
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 1

Advanced Computer Architecture

6. Instruction Level Parallelism:
Instruction Fetch and Branch Prediction

Ver. 2024-12-26aFiscal Year 2023

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No. W8E-308, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 2

Exploiting Instruction Level Parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution

• Register renaming

• Dynamic scheduling

• Memory data flow

• Out-of-order execution

• Another obstacle is instruction cache

(1) add x5,x1,x2
(2) add x9,x5,x3
(3) lw x4, 4(x7)
(4) add x8,x9,x4

(3) lw x4, 4(x7)
(1) add x5,x1,x2
(2) add x9,x5,x3
(4) add x8,x9,x4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 3

Hardware branch predictor

• A branch predictor is a digital circuit that tries to guess or predict
which way (taken or untaken) a branch will go before this is known
definitively.

• A random predictor will achieve about a 50% hit rate because the
prediction output is 1 (taken) or 0 (untaken).

• Let’s guess the accuracy.
What is the accuracy of typical branch predictors for high-
performance commercial processors?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 4

rvcore_4s : 4-stage pipelining processor with data forwarding

• The strategy is to separate the instruction fetch (IF) step, instruction decode (ID) step,
and write back(WB) step, and other (EX, MA) steps. The first stage is named IF. The
second stage is named ID. The third stage is named EX+. The last stage is named WB.

m_regfile

regfile1

(bypass)

w_rs1

m_imem

imem1
r_pc

32

+

w_rs2

w_rslt

5 w_rrs1

w_rrs2_t

w
_

rr
s2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

M
u
x

w_rslt

D_OUT

w_exrrs1

P2_imm

w_exrrs2

w_exrrs1

w_exrrs2

w_exrrs1

w_imm

D_WE

P1_pc

32

5

5

32

32

1

32

32

32

32

32

32

32

w_rd

r_pc

w
_

ir m_alu

alu1

m_bru

bru1

M
u
x

P2_itype[`D_S_TYPE] & P2_v

M
u
x

+ w
_

tk
n
_

p
c

M
u
x

32

+

w_b_rslt

& P2_v

w_imm32

32
4

P
3

_
it

y
p

e[
`D

_
L

D
_

_
IS

]

P2_jalr

w_op_im

w_jalr

w_op_im
w_itype

P2_bru_c

P2_alu_c

w_bru_c
w_alu_c

P1

P3_v

!(w_b_rslt & P2_v)

IF stage ID stage EX+ stage

P3_rd

`S
T

A
R

T
_

P
C

m
_
d
ec

o
d
er

d
ec
o
d
er
1

P2

P1_pc

P1_ir

P1_v

P2_

rrs2

P2_

rrs1

P2_pc

P2_

imm_t

P2_

imm

P2_v

WB stage

P3_

ldd

P3_v

P3

M
u
x

M
u
x

w_exrrs1

w_exrrs2

m_dmem

dmem1

P3_

a_rslt

d
at

a
fo

rw
ar

d
in

g

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 5

Why do branch instructions degrade IPC?

• The branch taken / untaken is determined in the execution (EX) stage
of the branch.

• The conservative approach is stalling instruction fetch until the branch
direction is determined.

• It is too conservative to be practical.

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

1. add

2. add

3. bne

4. add

5. add

6. add

7. add

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9 cc10

Control dependency

2-way superscalar processor executing instruction sequence with a branch

stalling
insn fetch

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 6

Why do branch instructions degrade IPC?

• The branch taken / untaken is determined in the execution (EX+) stage
of the branch.

• Prediction and speculation, then training

• Recovery when a prediction miss

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

1. add

2. add

3. bne

4. add

5. add

6. add

7. add

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9 cc10

2-way superscalar processor executing instruction sequence with a branch

Speculative execution performs some task that may not be needed. Work is done
before it is known whether it is actually needed, so as to prevent a delay that would
have to be incurred by doing the work after it is known that it is needed.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 7

Why do branch instructions degrade IPC?

• The branch taken / untaken is determined in execution stage of the
branch.

• Prediction and speculation, then training

• Recovery when a prediction miss

• If it turns out a prediction miss, some results are ignored and some
changes made by the speculative execution are recovered.

