Fiscal Year 2023

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

6. Instruction Level Parallelism:
Instruction Fetch and Branch Prediction

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No. W8E-308, Lecture (Face-to-face) Kenji Kise, Department of Computer Science
Mon 13:30-15:10, Thr 13:30-15:10 kise _at__ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, ScienSg okyo 1



Exploiting Instruction Level Parallelism (ILP)

\
» A superscalar has to handle some flows efficiently to exploit ILP X

« Control flow (control dependence)

« To execute ninstructions per clock cycle, the processor has to

fetch at least ninstructions per cycle.

« The main obstacles are branch instruction (BNE)

 Prediction
« Another obstacle is instruction cache

* Register data flow (data dependence)

« Out-of-order execution (1)

* Register renaming g;

« Dynamic scheduling (4)

* Memory data flow (3)
« QOut-of-order execution (1)

(2)
e Another obstacle is instruction cache (4

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

add
add

add

1w

add
add
add

x5,x1,x2 0
x9,x5,x3

x4, 4(x7) RAW
x8,x9,x4 @
x4, 4(x7)

RAW

x5,x1,x2 RAW
x9,x5,x3
X8, x9, x4



Hardware branch predictor %\%
\

« A branch predictor is a digital circuit that tries to guess or predict
which way (taken or untaken) a branch will go before this is known
definitively.

« A random predictor will achieve about a 50% hit rate because the
prediction output is 1 (taken) or O (untaken).

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 3



rvcore_4s : 4-stage pipelining processor with data forwarding

« The strategy is to separate the instruction fetch (IF) step, instruction decode (ID) step,

and write back(WB) step, and other (EX, MA) steps. The first stage is named IF. The
second stage is hamed ID. The third stage is named EX+. The last stage is hamed WB.

IF stage Pl ID stage P2 EX+ stage P3  WB stage
P2 jalr
P1 _pc %
?1P2_pc . § 32 §|
w_alu ¢ w_exrrsl | X 2
w_bru ¢ +
w_itype
w_op_im
w_jalr J P2_ bm ¢ w b rslt
N %)
1 ) P2 w_exrrsl \
w_imm_t L [fmm_t m bru| 1 -
> |
. . o W_exrrs2 5| brul A
r pe 5o w_imm Jr2 |2 §
w_b_rslt S{P1 pc 2 A imm g P2 alu ¢ =
&P2. v 33 S M) 1 £
32 © 8|5 wsl 32w sl =r>|=z | w_exrrsl
g7 [7 — 7| p2_ |LSLS|E l
o 5 w2 o et PO fmaial2 wamn
e m_imem| ® {| . 7 32 o) alul 7 T a_rsit 32
g—> g 1L 1PIE imem1 7| PLir 5 wrd | m_regfile = W_exrrs2 e s?
7 WQ regfilel W_I’I‘S2_t § 32 P2 <
P3 rd bypass x rrs2 ~
0 \ / —> Ippes) W imm i w_exrrsl 3,2\ P3_
; P3 v - = —> 32D ADDR 72 14d
7 —> I .
32 + rslt B P2 imm|+
4—p—> wrs —_—> 32 p_ouT|m_dmem
ﬁ dmem1
! W_exrrs2 D WE
— > — > _ — >
(w b rslt & P2 v) 15— — . > P
P2_itype['D_S TYPE] & P2_v w rslt

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo



Why do branch instructions degrade IPC?

\
« The branch taken / untaken is determined in the execution (EX) stage
of the branch.

« The conservative approach is stalling instruction fetch until the branch
direction is determined.

« Tt is too conservative to be practical.

ccl cc2 |cc3 cc4| cc5 cc6 cc7 cc8 cc9 «cclo

1. add | IF | 1D | EX+ | wsB
2. add | IF | > | Ex+ | wB
3. bne [ IF | 1D [ Ex+ | WB |
4. add Control dependency\ IF [ 15 [ ] ws ]
5 add stalling IF | ID | Ex+ | WB |

insn fetch
6. add [ IF [ > [EX+ | WB |
7. add [ IF [ 0 [ Ex+ | wB |

2-way superscalar processor executing instruction sequence with a branch

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 5



Why do branch instructions degrade IPC?

« The branch taken / untaken is determined in the execution (EX+) stage

of the branch.

 Prediction and speculation, then training
 [Recovery when a prediction miss

add
add
bne
add
add
add
add

Noohswn e

ccl cc2 «cc3 cc4| cc5 cc6| cc7 cc8 cc9 «cclo
| IF | ID | EX+ | WB
| IF | ID | Ex+ | WB
| IF | > | Ex+ | WB |
IF | ID | Ex+ | wB
1 IF | 0 | EX+ | wB
| IF | ID | EX+ | WB |
| IF | ID | Ex+ | WB |

2-way superscalar processor executing instruction sequence with a branch

Speculative execution performs some task that may not be needed. Work is done
_ before it is known whether it is actually needed, so as to prevent a delay that would
~@9' have to be incurred by doing the work after it is known that it is needed.

P CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

\



Why do branch instructions degrade IPC?

