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Single-cycle implementation and pipelining

• When the washing of load A is finished at 6:30 p.m., another washing of 
load B starts. 

• Pipelined laundry takes 3.5 hours just using the same hardware 
resources. The cycle time is 30 minutes. 

• What is the latency 
(execution time) of each load?
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rvcore_4s : 4-stage pipelining processor with data forwarding

• The strategy is to separate the instruction fetch (IF) step, instruction decode (ID) step, 
and write back(WB) step, and other (EX, MA) steps. The first stage is named IF. The 
second stage is named ID. The third stage is named EX+. The last stage is named WB.
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Single-cycle and pipelining processors

lw x1,100(x0)

lw x2,200(x0)

lw x3,300(x0)

lw x1,100(x0)

lw x2,200(x0)

lw x3,300(x0)

• The pipelining can improve ALU utilization to nearly 100%.
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Scalar and Superscalar processors

• Scalar processor can execute at most one instruction per clock 
cycle by using one ALU. 
• IPC (Executed Instructions Per Cycle) is less than 1.

• Superscalar processor can execute more than one instruction 
per clock cycle by executing multiple instructions by using 
multiple pipelines.
• IPC (Executed Instructions Per Cycle) can be more than 1.

• using n pipelines is called n-way superscalar

n

(a) pipeline diagram of scalar processor

(b) pipeline diagram of 2-way superscalar processor
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Exercise 1

• Referring to the main datapath of rvcore_4s, design and draw a block 
diagram of a 2-way superscalar processor of 4-stage pipelining
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Multi-Ported Memories  (for FPGAs)

1W/2R design

LVT (Live Value Tabele) design
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Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to 
fetch at least n instructions per cycle.

• The main obstacles are branch instruction like BNE, BEQ, ...

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution 

• Register renaming 

• Dynamic scheduling

• Memory data flow

• Out-of-order execution 

• Another obstacle is instruction cache
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(5) RISC-V branch if not equal instructions (bne)

9

• RISC-V conditional branch instructions (bne, branch 
if not equal) :
bne x4, x5, Lbl # go to Lbl if x4!=x5

Ex: if (i==j) h = i + j;

bne x4, x5, Lbl1 # if (i!=j) goto Lbl1
add x6, x4, x5     # h = i + j;

Lbl1:  ...

• Instruction Format (B-type):

• How is the branch destination address specified?

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005
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Why do branch instructions degrade IPC?

• Another approach is fetching the following instructions (0c add, 10
add) after a branch (bne) is fetched.

• When a branch (08 bne) is taken, the wrong instructions fetched
(0c add, 10 add) are flushed.

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

00 add

04 add

08 bne

0c add

10 add

30 addi

34 addi

cc1  cc2  cc3   cc4  cc5  cc6  cc7  cc8  cc9  cc10

Control dependency

four-stage pipelining processor executing instruction sequence with a taken branch

Flush the wrong insn.
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Why do branch instructions degrade IPC?

• Another approach is fetching the following instructions (an instruction 
at the next address and following ones) when a branch (bne) is fetched.

• When a branch (08 bne) is taken, the wrong instructions fetched
are flushed.

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

cc1  cc2  cc3   cc4  cc5  cc6  cc7  cc8  cc9  cc10

Because of the taken of a branch instruction, only one instruction is executed in cc4 and no 
instructions are executed in CC5 and CC6. This reduces the IPC.

2-way superscalar processor executing instruction sequence with a branch

00 add

04 add

08 bne

0c add

10 add

14 add

18 add

1c add IF ID EX+ WB

Flush the wrong insn.
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Deeper pipeline with three ID stages

• Another approach is fetching the following instructions (an instruction 
at the next address and following ones) when a branch (bne) is fetched.

IF ID1 EX MEM WB

cc1  cc2  cc3   cc4  cc5  cc6  cc7  cc8  cc9  cc10  cc11 cc12

2-way superscalar adopting deeper pipeline executing instruction sequence with a branch

ID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

00 add

04 add

08 bne

0c add

10 add

14 add

18 add

1c add

10 add

14 add

18 add

1c add

Flush the wrong insn.
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Hardware branch predictor

• A branch predictor is a digital circuit that tries to guess or predict 
which way (taken or untaken) a branch will go before this is known 
definitively.