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

1. add

2. add

3. bne

4. add

5. add

6. add

7. add

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9 cc10

IF ID EX WB

IF ID EX WB

flush some instructions

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 8

Instruction fetch unit of 2-way super-scalar

• High-bandwidth instruction delivery using prediction, and speculation

Instruction memory (cache)

PC

(2) Target address

Pipeline registers

Next PC generator (mux)

Branch predictor

PC, branch history (1) Branch Target PC
for recovery

IF stage ID, EX+, WB
stage

+

Taken/
Untaken

(3) PC + 8
8

BTB
(Branch Target Buffer)

BTB
hit/miss

Instructions

prediction miss

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 9

Sample program: vector add (function v_add)

#define VSIZE 4
void v_add(int *A, int *B, int *C){
for(i=0; i<VSIZE; i++)
C[i] += (A[i] + B[i]);

}

*C = *C + (*A + *B)
i++
A++
B++
C++
i < 4

return

False True

B1

B2

B3

i = 0

Control flow graph

B1 B2 B2 B2 B2 B3

B3 B3 B3 B2

Not Taken (0) Not Taken (0) Not Taken (0) Taken (1)

Taken (1) Taken (1) Taken (1) Not Taken (0)

Instruction sequence

Predicting the branch outcome sequence of 1110 1110 1110 1110 1110 …

Time

Basic block contains a sequence of statement.
The flow of control enters at the beginning of the
statement and leave at the end.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 10

Simple branch predictor: 2-bit counter (2BC)

• It uses two bit register as a saturating counter.

• How to update the register

• If the branch outcome is taken and the value is not 3, then increment the register.

• If the branch outcome is untaken and the value is not 0, then decrement the register.

• Hot to predict

• It predicts as 1 if the MSB of the register is one, otherwise predicts as 0.

Prediction

Weakly
Taken (2)

Weakly
Untaken (1)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (3)

Taken

Strongly
Untaken (0)

Untaken

2 bit

Predicting the sequence of 1110 1110 1110 1110 1110 ...
State of the counter 2333 2333 2333 2333 2333 ...
Prediction 1111 1111 1111 1111 1111 ...
Hit/Miss of the pred. HHHM HHHM HHHM HHHM HHHM

MSB of the
register is one

MSB of the
register is zero

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 11

Sample program: vector add with two branches

#define VSIZE 4
void v_add(int *A, int *B, int *C){
for(i=0; i<VSIZE; i++) {
if(A[i]<0) error_routine();
C[i] += (A[i] + B[i]);

}
}

B1 B4 B2 B4 B2 B4 B2 B4 B2 B3

B3 B3 B3 B2

0 1 0 1 0 1 0 0

Executed instruction sequence

i = 0

*C = *C + (*A + *B)
i < 4

return

False True

B1

B4

B3

Error check
A[i] < 0

B2

Control flow graph

Predicting the sequence of 01010100 01010100 01010100 ...

Basic block contains a sequence of statement.
The flow of control enters at the beginning of the
statement and leave at the end.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 12

Sample program: vector add with two branches

B1 B4 B2 B4 B2 B4 B2 B4 B2 B3

B3 B3 B3 B2

0 1 0 1 0 1 0 0

Executed instruction sequence

Predicting the branch outcome sequence
01010100 01010100 01010100 ...

The B4’s sequence 01010100 01010100 01010100 ...

The B2’s sequence 01010100 01010100 01010100 ...

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 13

Simple branch predictor: bimodal

• Program has many static branch instructions. The behavior may depend on
each branch. Use plenty of counters (PHT) and assign a counter for a branch
instruction.

• How to predict

• Select a 2-bit counter using PC, and it predicts 1 for taken if the MSB of
the register is one; otherwise, it predicts 0 for untaken.

• How to update

• Select a counter using PC, then update the counter in the same way as 2-
bit counter.