« The branch taken / untaken is determined in execution stage of the
branch.

 Prediction and speculation, then training

- [Recovery when a prediction miss

« If it turns out a prediction miss, some results are ignored and some
changes made by the speculative execution are recovered.

ccl cc2 «cc3 cc4d cc5 cc6 cc7 cc8 cc9 «cclo

add | IF | 10 | EX | wB |

add | IF [ > | EX | wB |

bne [ IF [ 1D [ EX | WB |
add
add
add
add

flush some instructions

EX | wWB |

EX | WB |
IF | ID | EX | wB |

ﬁ’ IF | ID | EX | WB |
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Noohswn e




Instruction fetch unit of 2-way super-scalar

« High-bandwidth instruction delivery using prediction, and speculation

IF

stage

A

'ID, EX+, WB
'stage

Next PC generator (mux)

prediction miss

(2) Target address

lPC’ branch history

Taken/
Untaken

(1) Branch Target PC
 for recovery

~ Pipeline registers

(Branch Target Buffer)

P Branch predictor
ﬁi-‘;smiss (3) PC+8
Instructions
— & ,
BTB ‘ Instruction memory (cache)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

A 4

»
»




Sample program: vector add (function v_add) \
\

Bl [ i=o |
#define VSIZE 4 +
void v_add(int *A, int *B, int *C){ B2 *C=*C+(*A +*B) )
for(i=0; i<VSIZE; i++) i++
C[i] += (A[i] + B[i]); Art
B++
} C++
\ i < 4 j
Basic block contains a sequence of statement. False True
The flow of control enters at the beginning of the l
statement and leave at the end. B3
[ return ]
Control flow graph
Time
B3 — B3 —» B3 — B2 —»
Instruction sequence /Nof Taken (0) /No'r Taken (0)/ Not Taken (0)/ Taken (1)
B1 B2 B2 B2 B2 B3

Taken (1)  Taken (1) Taken (1) Not Taken (0)

Predicting the branch outcome sequence of 1116 1116 1110 1110 1110 ..

Af_a'
P CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo



Simple branch predictor: 2-bit counter (2BC)

- Tt uses two bit register as a saturating counter. x

« How to update the register
« If the branch outcome is taken and the value is not 3, then increment the register.
« If the branch outcome is untaken and the value is not O, then decrement the register.

* Hot to predict
« Tt predicts as 1if the MSB of the register is one, otherwise predicts as O.

Taken Taken
Strongly ‘: Weakly
2 bit Taken (3) Untaken Taken (2) ﬂ;i:;rnzeone
—— e Taken e
e “ Untaken
o MSB of the

Weakly aen Strongly register is zero

Prediction Untaken (1) / = — = * \_Untaken (0) / \
Untaken *< _7 Untaken

Predicting the sequence of 1110 1110 1110 1110 1110 ...

State of the counter 2333 2333 2333 2333 2333 ...
Prediction 11171 11171 1111 1117171 1111 ...
ﬁ’ Hit/Miss of the pred. HHHM HHHM HHHM HHHM HHHM
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 10



Sample program: vector add with two branches

TS
#define VSIZE 4
void v_add(int *A, int *B, int *C){

for(i=0; i<VSIZE; i++) { B4 Error check
if(A[i]<@) error routine(); Ali] <0
C[i] += (A[1] + B[i]); v s
} B2 *C=*C+ (*A+*B)
} i<4
False True
Basic block contains a sequence of statement. B3
The flow of control enters at the beginning of the

statement and leave at the end.
Control flow graph

B3| — B3| — B3| — B2| —

Executed instruction sequence /f /f /f /f
B1 B4| |B2 B4| |B2 B4/ |B2 B4/ |B2 B3

o 1 o0 1 o0 1 0 O
Predicting the sequence of 01010100 01010100 01010100 ...

~ A=
11

P CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo




Sample program: vector add with two branches

B3 — B3| — B3| — B2| —»
Executed instruction sequence / /‘ /‘ /‘
B1 B4| |B2 B4| |B2 B4| |B2 B4| |B2 B3
o 1 o 1 o 1 0O O

Predicting the branch outcome sequence

01010100 01010100 010101600 ...

The B4’s sequence 01010100 01010100 0101010

The B2’s sequence 1010100 01010100 01010100 ...

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

\

12



Simple branch predictor: bimodal

*  Program has many static branch instructions. The behavior may depend on

each branch. Use plenty of counters (PHT) and assign a counter for a branch
iInstruction.

« How to predict

Select a 2-bit counter using PC, and it predicts 1 for taken if the MSB of
the register is one; otherwise, it predicts O for untaken.

* How to update
Select a counter using PC, then update the counter in the same way as 2-

<

bit counter.

