
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 1

Advanced Computer Architecture

5. Instruction Level Parallelism:
Concepts and Challenges

Ver. 2024-12-23bFiscal Year 2024

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No. W8E-308, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 2

Single-cycle implementation and pipelining

• When the washing of load A is finished at 6:30 p.m., another washing of
load B starts.

• Pipelined laundry takes 3.5 hours just using the same hardware
resources. The cycle time is 30 minutes.

• What is the latency
(execution time) of each load?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 3

rvcore_4s : 4-stage pipelining processor with data forwarding

• The strategy is to separate the instruction fetch (IF) step, instruction decode (ID) step,
and write back(WB) step, and other (EX, MA) steps. The first stage is named IF. The
second stage is named ID. The third stage is named EX+. The last stage is named WB.

m_regfile

regfile1

(bypass)

w_rs1

m_imem

imem1
r_pc

32

+

w_rs2

w_rslt

5 w_rrs1

w_rrs2_t

w
_

rr
s2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

M
u
x

w_rslt

D_OUT

w_exrrs1

P2_imm

w_exrrs2

w_exrrs1

w_exrrs2

w_exrrs1

w_imm

D_WE

P1_pc

32

5

5

32

32

1

32

32

32

32

32

32

32

w_rd

r_pc

w
_

ir m_alu

alu1

m_bru

bru1

M
u
x

P2_itype[`D_S_TYPE] & P2_v

M
u
x

+ w
_

tk
n
_

p
c

M
u
x

32

+

w_b_rslt

& P2_v

w_imm32

32
4

P
3

_
it

y
p

e[
`D

_
L

D
_

_
IS

]

P2_jalr

w_op_im

w_jalr

w_op_im
w_itype

P2_bru_c

P2_alu_c

w_bru_c
w_alu_c

P1

P3_v

!(w_b_rslt & P2_v)

IF stage ID stage EX+ stage

P3_rd

`S
T

A
R

T
_

P
C

m
_
d
ec

o
d
er

d
ec
o
d
er
1

P2

P1_pc

P1_ir

P1_v

P2_

rrs2

P2_

rrs1

P2_pc

P2_

imm_t

P2_

imm

P2_v

WB stage

P3_

ldd

P3_v

P3

M
u
x

M
u
x

w_exrrs1

w_exrrs2

m_dmem

dmem1

P3_

a_rslt

d
at

a
fo

rw
ar

d
in

g

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 4

Single-cycle and pipelining processors

lw x1,100(x0)

lw x2,200(x0)

lw x3,300(x0)

lw x1,100(x0)

lw x2,200(x0)

lw x3,300(x0)

• The pipelining can improve ALU utilization to nearly 100%.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 5

Scalar and Superscalar processors

• Scalar processor can execute at most one instruction per clock
cycle by using one ALU.
• IPC (Executed Instructions Per Cycle) is less than 1.

• Superscalar processor can execute more than one instruction
per clock cycle by executing multiple instructions by using
multiple pipelines.
• IPC (Executed Instructions Per Cycle) can be more than 1.

• using n pipelines is called n-way superscalar

n

(a) pipeline diagram of scalar processor

(b) pipeline diagram of 2-way superscalar processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 6

Exercise 1

• Referring to the main datapath of rvcore_4s, design and draw a block
diagram of a 2-way superscalar processor of 4-stage pipelining

m_regfile

regfile1

(bypass)

w_rs1

m_imem

imem1
r_pc

w_rs2

w_rrs1

w_rrs2_t

w
_

rr
s2

M
u
x

w_rslt

w_imm

w_rd

m_alu

alu1

M
u
x

P3_v

P3_rd

m
_
d
ec

o
d

er

d
ec
o
d
er
1

P1_ir

P2_

rrs2

P2_

rrs1 P3_

a_rslt
M
u
x

M
u
x

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 7

Multi-Ported Memories (for FPGAs)

1W/2R design

LVT (Live Value Tabele) design

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 8

Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to
fetch at least n instructions per cycle.

• The main obstacles are branch instruction like BNE, BEQ, ...

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution

• Register renaming

• Dynamic scheduling

• Memory data flow

• Out-of-order execution

• Another obstacle is instruction cache

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 9

(5) RISC-V branch if not equal instructions (bne)

9

• RISC-V conditional branch instructions (bne, branch
if not equal) :
bne x4, x5, Lbl # go to Lbl if x4!=x5

Ex: if (i==j) h = i + j;

bne x4, x5, Lbl1 # if (i!=j) goto Lbl1
add x6, x4, x5 # h = i + j;

Lbl1: ...

• Instruction Format (B-type):

• How is the branch destination address specified?

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 10

Why do branch instructions degrade IPC?

• Another approach is fetching the following instructions (0c add, 10
add) after a branch (bne) is fetched.

• When a branch (08 bne) is taken, the wrong instructions fetched
(0c add, 10 add) are flushed.