• A random predictor will achieve about a 50% hit rate because the 
prediction output is 1 (taken) or 0 (untaken).

• Let’s guess the accuracy. 
What is the accuracy of typical branch predictors for high-
performance commercial processors?
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Prediction Accuracy of weather forecasts

Tomorrow will be rainy?

Predicting whether it will rain in the Tokyo area.
With the use of supercomputers, the prediction accuracy has gradually improved.
Based on data from several years ago, the accuracy of predicting the next day is around 85%.
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Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to 
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution 

• Register renaming 

• Dynamic scheduling

• Memory data flow

• Out-of-order execution 

• Another obstacle is instruction cache

(1) add x5,x1,x2
(2) add x9,x5,x3
(3) lw  x4, 4(x7)
(4) add x8,x9,x4

(3) lw  x4, 4(x7)
(1) add x5,x1,x2
(2) add x9,x5,x3
(4) add x8,x9,x4
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True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the 
value of insn i.

x3 = 10             x3 = 10 

x5 = 2              x3 = 10

x3 = x3 x x5   (1)  x3 = 20

x4 = x3 + 1    (2)  x3 = 20

x3 = x5 + 3    (3)  x3 = 5

x7 = x3 + R4   (4)  x3 = 5

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 2  + 3      (3)

26 = 5 + 21     (4)

20 = 10 x 2      (1)

21 = 20 + 1      (2)

41 = 20 + 21     (4)

55 = 2  + 3      (3)

x3 = 10            x3 = 10

x5 = 2             x3 = 10

x3 = x3 x x5   (1) x3 = 20

x4 = x3 + 1    (2) x3 = 20

x7 = x3 + x4   (4) x3 = 20

x3 = x5 + 3    (3) x3 = 5

wrong sequence reordering (3) and (4)

i

j

j

i

i

j

j

i
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Output dependence

• Insn i and j write the same register, WAW (write after write)

• Program order must be preserved to ensure that the value finally 
written corresponds to instruction j.

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 2  + 3      (3)

26 = 5  + 21     (4)

5 = 2  + 3      (3)

6  = 5  + 1      (2)

20 = 10 x 2      (1)

41 = 20 + 21     (4)

x3 = 10            x3 = 10

x5 = 2             x3 = 10

x3 = x5 + 3    (3) x3 = 5

x4 = x3 + 1    (2) x3 = 5

x3 = x3 x x5   (1) x3 = 20

x7 = x3 + x4   (4) x3 = 20

wrong sequence reordering (1) and (3)

x3 = 10             x3 = 10 

x5 = 2              x3 = 10

x3 = x3 x x5   (1)  x3 = 20

x4 = x3 + 1    (2)  x3 = 20

x3 = x5 + 3    (3)  x3 = 5

x7 = x3 + R4   (4)  x3 = 5

i

j i

j

i

j i

j
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Antidependence

• Insn i reads a register that insn j writes, WAR (write after read)

• Program order must be preserved to ensure that i reads the 
correct value.

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 2  + 3      (3)

26 = 5  + 21     (4)

20 = 10 x 2      (1)

5 = 2  + 3      (3)

6  = 5 + 1      (2)

11 = 5  + 6      (4)

x3 = 10             x3 = 10 

x5 = 2              x3 = 10

x3 = x3 x x5   (1)  x3 = 20

x4 = x3 + 1    (2)  x3 = 20

x3 = x5 + 3    (3)  x3 = 5

x7 = x3 + x4   (4)  x3 = 5

i

j

wrong sequence reordering (2) and (3)

i

j

x3 = 10             x3 = 10 

x5 = 2              x3 = 10

x3 = x3 x x5   (1)  x3 = 20

x3 = x5 + 3    (3)  x3 = 5

x4 = x3 + 1    (2)  x3 = 5

x7 = x3 + x4   (4)  x3 = 5

i

j

i

j
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Data dependence and register renaming

• True data dependence (RAW)

• Name (false) dependences

• Output dependence (WAW)

• Antidependence (WAR)

x3 = x3 x x5   (1)

x4 = x3 + 1    (2)

x3 = x5 + 3    (3)

x7 = x3 + x4   (4)
(3)