Taken
Pattern History Table (PHT) Taken
Program N ont Strongly ‘: Weakly
Counter entry Taken (3) Untaken Taken (2)

Taken
n : Prediction S
a > —> Weakly
Untaken (1)
H_J
2 bit

-

~
-~
- Untaken
-~

e Strongly
—_— -
Untaken Untaken (02 \

~ - /
Untaken

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

\

13



Simple branch predictor:

bimodal

#define N 1024 // Number of PHT entries

int pht[N]; // pattern history table

int idx; // index of PHT
/********************************************************************************/

void init_predictor()

{
}

/********************************************************************************/

int make_prediction(unsigned int pc)

{

for(int i=0; i<N; i++) pht[i] = 2;

idx = (pc>>2) % N;
return (pht[idx] & @x2) ? 1 : 0;
¥

/********************************************************************************/

void train_predictor(unsigned int pc, int outcome)

{
if(outcome==1 &% pht[idx]<3) pht[idx]++;
if(outcome==0 &% pht[idx]>0) pht[idx]--;
¥

/********************************************************************************/

int main()

{
int pred; // branch prediction
int outcome; // branch outcome (taken/untaken)
init_predictor();
int pc = 0x20;
for(int i=1; i<25; i++) {
pred = make_prediction(pc); /***** prediction *****/
outcome = (1 % 4) ? 1 : @; /***** ppranch outcome: 11101110111@... *¥**x*/
printf("%4d: pc=%3x, idx=%d, cnt=%d, pred=%d, outcome=%d ",
i, pc, idx, pht[idx], pred, outcome);
train_predictor(pc, outcome); /***** tpaining *****/
if(pred==outcome) printf("hit¥n"); else printf("miss¥n");
}
return 0;
}

Pattern History Table (PHT) Taken
Program N ent T _ Weakly
Counter enry Untaken Taken (2)
(I e
Untaken
n Prediction *7 Tak
: > Weakly L aren Strongly
——— —
Untaken (1) Untaken UnTaken(Ol\ :
2 bit Untaken ~

Predicting the branch outcome sequence
1110 1110 1110 1110 1110 ..

1: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
2: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
3: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
4: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
5: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
6: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
7: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
8: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
9: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
10: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
11: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
12: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
13: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
14: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
15: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
16: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
17: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
18: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
19: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
20: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
21: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
22: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
23: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
24: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss

N L
—\¢ CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

14



Simple branch predictor: bimodal

Predicting the sequence

The B4’s sequence
State of the counter
Prediction

Hit/Miss or the pred.

The B2’s sequence
State of the counter
Prediction

Hit/Miss or the pred.

Pattern History Table (PHT)
2" entry

Program
Counter

Prediction

—

Y

\\3

L

Q@S 2 bit
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

01010100 01010100 010101600 ...
01010100 010101600 0101010

=< LN

100
000
H H H

I oo

©00 0000
©00 0000
HHH HHHH

=<k WO

10101
2 33
111
HHH

=R, WO

10101
2 33
111
HHH

L WO

10101
2 33
111
HHH

Taken
Taken
Strongly N~ Weakly
Taken (3) _~ untaken ~_Taken (2)

P d
”~
Taken //’ Untaken

”

Taken

»
Weakly —_— Strongly
—_——
Untaken (1) Untoken Untaken (Oz

\ -
Untaken

\
/

\

15



Simple branch predictor: bimodal

/********************************************************************************/

int make_prediction(unsigned int pc)

{

idx = (pc>>2) % N;

return (pht[idx] & @x2) ? 1 : 0;
X

/********************************************************************************/

void train_predictor(unsigned int pc, int outcome)

{
if(outcome==1 && pht[idx]<3) pht[idx]++;
if(outcome==0 && pht[idx]>0) pht[idx]--;
X

/********************************************************************************/
int main()

int pred; // branch prediction

int outcome; // branch outcome (taken/untaken)

init_predictor();

int pc;
for(int i=1; i<25; i++) {
if(i&1l) { pc = 0x10; } else { pc = 0x20;}
pred = make_prediction(pc); /***** prediction *****/

if(pc==0x10) {
outcome = 0;

}

else {
outcome =

}

printf("%4d: pc=%3x, idx=%d, cnt=%d, pred=%d, outcome=%d ",
i, pc, idx, pht[idx], pred, outcome);

(i/2 % 4) ? 1 : @; /***%** outcome: 111011101110... *****/

train_predictor(pc, outcome); /***** tpraining *****/

if(pred==outcome) printf("hit¥n"); else printf("miss¥n");
}

return 0;

}

Predicting the sequence 01010100 01010100 01010100
The B4’s sequence 01010100 01010100 0101010
State of the counter 2 1090 ©000 00060
Prediction 1000 0000 0000
Hit/Miss or the pred. MHHH HHHH HHHH
The B2’s sequence 1010100 21010100 01010100
State of the counter 2333 2333 2333
Prediction 1111 1111 1111
Hit/Miss or the pred. HHHM HHHM HHHM

1: pc= 10, idx=4, cnt=2, pred=1, outcome=0 miss
2: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
3: pc= 10, idx=4, cnt=1, pred=0, outcome=0 hit
4: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
5: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
6: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
7: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
8: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
9: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
10: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
11: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
12: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
13: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
14: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
15: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
16: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
17: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
18: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
19: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
20: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
21: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
22: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
23: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
24: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss

% CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

..