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

00 add

04 add

08 bne

0c add

10 add

30 addi

34 addi

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9 cc10

Control dependency

four-stage pipelining processor executing instruction sequence with a taken branch

Flush the wrong insn.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 11

Why do branch instructions degrade IPC?

• Another approach is fetching the following instructions (an instruction
at the next address and following ones) when a branch (bne) is fetched.

• When a branch (08 bne) is taken, the wrong instructions fetched
are flushed.

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9 cc10

Because of the taken of a branch instruction, only one instruction is executed in cc4 and no
instructions are executed in CC5 and CC6. This reduces the IPC.

2-way superscalar processor executing instruction sequence with a branch

00 add

04 add

08 bne

0c add

10 add

14 add

18 add

1c add IF ID EX+ WB

Flush the wrong insn.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 12

Deeper pipeline with three ID stages

• Another approach is fetching the following instructions (an instruction
at the next address and following ones) when a branch (bne) is fetched.

IF ID1 EX MEM WB

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9 cc10 cc11 cc12

2-way superscalar adopting deeper pipeline executing instruction sequence with a branch

ID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

00 add

04 add

08 bne

0c add

10 add

14 add

18 add

1c add

10 add

14 add

18 add

1c add

Flush the wrong insn.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 13

Hardware branch predictor

• A branch predictor is a digital circuit that tries to guess or predict
which way (taken or untaken) a branch will go before this is known
definitively.

• A random predictor will achieve about a 50% hit rate because the
prediction output is 1 (taken) or 0 (untaken).

• Let’s guess the accuracy.
What is the accuracy of typical branch predictors for high-
performance commercial processors?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 14

Prediction Accuracy of weather forecasts

Tomorrow will be rainy?

Predicting whether it will rain in the Tokyo area.
With the use of supercomputers, the prediction accuracy has gradually improved.
Based on data from several years ago, the accuracy of predicting the next day is around 85%.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 15

Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution

• Register renaming

• Dynamic scheduling

• Memory data flow

• Out-of-order execution

• Another obstacle is instruction cache

(1) add x5,x1,x2
(2) add x9,x5,x3
(3) lw x4, 4(x7)
(4) add x8,x9,x4

(3) lw x4, 4(x7)
(1) add x5,x1,x2
(2) add x9,x5,x3
(4) add x8,x9,x4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 16

True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the
value of insn i.

x3 = 10 x3 = 10

x5 = 2 x3 = 10

x3 = x3 x x5 (1) x3 = 20

x4 = x3 + 1 (2) x3 = 20

x3 = x5 + 3 (3) x3 = 5

x7 = x3 + R4 (4) x3 = 5

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 2 + 3 (3)

26 = 5 + 21 (4)

20 = 10 x 2 (1)

21 = 20 + 1 (2)

41 = 20 + 21 (4)

55 = 2 + 3 (3)

x3 = 10 x3 = 10

x5 = 2 x3 = 10

x3 = x3 x x5 (1) x3 = 20

x4 = x3 + 1 (2) x3 = 20

x7 = x3 + x4 (4) x3 = 20

x3 = x5 + 3 (3) x3 = 5

wrong sequence reordering (3) and (4)

i

j

j

i

i

j

j

i

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 17

Output dependence

• Insn i and j write the same register, WAW (write after write)

• Program order must be preserved to ensure that the value finally
written corresponds to instruction j.

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 2 + 3 (3)

26 = 5 + 21 (4)

5 = 2 + 3 (3)

6 = 5 + 1 (2)

20 = 10 x 2 (1)

41 = 20 + 21 (4)

x3 = 10 x3 = 10

x5 = 2 x3 = 10

x3 = x5 + 3 (3) x3 = 5

x4 = x3 + 1 (2) x3 = 5

x3 = x3 x x5 (1) x3 = 20

x7 = x3 + x4 (4) x3 = 20

wrong sequence reordering (1) and (3)

x3 = 10 x3 = 10

x5 = 2 x3 = 10

x3 = x3 x x5 (1) x3 = 20

x4 = x3 + 1 (2) x3 = 20

x3 = x5 + 3 (3) x3 = 5

x7 = x3 + R4 (4) x3 = 5

i

j i

j

i

j i

j

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 18

Antidependence

• Insn i reads a register that insn j writes, WAR (write after read)

• Program order must be preserved to ensure that i reads the
correct value.