Pattern History Table (PHT)
Program
Counter

…

2n entry

Predictionn

Weakly
Taken (2)

Weakly
Untaken (1)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (3)

Taken

Strongly
Untaken (0)

Untaken
2 bit

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 14

#define N 1024 // Number of PHT entries
int pht[N]; // pattern history table
int idx; // index of PHT
/**/
void init_predictor()
{

for(int i=0; i<N; i++) pht[i] = 2;
}

/**/
int make_prediction(unsigned int pc)
{

idx = (pc>>2) % N;
return (pht[idx] & 0x2) ? 1 : 0;

}

/**/
void train_predictor(unsigned int pc, int outcome)
{

if(outcome==1 && pht[idx]<3) pht[idx]++;
if(outcome==0 && pht[idx]>0) pht[idx]--;

}

/**/
int main()
{

int pred; // branch prediction
int outcome; // branch outcome (taken/untaken)
init_predictor();

int pc = 0x20;
for(int i=1; i<25; i++) {

pred = make_prediction(pc); /***** prediction *****/

outcome = (i % 4) ? 1 : 0; /***** branch outcome: 111011101110... *****/

printf("%4d: pc=%3x, idx=%d, cnt=%d, pred=%d, outcome=%d ",
i, pc, idx, pht[idx], pred, outcome);

train_predictor(pc, outcome); /***** training *****/

if(pred==outcome) printf("hit¥n"); else printf("miss¥n");
}
return 0;

}

Simple branch predictor: bimodal

1: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
2: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
3: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
4: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
5: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
6: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
7: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
8: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
9: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit

10: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
11: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
12: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
13: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
14: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
15: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
16: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
17: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
18: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
19: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
20: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
21: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
22: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
23: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
24: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss

Predicting the branch outcome sequence
1110 1110 1110 1110 1110 …

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 15

Simple branch predictor: bimodal

Pattern History Table (PHT)
Program
Counter

…

2n entry

Predictionn

Weakly
Taken (2)

Weakly
Untaken (1)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (3)

Taken

Strongly
Untaken (0)

Untaken
2 bit

Predicting the sequence 01010100 01010100 01010100 ...

The B4’s sequence 01010100 01010100 01010100 ...
State of the counter 2 1 0 0 0 0 0 0 0 0 0 0 ...
Prediction 1 0 0 0 0 0 0 0 0 0 0 0 ...
Hit/Miss or the pred. M H H H H H H H H H H H ...

The B2’s sequence 01010100 01010100 01010100 ...
State of the counter 2 3 3 3 2 3 3 3 2 3 3 3 ...
Prediction 1 1 1 1 1 1 1 1 1 1 1 1 ...
Hit/Miss or the pred. H H H M H H H M H H H M ...

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 16

/**/
int make_prediction(unsigned int pc)
{

idx = (pc>>2) % N;
return (pht[idx] & 0x2) ? 1 : 0;

}

/**/
void train_predictor(unsigned int pc, int outcome)
{

if(outcome==1 && pht[idx]<3) pht[idx]++;
if(outcome==0 && pht[idx]>0) pht[idx]--;

}

/**/
int main()
{

int pred; // branch prediction
int outcome; // branch outcome (taken/untaken)
init_predictor();

int pc;
for(int i=1; i<25; i++) {

if(i&1) { pc = 0x10; } else { pc = 0x20;}

pred = make_prediction(pc); /***** prediction *****/

if(pc==0x10) {
outcome = 0;

}
else {

outcome = (i/2 % 4) ? 1 : 0; /***** outcome: 111011101110... *****/
}

printf("%4d: pc=%3x, idx=%d, cnt=%d, pred=%d, outcome=%d ",
i, pc, idx, pht[idx], pred, outcome);

train_predictor(pc, outcome); /***** training *****/

if(pred==outcome) printf("hit¥n"); else printf("miss¥n");
}
return 0;

}

Simple branch predictor: bimodal

1: pc= 10, idx=4, cnt=2, pred=1, outcome=0 miss
2: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
3: pc= 10, idx=4, cnt=1, pred=0, outcome=0 hit
4: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
5: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
6: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
7: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
8: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
9: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit

10: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
11: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
12: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
13: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
14: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
15: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
16: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss
17: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
18: pc= 20, idx=8, cnt=2, pred=1, outcome=1 hit
19: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
20: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
21: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
22: pc= 20, idx=8, cnt=3, pred=1, outcome=1 hit
23: pc= 10, idx=4, cnt=0, pred=0, outcome=0 hit
24: pc= 20, idx=8, cnt=3, pred=1, outcome=0 miss