16



Accuracy of simple predictors with 8KB HW budget

\

100
%0 8KB hardware budget O Branch Always
O 2bit counter
80 I ] M Bimodal I
= 710 _ 1 _—
£ 60 I
a'd
2 50 | 1 s
.0
= | _
'_6 40 1N | | ] 1 ] 7__ | K = | |
e - -
2 30 | I | T
2
20 | | U
. k IE L A Gl
0 L] | | | | | | | | | | | | | | | | | | | | _L | | | |
— ™ )
| | o0
al > ©
s : :
n <

SERV-5 oo

ﬁ, Benchmark for CBP(2004) by Intel MRL and TEEE TC uARCH.
C

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 17



An innovation in branch predictors in 1993

 Using branch history

* global branch history

* 2-level branch predictor and gshare

« Assume predicting the sequence 1110 1110 1110 1110 1110 ...

<

adr | pred
1110111 © o0
11101110 ? 001
111011101 ? olo

011 1
1110111011 »? 100
11101110111 | ? 01| 1
111011101110 ? 116) 1

111 %)

Use the recent branch history as an address of a table.

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

\



Recommended Reading
\

« Combining Branch Predictors
« Scott McFarling, Digital Western Research Laboratory
« WRL Technical Note TN-36, 1993

* A quote:
"In this paper, we have presented two new methods for improving
branch prediction performance. First, we showed that using the bit-
wise exclusive OR of the global branch history and the branch address
to access predictor counters results in better performance for a given

counter array size."

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 19



Gshare (TR-DEC 1993)
* How Yo predict x

« Using the exclusive OR of the global branch history and PC to access PHT,
then MSB of the selected counter is the prediction.

« How to update

 Shifting BHR one bit left and update LSB by branch outcome in IF stage.
* Update the used counter in the same way as 2BC in WB stage.

Program 1110111011 (shift register)

Counter
\ /Br'anch History
L ] Register (BHR)
n m Taken .
8 8 Pattern History Table (PHT) aken
l l an Strongly ‘ Weakly
entry Taken (3) _ Untaken” \_ Taken (2
XOR @ aken (3) Untaken aken (2)
P
L.t ~ 7 Untaken
n ' Prediction P
, - Taken
7 > > Weakly — Strongly
Untaken (1) —_—— Untaken (0) \
Untaken > /
ﬁj 2 bit Untaken = =
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 20



Bi-Mode (MICRO 1997)
\

« A choice predictor (bimodal) is used as a meta-predictor

* How to predict
 Like gshare, both of Taken PHT and Untaken PHT make two
predictions.
« Select one among them by the choice predictor which tracks the
global bias of a branch.

o HOW to u BHR Program Counter
pdate . e
« The used PHT is updated
in the same way as 2BC. 14 ‘
XORP g ]

« Choice predictor is updated
in the same way as bimodal.

Choice predittor

> <«
Taken PHT | ‘ Untaken PHT
Prediction

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 21




To go beyond gshare X
\

 Using branch history
* global branch history

 2-level branch predictor and gshare

« Assume predicting the sequence 1110 1110 1110 1110 1110 ...

11101110 °? 11101110 >?
111011101 °? 111011101 ?
1110111011 °? 1110111011 °?
11101110111 °? 11101110111 °?
111011101110 °? 111911101110 °»

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 22



Recommended Reading

« Dynamic branch prediction with perceptrons

* Daniel A. Jimenez, Calvin Lin (The University of Texas at Austin)
« HPCA-7, pp. 197-206 (2001)

Hardware ‘budget History Length
in kilobytes gshare | bi-mode | perceptron
1 6 7 12
2 8 9 22 E
4 8 11 28 E
8 11 13 34 é
16 14 14 36 E .
2 —-o—- Gshare
32 15 15 59 & ] - -=—- Bi-Mode
64 15 16 59 —s— Perceptron
128 16 17 62 5 ---a-- Hybrid Perceptron + Gshare
256 17 17 62
512 18 19 62
1 : : ; T B o
Hardware Budget, Kilobytes
Table 1: Best History Lengths. This table shows the best amount Perceptron vs. other techniges, Harmonic Mean

of global history to keep for each of the branch prediction schemes.
Figure 3: Hardware Budget vs. Prediction Rate on SPEC 2000.
The perceptron predictor is more accurate than the two PHT methods

at all hardware budgets over one kilobyte.
K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo



Perceptron (HPCA 2001)
\

* How to predict

« Select one perceptron by PC B n @

. Compute y using the equation. Tt = "7 ;“) AN -
predicts 1 if y>=0, predicts O if y<O /n: ”

« X is branch history. xi is either -1,

. ) Perceptron Model
meaning not taken or 1, meaning
taken

* How to UPdGTC Program Counter Branch History (x)

« Train the weights of used | |
perceptron when the prediction

miss or |y| < T (Threshold)
> > Computey
. - Selected Y
1f sign(Yout) # tor |Yout| < @ then Perceptron
fori:=0tondo
wp = w; + tx; Prediction
| end for , )
end 1f 8 bit weight x 29 = 232 bit

= +
ﬁ T=193n+14 Table of Perceptrons (w)
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 24



Perceptron (HPCA 2001)