(4)

(1)

(2)

RAWRAW

RAW

RAW

WAW

WAR

WAR
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Data dependence and register renaming

• True data dependence (RAW)

• Name (false) dependences

• Output dependence (WAW)

• Antidependence (WAR)

x3 = x3 x x5   (1)

x4 = x3 + 1    (2)

x3 = x5 + 3    (3)

x7 = x3 + x4   (4)
(3)

(4)

(1)

(2)

RAW
RAW

RAW

RAW

WAW

WAR

WAR

x3 = x3 x x5   (1)

x4 = x3 + 1    (2)

x8 = x5 + 3    (3)

x7 = x8 + x4   (4)

(3)

(4)

(1)

(2)

RAW
RAW

RAW

RAW
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Hardware register renaming

• Logical registers (architectural registers) which are ones 
defined by ISA
• x0, x1, … x31

• Physical registers
• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames each register to eliminate false data 
dependency dynamically in the renaming stage 

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Complete
Commit/
Retire

Typical instruction pipeline of high-performance superscalar processor
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In-order and out-of-order (OoO) execution

• In in-order execution model, all instructions are 
executed in the order that they appear like (1), (2), 
(3), and (4).
This can lead to unnecessary stalls.

• Instruction (3) stalls waiting for insn (2) to go 
first, even though it does not have a data 
dependence.

• With out-of-order execution,

• Using register renaming to eliminate output dependence 
and antidependence, just having true data dependence

• Dynamic scheduling: insn (3) is allowed to be executed 
before the insn (2)

• Tomasulo algorithm 
(IBM System/360 Model 91 in 1967)

(3)

(4)

Data flow graph

(1)

(2)

x3 = x3 x x5   (1)

x4 = x3 + 1    (2)

x8 = x5 + 3    (3)

x7 = x8 + x4   (4)
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Mid-term report

1. Please submit your mid-term report describing your 
answers to questions 1 and 2 in a PDF file 
via E-mail (kise [at] c.titech.ac.jp ) by January 9, 2024
• E-mail title should be “Report of Advanced Computer 

Architecture”

2. Please submit the report in 8 pages or less on A4 size PDF 
file, including the cover page.

3. You can discuss it with your colleague, but try to solve the 
questions yourself. Enjoy!
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1. RISC-V assembly programming

• Write RISC-V assembly code asm1.s by hand compiling code1.c below. Use 
Venus RISC-V editor and simulator to show that the output of the code you 
wrote is correct.

• Write RISC-V assembly code asm2.s by hand compiling code2.c below. 
Use Venus RISC-V editor and simulator to show that the output of the code 
you wrote is correct.

int sum = 0;
int i, j;
for (i=1; i=<100; i=i+2)

for (j=1; j=<100; j++) sum += (j+i);

int A[200];
int sum = 0;
int i;
for (i=0; i<200; i++) A[i] = i + i;         /* initialize the array */
for (i=1; i<200; i++) A[i] = A[i-1] + A[i]; /* compute              */
for (i=0; i<200; i++) sum += A[i];          /* obtain the sum       */

code1.c

code2.c
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2. three-stage pipelining processor

• Describe a 3-stage pipelining scalar processor (rvcore_3s) in 
Verilog HDL. The report should include the description of module 
m_rvcore_3s.

• Verify the described code by compaing vefiry.txt generated by 
simulations of rvcore1 and rvcore_3s.
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2. three-stage pipelining processor

• login the gateway server of ACRi room with your username

• ssh username@gw.acri.c.titech.ac.jp

• login a compute server of ACRi room, select one among vs100, vs200, vs300, and vs400

• ssh vs300

• copy the project directory to your working directory

• cd

• mkdir –p aca

• cd aca

• cp –r /home/tu_kise/aca/rvcore_2s/ .

• cp –r /home/tu_kise/aca/rvcore_3s/ .

• simulate and test two-stage pipelining processor

• cd rvcore_2s

• make

• make run

• implement your three-stage pipelining processor, simulate it, and vefity it

• cd ~/aca/rvcore_3s

• emacs proc1.v (please use your favorit text editor)

• make

• make run

• diff verify.txt ../rvcore_2s/verify.txt