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 17

Accuracy of simple predictors with 8KB HW budget

0

10

20

30

40

50

60

70

80

90

100

F
P

-1

F
P

-2

F
P

-3

F
P

-4

F
P

-5

IN
T
-1

IN
T
-2

IN
T
-3

IN
T
-4

IN
T
-5

M
M

-1

M
M

-2

M
M

-3

M
M

-4

M
M

-5

S
E
R

V
-1

S
E
R

V
-2

S
E
R

V
-3

S
E
R

V
-4

S
E
R

V
-5

A
ve

ra
ge

M
is

pr
ed

ic
ti
on

s
R

at
e

(%
)

Branch Always

2bit counter

Bimodal

8KB hardware budget

Benchmark for CBP(2004) by Intel MRL and IEEE TC uARCH.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 18

An innovation in branch predictors in 1993

• Using branch history

• global branch history

• local branch history

• 2-level branch predictor and gshare

• Assume predicting the sequence 1110 1110 1110 1110 1110 ...

1110111 0

11101110 ?

111011101 ?

1110111011 ?

11101110111 ?

111011101110 ?

adr pred

000

001

010

011 1

100

101 1

110 1

111 0

Use the recent branch history as an address of a table.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 19

Recommended Reading

• Combining Branch Predictors

• Scott McFarling, Digital Western Research Laboratory

• WRL Technical Note TN-36, 1993

• A quote:
“In this paper, we have presented two new methods for improving
branch prediction performance. First, we showed that using the bit-
wise exclusive OR of the global branch history and the branch address
to access predictor counters results in better performance for a given
counter array size.”

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 20

Gshare (TR-DEC 1993)

• How to predict
• Using the exclusive OR of the global branch history and PC to access PHT,

then MSB of the selected counter is the prediction.

• How to update

• Shifting BHR one bit left and update LSB by branch outcome in IF stage.

• Update the used counter in the same way as 2BC in WB stage.

Program
Counter

XOR

n

n m

Pattern History Table (PHT)

…

2n entry

Prediction

Weakly
Taken (2)

Weakly
Untaken (1)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (3)

Taken

Strongly
Untaken (0)

Untaken2 bit

1110111011 （shift register）

Branch History
Register (BHR)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 21

Bi-Mode (MICRO 1997)

• A choice predictor (bimodal) is used as a meta-predictor

• How to predict

• Like gshare, both of Taken PHT and Untaken PHT make two
predictions.

• Select one among them by the choice predictor which tracks the
global bias of a branch.

• How to update

• The used PHT is updated
in the same way as 2BC.

• Choice predictor is updated
in the same way as bimodal.

Untaken PHTTaken PHT

…

Prediction

Choice predictor

…

Program Counter

XOR

BHR
…

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 22

To go beyond gshare

• Using branch history

• global branch history

• local branch history

• 2-level branch predictor and gshare

• Assume predicting the sequence 1110 1110 1110 1110 1110 …

11101110 ?

111011101 ?

1110111011 ?

11101110111 ?

111011101110 ?

11101110 ?

111011101 ?

1110111011 ?

11101110111 ?

111011101110 ?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 23

Recommended Reading

• Dynamic branch prediction with perceptrons
• Daniel A. Jimenez, Calvin Lin (The University of Texas at Austin)

• HPCA-7, pp. 197-206 (2001)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 24

Perceptron (HPCA 2001)

• How to predict

• Select one perceptron by PC

• Compute y using the equation. It
predicts 1 if y>=0, predicts 0 if y<0

• x is branch history. xi is either -1,
meaning not taken or 1, meaning
taken

• How to update

• Train the weights of used
perceptron when the prediction
miss or |y| < T (Threshold)

Perceptron Model

w1 w2w0 wn

...

y

1 x1 xnx2

Table of Perceptrons (w)

Program Counter

…

Branch History (x)

Selected
Perceptron

Compute y

Prediction

y

8 bit weight x 29 = 232 bit

n = 28

T = 1.93n + 14

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 25

Number of weights (without bias) of perceptron: 4
Theta: 21.720

1: Wn-W0 = 0 0 0 0 0 : bhr=0000: y= 0, p=1 : out=1 : hit
2: Wn-W0 = -1 -1 -1 -1 1 : bhr=0001: y= 3, p=1 : out=1 : hit
3: Wn-W0 = -2 -2 -2 0 2 : bhr=0011: y= 4, p=1 : out=1 : hit
4: Wn-W0 = -3 -3 -1 1 3 : bhr=0111: y= 3, p=1 : out=0 : miss
5: Wn-W0 = -2 -4 -2 0 2 : bhr=1110: y= -6, p=0 : out=1 : miss
6: Wn-W0 = -1 -3 -1 -1 3 : bhr=1101: y= -1, p=0 : out=1 : miss
7: Wn-W0 = 0 -2 -2 0 4 : bhr=1011: y= 4, p=1 : out=1 : hit
8: Wn-W0 = 1 -3 -1 1 5 : bhr=0111: y= 1, p=1 : out=0 : miss
9: Wn-W0 = 2 -4 -2 0 4 : bhr=1110: y= 0, p=1 : out=1 : hit