How to predict

y = wo + Tiw;.
« Select one perceptron by PC ;

° CompuTe y US|n9 'l'he equa'l'lon IT Number of weights (without bias) of perceptron: 4
. . . . Theta: 21.720

pr'edlc’rs 1if Y>:O, pr'edlcTs Oif Y<O 1: Wn-We = © © © © ©:bhr=eese: y= 0, p=1 : out=1 : hit
2: Wn-Wo = -1 -1 -1 -1 1 : bhr=0001: y= 3, p=1 : out=1 : hit
. . . e . 3: Wn-We = -2 -2 -2 0 2 : bhr=0011: y= 4, p=1 : out=1 : hit
° X |S br‘GnCh hISTOI"y Xl |S el-l-her' '1, 4: Wn-Wo = -3 -3 -1 1 3 : bhr=0111: y= 3, p=1 : out=0 : miss
. . 5: Wn-We = -2 -4 -2 0 2 : bhr=1110: y= -6, p=0 : out=1 : miss
mear“ng nOT Tern or 1, meanlng 6: Wn-w@ = -1 -3 -1 -1 3 : bhr=1101: y= -1, p=0 : out=1 : miss
7: Wn-Wo = 0@ -2 -2 © 4 : bhr=1011: y= 4, p=1 : out=1 : hit
Taken 8: Wn-Wo = 1 -3 -1 1 5 : bhr=0111: y= 1, p=1 : out=@ : miss
9: Wn-Wo = 2 -4 -2 © 4 : bhr=1110: y= 0, p=1 : out=1 : hit
10: Wn-Wo = 3 -3 -1 -1 5 : bhr=1101: y= 5, p=1 : out=1 : hit
HOW TO updaTe 11: Wn-W@ = 4 -2 -2 @ 6 : bhr=1011: y= 10, p=1 : out=1 : hit
. . 12: Wn-We = 5 -3 -1 1 7 : bhr=0111: y= -1, p=0 : out=0 : hit
e Train the We|9h1's of used 13: Wn-We = 6 -4 -2 @ 6 : bhr=1118: y= 6, p=1 : out=1 : hit
. . 14: Wn-We = 7 -3 -1 -1 7 : bhr=1101: y= 11, p=1 : out=1 : hit
per'cep'l'r'on when the pr'ed|c1'|on 15: Wn-We = 8 -2 -2 @ 8 : bhr=101l: y= 16, p=1 : out=1 : hit
. 16: Wn-Wo = 9 -3 -1 1 9 : bhr=0111: y= -3, p=0 : out=0 : hit
miss or |y| < T (Thf‘@ShOld) 17: Wn-We = 10 -4 -2 @ 8 : bhr=1110: y= 12, p=1 : out=1 : hit
18: Wn-We = 11 -3 -1 -1 9 : bhr=1101: y= 17, p=1 : out=1 : hit
19: Wn-We = 12 -2 -2 @ 10 : bhr=1011: y= 22, p=1 : out=1 : hit
. . 20: Wn-We = 12 -2 -2 © 10 : bhr=0111: y= -6, p=0 : out=0 : hit
1f Slgn(yﬁ.ut} # tor |yﬂut| < f then 21: Wn-We = 13 -3 -3 -1 9 : bhr=1118: y= 17, p=1 : out=1 : hit
. - 22: Wn-We = 14 -2 -2 -2 10 : bhr=1101: y= 22, p=1 : out=1 : hit
fori==0tondo 23: Wn-We = 14 -2 -2 -2 10 : bhr=1011: y= 22, p=1 : out=1 : hit
24: Wn-We = 14 -2 -2 -2 10 : bhr=0111: y=-10, p=0 : out=0 : hit
wy = wy -|- f,.l‘.i.: 25: Wn-We = 15 -3 -3 -3 9 : bhr=1110: y= 21, p=1 : out=1 : hit
26: Wn-We = 16 -2 -2 -4 10 : bhr=1101: y= 22, p=1 : out=1 : hit
end for 27: Wn-We = 16 -2 -2 -4 10 : bhr=1011: y= 22, p=1 : out=1 : hit
. 28: Wn-We = 16 -2 -2 -4 10 : bhr=0111: y=-14, p=0 : out=0 : hit
end 1f 29: Wn-We = 17 -3 -3 -5 9 : bhr=1110: y= 25, p=1 : out=1 : hit

T=193n+14

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo



Perceptron (HPCA 2001)

/********************************************************************************/

/* perceptron based branch predictor Version v2024-12-26a */
/* Copyright (c) 2024 Archlab. Science Tokyo &
/* Released under the MIT license https://opensource.org/licenses/mit */

/********************************************************************************/

#include <stdio.h>

#tdefine N 4 // Number of weights of perceptron, default 28
#tdefine BitsInWeight 8 // Number of bits in a weight

#tdefine MAXVAL 127 // max value of a weight

#tdefine MINVAL -128 // min value of a weight

#tdefine NPerceptron (1024) // the number of perceptrons

#tdefine ThetaMax (N * 1.93 + 14) // Threshold max value
#tdefine ThetaMin (-1 * ThetaMax) // Threshold min value

int perceptron[NPerceptron][N+1]; // perceptron table

int bhr; // global branch history register
int idx; // index of perceptron table

int y; // weighted sum with bias

int prediction; // prediction of taken/untaken

/********************************************************************************/

void init_predictor()

