPECO6 Server SPEC17 Geomean cactubssn, xz, gee, mef, xalanc, SPEC17
exchange2, omnetpp, perlbench,
bwaves, 1bm, fotonik3d
Fig. 6. Performance and Coverage of FVP on Skylake lammps [4], hplinpack [3],
tpce, spark, cassandra [1],
specjbb [5]. specjenterprise,
hadoop [2], specpower [6]
TABLE IIT
APPLICATIONS USED IN THIS STUDY

Server

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