10: Wn-W0 = 3 -3 -1 -1 5 : bhr=1101: y= 5, p=1 : out=1 : hit
11: Wn-W0 = 4 -2 -2 0 6 : bhr=1011: y= 10, p=1 : out=1 : hit
12: Wn-W0 = 5 -3 -1 1 7 : bhr=0111: y= -1, p=0 : out=0 : hit
13: Wn-W0 = 6 -4 -2 0 6 : bhr=1110: y= 6, p=1 : out=1 : hit
14: Wn-W0 = 7 -3 -1 -1 7 : bhr=1101: y= 11, p=1 : out=1 : hit
15: Wn-W0 = 8 -2 -2 0 8 : bhr=1011: y= 16, p=1 : out=1 : hit
16: Wn-W0 = 9 -3 -1 1 9 : bhr=0111: y= -3, p=0 : out=0 : hit
17: Wn-W0 = 10 -4 -2 0 8 : bhr=1110: y= 12, p=1 : out=1 : hit
18: Wn-W0 = 11 -3 -1 -1 9 : bhr=1101: y= 17, p=1 : out=1 : hit
19: Wn-W0 = 12 -2 -2 0 10 : bhr=1011: y= 22, p=1 : out=1 : hit
20: Wn-W0 = 12 -2 -2 0 10 : bhr=0111: y= -6, p=0 : out=0 : hit
21: Wn-W0 = 13 -3 -3 -1 9 : bhr=1110: y= 17, p=1 : out=1 : hit
22: Wn-W0 = 14 -2 -2 -2 10 : bhr=1101: y= 22, p=1 : out=1 : hit
23: Wn-W0 = 14 -2 -2 -2 10 : bhr=1011: y= 22, p=1 : out=1 : hit
24: Wn-W0 = 14 -2 -2 -2 10 : bhr=0111: y=-10, p=0 : out=0 : hit
25: Wn-W0 = 15 -3 -3 -3 9 : bhr=1110: y= 21, p=1 : out=1 : hit
26: Wn-W0 = 16 -2 -2 -4 10 : bhr=1101: y= 22, p=1 : out=1 : hit
27: Wn-W0 = 16 -2 -2 -4 10 : bhr=1011: y= 22, p=1 : out=1 : hit
28: Wn-W0 = 16 -2 -2 -4 10 : bhr=0111: y=-14, p=0 : out=0 : hit
29: Wn-W0 = 17 -3 -3 -5 9 : bhr=1110: y= 25, p=1 : out=1 : hit

Perceptron (HPCA 2001)

• How to predict

• Select one perceptron by PC

• Compute y using the equation. It
predicts 1 if y>=0, predicts 0 if y<0

• x is branch history. xi is either -1,
meaning not taken or 1, meaning
taken

• How to update

• Train the weights of used
perceptron when the prediction
miss or |y| < T (Threshold)

T = 1.93n + 14

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 26

/**/
/* perceptron based branch predictor Version v2024-12-26a */
/* Copyright (c) 2024 Archlab. Science Tokyo */
/* Released under the MIT license https://opensource.org/licenses/mit */
/**/
#include <stdio.h>

#define N 4 // Number of weights of perceptron, default 28
#define BitsInWeight 8 // Number of bits in a weight
#define MAXVAL 127 // max value of a weight
#define MINVAL -128 // min value of a weight
#define NPerceptron (1024) // the number of perceptrons
#define ThetaMax (N * 1.93 + 14) // Threshold max value
#define ThetaMin (-1 * ThetaMax) // Threshold min value

int perceptron[NPerceptron][N+1]; // perceptron table
int bhr; // global branch history register
int idx; // index of perceptron table
int y; // weighted sum with bias
int prediction; // prediction of taken/untaken