{
for(int i=0; i<NPerceptron; i++){
for(int j=0 ; j<=N ; j++){
perceptron[i][j] = ©;
X
X
bhr = 0;
X

/********************************************************************************/

int make_prediction(unsigned int pc)

{
idx = (pc>>2) % NPerceptron;
y = perceptron[idx][0];
for(int i=1; i<=N; i++){
if((bhr >> (i-1)) & 1) y += perceptron[idx][i];
else y -= perceptron[idx][i];
X
prediction = (y >=0) ? 1 : 0;
return prediction;
¥

void train_predictor(unsigned int pc, int outcome)
if(outcome != prediction || ((y < ThetaMax) && (y > ThetaMin))){

int *bias = &perceptron[idx][0];
if(outcome==1 && (*bias < MAXVAL)) *bias = *bias + 1;
if(outcome==0 && (*bias > MINVAL)) *bias = *bias - 1;

for(int i=1; i <=N; i++){
if(((bhr >> (i-1)) & 1)==outcome){
if (perceptron[idx][i] < MAXVAL) perceptron[idx][i]++;

}
else{
if (perceptron[idx][i] > MINVAL) perceptron[idx][i]--;
}
}
bhr = (bhr << 1) | outcome;
}
/********************************************************************************/
int main()
{
int pred; // branch prediction
int outcome; // branch outcome (taken/untaken)
init_predictor();
printf("Number of weights (without bias) of perceptron: %d¥n", N);
printf("Theta: %7.3f¥n", ThetaMax);
int pc = 0x2000;
for(int i=1; i<30; i++) {
pred = make_prediction(pc); /***** prediction *****/
printf("%4d: Wn-we = ", i);
for(int i=N; i>=0; i--) printf("%3d ", perceptron[idx][i]);
outcome = (i % 4) ? 1 : @; /***** ppranch outcome: 11101110111@... ***¥**/
printf(": bhr=");
for(int j=N-1; j>=0; j--){
printf("%d", ((bhr>>j) & 1));
}
printf(": y=%3d, p=%d : out=%d : ", y, pred, outcome);
train_predictor(pc, outcome); /***** tpaining ****x*/
if(pred==outcome) printf("hit¥n"); else printf("miss¥n");
}
return 0;
}

S
\$ CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

26




Perceptron (HPCA 2001)

The Neural Network in Your CPU

Sun, Aug 6, 2017

Machine learning and artificial intelligence are the current hype (again). In their new
Ryzen processors, AMD advertises the Neural Net Prediction. It turns out this is was
already used in their older (2012) Piledriver architecture used for example in the
AMD A10-4600M. It is also present in recent Samsung processors such as the one
powering the Galaxy S7.What is it really?

The basic idea can be traced to a paper from Daniel Jimenez and Calvin Lin
“Dynamic Branch Prediction with Perceptrons”, more precisely described in the
subsequent paper “Neural methods for dynamic branch prediction”. Branches
typically occur in if-then-else statements. Branch prediction consists in
guessing which code branch,the then orthe =1se ,the code will execute, thus
allowing to precompute the branch in parallel for faster evaluation.

Jimenez and Lin rely on a simple single-layer perceptron neural network whose
input are the branch outcome (global or hybrid local and global) histories and the
output predicts which branch will be taken. In realitv. because there is a sinale laver.

AMD Ryzen 2016-12-13 Slide Deck Back to Post

Neural Net Prediction_ ‘,,
i

Scary Smart Prediction

A true artificial network inside every “Zen”
processor

Builds a model of the decisions driven by
software code execution

Anticipates future decisions, pre-load
instructions, choose the best path
through the CPU

AMDD | ZEN

https://www.anandtech.com/Gallery/Album/5197#18

https://chasethedevil.github.io/post/the_neural network_in_your_ cpu/

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

27



Branch predictors based on pattern matching

\
« Find the longest matching pattern (green rectangle) \
« Select the proper matching length or long matching pattern (blue rectangle)

« Count the number of O and the number of 1 after the long matting patterns
(red rectangle), then predict by majority vote.

Global branch history Prediction O or 1
e g
The longe;T matching pattern
0 1 0 >
—

The long matching pattern

0 Prediction
l|l————

ﬁ; 0l  Appearing O twice and 1 once, so the prediction will be O
C

28

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo



Partial Pattern Matching, PPM or TAGE (CBP 2004)

Table 4 Table 3 Table 2 Table 1 Table O \

pc pc h[0:9] pc h[0:19] pc h[0:39] pc  h[0:79]

12 llzﬁ , \|, ’Iﬁ , \|, ’Iﬁ , \|, :|Z¢
i hash hash hash hash hash hash ash hash

I 3b 8bit | 3b! 8 b1t : 3b! 8 b1t : 3bi 8 b1t :
3b . : U : e I 1 I |
. m ctr. tag | ctr. tag ctr. tag ctr. tag |
ctr . : ' ' '
: 8 8 8 8
i =9 =7 =7 =7
A1 A1 A1 A1 A1 A1 A1 A1
1 N4
1 % Vv
1 % W
1
prediction 0/1