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 2 + 3 (3)

26 = 5 + 21 (4)

20 = 10 x 2 (1)

5 = 2 + 3 (3)

6 = 5 + 1 (2)

11 = 5 + 6 (4)

x3 = 10 x3 = 10

x5 = 2 x3 = 10

x3 = x3 x x5 (1) x3 = 20

x4 = x3 + 1 (2) x3 = 20

x3 = x5 + 3 (3) x3 = 5

x7 = x3 + x4 (4) x3 = 5

i

j

wrong sequence reordering (2) and (3)

i

j

x3 = 10 x3 = 10

x5 = 2 x3 = 10

x3 = x3 x x5 (1) x3 = 20

x3 = x5 + 3 (3) x3 = 5

x4 = x3 + 1 (2) x3 = 5

x7 = x3 + x4 (4) x3 = 5

i

j

i

j

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 19

Data dependence and register renaming

• True data dependence (RAW)

• Name (false) dependences

• Output dependence (WAW)

• Antidependence (WAR)

x3 = x3 x x5 (1)

x4 = x3 + 1 (2)

x3 = x5 + 3 (3)

x7 = x3 + x4 (4)
(3)

(4)

(1)

(2)

RAWRAW

RAW

RAW

WAW

WAR

WAR

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 20

Data dependence and register renaming

• True data dependence (RAW)

• Name (false) dependences

• Output dependence (WAW)

• Antidependence (WAR)

x3 = x3 x x5 (1)

x4 = x3 + 1 (2)

x3 = x5 + 3 (3)

x7 = x3 + x4 (4)
(3)

(4)

(1)

(2)

RAW
RAW

RAW

RAW

WAW

WAR

WAR

x3 = x3 x x5 (1)

x4 = x3 + 1 (2)

x8 = x5 + 3 (3)

x7 = x8 + x4 (4)

(3)

(4)

(1)

(2)

RAW
RAW

RAW

RAW

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 21

Hardware register renaming

• Logical registers (architectural registers) which are ones
defined by ISA
• x0, x1, … x31

• Physical registers
• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames each register to eliminate false data
dependency dynamically in the renaming stage

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Complete
Commit/
Retire

Typical instruction pipeline of high-performance superscalar processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 22

In-order and out-of-order (OoO) execution

• In in-order execution model, all instructions are
executed in the order that they appear like (1), (2),
(3), and (4).
This can lead to unnecessary stalls.

• Instruction (3) stalls waiting for insn (2) to go
first, even though it does not have a data
dependence.

• With out-of-order execution,

• Using register renaming to eliminate output dependence
and antidependence, just having true data dependence

• Dynamic scheduling: insn (3) is allowed to be executed
before the insn (2)

• Tomasulo algorithm
(IBM System/360 Model 91 in 1967)

(3)

(4)

Data flow graph

(1)

(2)

x3 = x3 x x5 (1)

x4 = x3 + 1 (2)

x8 = x5 + 3 (3)

x7 = x8 + x4 (4)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 23

Advanced Computer Architecture

Mid-term report

Ver. 2024-12-23aFiscal Year 2024

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 24

Mid-term report

1. Please submit your mid-term report describing your
answers to questions 1 and 2 in a PDF file
via E-mail (kise [at] c.titech.ac.jp) by January 9, 2024
• E-mail title should be “Report of Advanced Computer

Architecture”

2. Please submit the report in 8 pages or less on A4 size PDF
file, including the cover page.

3. You can discuss it with your colleague, but try to solve the
questions yourself. Enjoy!

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 25

1. RISC-V assembly programming

• Write RISC-V assembly code asm1.s by hand compiling code1.c below. Use
Venus RISC-V editor and simulator to show that the output of the code you
wrote is correct.

• Write RISC-V assembly code asm2.s by hand compiling code2.c below.
Use Venus RISC-V editor and simulator to show that the output of the code
you wrote is correct.

int sum = 0;
int i, j;
for (i=1; i=<100; i=i+2)

for (j=1; j=<100; j++) sum += (j+i);

int A[200];
int sum = 0;
int i;
for (i=0; i<200; i++) A[i] = i + i; /* initialize the array */
for (i=1; i<200; i++) A[i] = A[i-1] + A[i]; /* compute */
for (i=0; i<200; i++) sum += A[i]; /* obtain the sum */

code1.c

code2.c

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 26

2. three-stage pipelining processor

• Describe a 3-stage pipelining scalar processor (rvcore_3s) in
Verilog HDL. The report should include the description of module
m_rvcore_3s.

• Verify the described code by compaing vefiry.txt generated by
simulations of rvcore1 and rvcore_3s.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 27

2. three-stage pipelining processor

• login the gateway server of ACRi room with your username

• ssh username@gw.acri.c.titech.ac.jp

• login a compute server of ACRi room, select one among vs100, vs200, vs300, and vs400

• ssh vs300

• copy the project directory to your working directory

• cd

• mkdir –p aca

• cd aca

• cp –r /home/tu_kise/aca/rvcore_2s/ .

• cp –r /home/tu_kise/aca/rvcore_3s/ .

• simulate and test two-stage pipelining processor

• cd rvcore_2s

• make

• make run

• implement your three-stage pipelining processor, simulate it, and vefity it

• cd ~/aca/rvcore_3s

• emacs proc1.v (please use your favorit text editor)

• make

• make run

• diff verify.txt ../rvcore_2s/verify.txt