/**/
void init_predictor()
{

for(int i=0; i<NPerceptron; i++){
for(int j=0 ; j<=N ; j++){

perceptron[i][j] = 0;
}

}
bhr = 0;

}

/**/
int make_prediction(unsigned int pc)
{

idx = (pc>>2) % NPerceptron;

y = perceptron[idx][0];
for(int i=1; i<=N; i++){

if((bhr >> (i-1)) & 1) y += perceptron[idx][i];
else y -= perceptron[idx][i];

}

prediction = (y >= 0) ? 1 : 0;
return prediction;

}

Perceptron (HPCA 2001)
void train_predictor(unsigned int pc, int outcome)
{

if(outcome != prediction || ((y < ThetaMax) && (y > ThetaMin))){

int *bias = &perceptron[idx][0];
if(outcome==1 && (*bias < MAXVAL)) *bias = *bias + 1;
if(outcome==0 && (*bias > MINVAL)) *bias = *bias - 1;

for(int i=1; i <=N; i++){
if(((bhr >> (i-1)) & 1)==outcome){

if (perceptron[idx][i] < MAXVAL) perceptron[idx][i]++;
}
else{

if (perceptron[idx][i] > MINVAL) perceptron[idx][i]--;
}

}
}
bhr = (bhr << 1) | outcome;

}

/**/
int main()
{

int pred; // branch prediction
int outcome; // branch outcome (taken/untaken)
init_predictor();
printf("Number of weights (without bias) of perceptron: %d¥n", N);
printf("Theta: %7.3f¥n", ThetaMax);

int pc = 0x2000;
for(int i=1; i<30; i++) {

pred = make_prediction(pc); /***** prediction *****/

printf("%4d: Wn-W0 = ", i);
for(int i=N; i>=0; i--) printf("%3d ", perceptron[idx][i]);

outcome = (i % 4) ? 1 : 0; /***** branch outcome: 111011101110... *****/

printf(": bhr=");
for(int j=N-1; j>=0; j--){

printf("%d", ((bhr>>j) & 1));
}
printf(": y=%3d, p=%d : out=%d : ", y, pred, outcome);

train_predictor(pc, outcome); /***** training *****/

if(pred==outcome) printf("hit¥n"); else printf("miss¥n");
}
return 0;

}

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 27

Perceptron (HPCA 2001)

https://www.anandtech.com/Gallery/Album/5197#18

https://chasethedevil.github.io/post/the_neural_network_in_your_cpu/

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 28

Branch predictors based on pattern matching

• Find the longest matching pattern (green rectangle)

• Select the proper matching length or long matching pattern (blue rectangle)

• Count the number of 0 and the number of 1 after the long matting patterns
(red rectangle), then predict by majority vote.

?

?010

The long matching pattern

0

1

0

Prediction

Global branch history Prediction 0 or 1

?

The longest matching pattern

Appearing 0 twice and 1 once, so the prediction will be 0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 29

Partial Pattern Matching, PPM or TAGE (CBP 2004)

3b

ctr
m

3b

ctr
u

8 bit

tag

hash hash

=?

3b

ctr
u

8 bit

tag

hash hash

=?

3b

ctr
u

8 bit

tag

hash hash

=?

3b

ctr
u

8 bit

tag

hash hash

=?

prediction 0/1

pc pc h[0:9] pc h[0:19] pc h[0:39] pc h[0:79]

12

10 10 10 108 8 8 8

8 8 8 8

1
1 1 1 1 1 1 1 1

1

1

1

Table 0Table 1Table 2Table 3Table 4

From CBP2004 presentation slide

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 30

Partial Pattern Matching, PPM or TAGE (CBP 2004)

https://www.amd.com/en/technologies/zen-core

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 31

Prediction accuracy

• The accuracy of 4KB Gshare is about 93%.

• The accuracy of 4KB PPM is about 97%.