) ff_a' From CBP2004 presentation slide

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 29



Partial Pattern Matching, PPM or TAGE (CBP 2004)
\

The original launch of the Zen' architecture in the Ryzen 1000 series desktop
processors featured clock speeds up to 4 GHz, and were manufactured on the 14nm
manufacturing node. This was followed the next year with the Ryzen 2000 series
featuring updated ‘Zen+ architecture, which was die-shrunk to the 12nm node and
delivered higher clock speeds with about 3% higher IPC (instructions per clock)
compared to its predecessor. Despite this modest increase, it delivered up to 15%
higher gaming performance due to updates like Precision Boost 2 and XFR 2, thanks in
part to a clock speed increase up to 4.3 GHz.

The Ryzen 3000 series desktop processors benefited from a major core redesign,
doubling up the L3 cache capacity (up to 32MB), floating point throughput (to 256-bit),
OpCache capacity (to 4K), and Infinity Fabric bandwidth (to 512-bit). It also featured a
new branch predictor. All of these improvements contributed to a very
substantial 15% IPC increase, and with these processors benefitting from the new 7nm
manufacturing node, maximum clock speeds climbed to 4.7 GHz."

The next major Zen' revision was Zen3', which debuted in AMD Ryzen 5000 series
desktop processors, This comprehensive design overhaul delivered a further 19% IPC
increase thanks to over 20 major changes, which included: wider and more flexible
execution resources; significantly more load/store bandwidth to feed execution; and a
streamlined front-end to get more threads in flight—and do it faster. It also
transitioned to a new "unified complex" design that brought 8 cores and 32MB of L3
cache into a single group of resources. This dramatically reduced core-to-core and

https://www.amd.com/en/technologies/zen-core
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 30



Prediction accuracy

The accuracy of 4KB Gshare is about 93%.
The accuracy of 4KB PPM is about 97%.

|
8KB hardware budget

O 0O ©W < N O 0o ©o < o o
AN -

—

(%) 932y SuoRoIpeIdsIN

o8eJany
S o 9 G-AY3S
(@) © (@] s
E & E Q. v-AY3S
m & m A
B E OM@ €-Ad3S
¢-N\d3S
I-Ad3S

G-NIN
r-NIN
E-NIN
¢-ANIN
I-NIN
G—1NI
v—LNI
€—1NI
¢—1NI
I—1LNI
G-dd
v—d4d
€-dd
¢—d4d
I-dd

31

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo



Recommended Reading

* Prophet-Critic Hybrid Branch Prediction

Ayose Falcon, UPC, Jared Stark, Intel, Alex Ramirez, UPC, Konrad
Lai, Intel, Mateo Valero

ISCA-31 pp. 250-261 (2004)

Prophet/Critic Hybrid Branch Prediction

Ayose Falcon § Jared Stark § Alex Ramirez § Konrad Lai I Mateo Valero §

§ Computer Architecture Department
Universitat Politecnica de Catalunya
{afalcon, aramirez, mateo} @ac.upc.es

Abstract

This paper introduces the prophet/critic hybrid condi-
tional branch predictor, which has two component pre-
dictors that play the role of either prophet or critic. The
prophet is a conventional predictor that uses branch history

tn nvodict the divertinn nf the curvent hvanch Furtheor ne-

T Microarchitecture Research Lab
Intel Corporation
{jared.w.stark, konrad.lai} @intel.com

frequency (and hence voltage) and still meet its perfor-
mance target, and reduces energy consumption by reduc-
ing the work wasted on misspeculation.

In addition, the branch predictor is not tightly coupled
with the microarchitecture, making it relatively simple to
replace with a better one, so that an improved version of

[P R [RUN - I N B [ I ™

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

32



A quote from Introduction (1/2)

\

Conventional predictors are analogous to a taxi with just one driver.

He gets the passenger to the destination using knowledge of the
roads acquired from previous trips; i. e., using history information
stored in the predictor's memory structures.

When he reaches an intersection, he uses this knowledge to decide
which way to fturn.

The driver accesses this knowledge in the context of his current
location.

Modern branch predictors access it in the context of the current
location (the program counter) plus a history of the most recent
decisions that led to the current location.

~ =
@ 33

P CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo



A quote from Introduction (2/2)
N\
Prophet/critic hybrids are analogous to a taxi with two drivers: the

front-seat and the back-seat. The front-seat driver has the same role
as the driver in the single-driver taxi. This role is called the prophet.

The back-seat driver has the role of critic. She watches the turns the
prophet makes at intersections. She doesn't say anything unless she
thinks he's made a wrong turn. When she thinks he's made a wrong turn,
she waits until he's made a few more turns to be certain they are lost.
(Sometimes the prophet makes turns that initially look questionable, buft,
after he makes a few more turns, in hindsight appear to be correct.)
Only when she's certain does she point out the mistake.

To recover, they backtrack to the intersection where she believes the
wrong-turn was made and try a different direction.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 34



Prophet-Critic Hybrid Branch Prediction

Critic

Prophet Predictions Predictions

FTQ

Prophet LKJIHGFEDCBAA»H

(C,D,E.F)

4 future bits

Critique of
branch C

Critic

—

I-cache
& Fetch

misp/Kuops

4KB prophet

prophet/critic sizes

16KB prophet

(c) Prophet: perceptron; Critic: tagged gshare
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

— —AVG (all benchmarks)

\

4.00 1+ unzp
—%— premiere
3.50 A —¢—msvc7
—a—flash
—=—facerec
3.00 —a—fpce
2.50
2.00 4
T e e
1.00 1 = i B
0.50 A
O.DD T T T T 1
0 1 4 8 12

Number of Future Bits

Figure 5. Effect of varying the number of fu-
ture bits used by the critic on prediction ac-

curacy for selected benchmarks. (prophet:
8KB perceptron; critic: 8KB tagged gshare)




Fiscal Year 2024 Ver. 2024-12-23a

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Architecture

&

ise, Department of Computer Science
_at_ c.titech.ac.jp

36

CSC.T433 Advanced Computer Architecture, Department of Computer Science, ScienSg okyo



Mid-term report X
\

1. Please submit your mid-term report describing your
answers to questions 1 and 2 in a PDF file
via E-mail (kise [at] c.titech.ac.jp ) by January 9, 2024

E-mail title should be "Report of Advanced Computer
Architecture”

2. Please submit the report in 8 pages or less on A4 size PDF
file, including the cover page.

3. You can discuss it with your colleague, but try to solve the
questions yourself. Enjoy!

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 37



1. RISC-V assembly programming

\
*  Worite RISC-V assembly code asml.s by hand compiling codel.c below. Use \
Venus RISC-V editor and simulator to show that the output of the code you
wrote is correct.

int sum = 0;
int i, j;
for (i=1; i=<100; i=i+2)
for (j=1; j=<100; j++) sum += (j+i);

codel.c

*  Wprite RISC-V assembly code asm2.s by hand compiling code2.c below.
Use Venus RISC-V editor and simulator to show that the output of the code
you wrote is correct.

int A[200];

int sum = 0;
int 1i;

for (i=0; i<200; i++) A[i] = 1 + i; /* initialize the array */
for (i=1; i<200; i++) A[i] = A[i-1] + A[i]; /* compute */
for (i=0; i<200; i++) sum += A[i]; /* obtain the sum w3/

= code2.c

~ ==
.QJQ 38

P CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo



2. three-stage pipelining processor

« Describe a 3-stage pipelining scalar processor (rvcore_3s) in
Verilog HDL. The report should include the description of module

m_rvcore_3s.

 Verify the described code by compaing vefiry.txt generated by
simulations of rvcorel and rvcore_3s.

Af_a'

P CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

P1

\

'START_PC

IF stage 1D stage P2 EX+ stage
P2 jalr
P1 _pc
P2 pc g 32
w_alu P2_rrsl x [ w_tkn_pe
w _bru ¢ +
w_itype
W _op 1m
[ \ w:japLF J P2 bru ¢
P2 v
32w imm t imm || P2_trsl —
; m bru| |
brul w b rslt
. P2 rrs2 | PTW
. 32w imm P2
w_b rslt pe Pl >>) 5 = P
&P2 v il I - '§ i P2 alu_c P2 itype['D LD _IS]
32 %‘ 2|5 wsl 32w sl l
g~ ) P2 \
=1 W _0op 1m o
‘;I 5 wors2 “ . p\Tf ! o T 32w a rslt
m_imem . <132
g imem1 Pl ir [T 5 wrd | m regfile alul g
- reghiler [V-S21Z 030 | p
P2 rd b X 2
| ypass) —> 1rs2
— o P2 rrsl
3;2 — P2 v w_imm %:‘ — 32 p_ADDR
2 0 w_rslt 2 P2_imm 1
4——> - —> 32Dp_ouT | m_dmem
ﬁ dmeml w_ldd
—_— P2 1rs2 D WE
— > > £ -
1w b rslt & P2 v) [P P2y _
P2 itype[D S TYPE]| & P2 v slt

39



2. three-stage pipelining processor

login the gateway server of ACRi room with your username
e ssh username@gw.acri.c.titech.ac.jp
* login a compute server of ACRi room, select one among vs100, vs200, vs300, and vs400
* ssh vs300
«  copy the project directory to your working directory

e cd
* mkdir -p aca
e c¢d aca

* c¢cp -r /home/tu_kise/aca/rvcore_2s/ .
e c¢cp -r /home/tu_kise/aca/rvcore 3s/ .
« simulate and test two-stage pipelining processor
e cd rvcore 2s
« make
* make run
« implement your three-stage pipelining processor, simulate it, and vefity it
e cd ~/aca/rvcore_ 3s
« emacs procl.v (please use your favorit text editor)
* make
* make run
e diff verify.txt ../rvcore_2s/verify.txt

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

40