0

2

4

6

8

10

12

14

16

18

20

F
P

-1

F
P

-2

F
P

-3

F
P

-4

F
P

-5

IN
T
-1

IN
T
-2

IN
T
-3

IN
T
-4

IN
T
-5

M
M

-1

M
M

-2

M
M

-3

M
M

-4

M
M

-5

S
E
R

V
-1

S
E
R

V
-2

S
E
R

V
-3

S
E
R

V
-4

S
E
R

V
-5

A
ve

ra
ge

M
is

pr
ed

ic
ti
o
ns

 R
at

e
(%

)

Bimodal

Gshare

Bimode

PPM

8KB hardware budget

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 32

Recommended Reading

• Prophet-Critic Hybrid Branch Prediction
• Ayose Falcon, UPC, Jared Stark, Intel, Alex Ramirez, UPC, Konrad

Lai, Intel, Mateo Valero

• ISCA-31 pp. 250-261 (2004)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 33

A quote from Introduction (1/2)

Conventional predictors are analogous to a taxi with just one driver.

He gets the passenger to the destination using knowledge of the
roads acquired from previous trips; i. e., using history information
stored in the predictor’s memory structures.

When he reaches an intersection, he uses this knowledge to decide
which way to turn.

The driver accesses this knowledge in the context of his current
location.

Modern branch predictors access it in the context of the current
location (the program counter) plus a history of the most recent
decisions that led to the current location.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 34

A quote from Introduction (2/2)

Prophet/critic hybrids are analogous to a taxi with two drivers: the
front-seat and the back-seat. The front-seat driver has the same role
as the driver in the single-driver taxi. This role is called the prophet.

The back-seat driver has the role of critic. She watches the turns the
prophet makes at intersections. She doesn’t say anything unless she
thinks he’s made a wrong turn. When she thinks he’s made a wrong turn,
she waits until he’s made a few more turns to be certain they are lost.
(Sometimes the prophet makes turns that initially look questionable, but,
after he makes a few more turns, in hindsight appear to be correct.)
Only when she’s certain does she point out the mistake.

To recover, they backtrack to the intersection where she believes the
wrong-turn was made and try a different direction.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 35

Prophet-Critic Hybrid Branch Prediction

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 36

Advanced Computer Architecture

Mid-term report

Ver. 2024-12-23aFiscal Year 2024

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 37

Mid-term report

1. Please submit your mid-term report describing your
answers to questions 1 and 2 in a PDF file
via E-mail (kise [at] c.titech.ac.jp) by January 9, 2024
• E-mail title should be “Report of Advanced Computer

Architecture”

2. Please submit the report in 8 pages or less on A4 size PDF
file, including the cover page.

3. You can discuss it with your colleague, but try to solve the
questions yourself. Enjoy!

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 38

1. RISC-V assembly programming

• Write RISC-V assembly code asm1.s by hand compiling code1.c below. Use
Venus RISC-V editor and simulator to show that the output of the code you
wrote is correct.

• Write RISC-V assembly code asm2.s by hand compiling code2.c below.
Use Venus RISC-V editor and simulator to show that the output of the code
you wrote is correct.

int sum = 0;
int i, j;
for (i=1; i=<100; i=i+2)

for (j=1; j=<100; j++) sum += (j+i);

int A[200];
int sum = 0;
int i;
for (i=0; i<200; i++) A[i] = i + i; /* initialize the array */
for (i=1; i<200; i++) A[i] = A[i-1] + A[i]; /* compute */
for (i=0; i<200; i++) sum += A[i]; /* obtain the sum */

code1.c

code2.c

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 39

2. three-stage pipelining processor

• Describe a 3-stage pipelining scalar processor (rvcore_3s) in
Verilog HDL. The report should include the description of module
m_rvcore_3s.

• Verify the described code by compaing vefiry.txt generated by
simulations of rvcore1 and rvcore_3s.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 40

2. three-stage pipelining processor

• login the gateway server of ACRi room with your username

• ssh username@gw.acri.c.titech.ac.jp

• login a compute server of ACRi room, select one among vs100, vs200, vs300, and vs400

• ssh vs300

• copy the project directory to your working directory

• cd

• mkdir –p aca

• cd aca

• cp –r /home/tu_kise/aca/rvcore_2s/ .

• cp –r /home/tu_kise/aca/rvcore_3s/ .

• simulate and test two-stage pipelining processor

• cd rvcore_2s

• make

• make run

• implement your three-stage pipelining processor, simulate it, and vefity it

• cd ~/aca/rvcore_3s

• emacs proc1.v (please use your favorit text editor)

• make

• make run

• diff verify.txt ../rvcore_2s/verify.txt

