
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 1

Advanced Computer Architecture

4. Pipelining

Ver. 2024-12-18aFiscal Year 2024

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No. W8E-308, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 2

Single-cycle implementation of processors

• Single-cycle implementation also called single clock cycle
implementation is the implementation in which an instruction is
executed in one clock cycle.
While easy to understand, it is too slow to be practical.
It is useful as a baseline for lectures.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 3

Critical path of rvcore1 (single-cycle version)

• It is too slow to be practical.

m_regfile

regfile1

(32bit x 32)

w_rs1

m_imem

imem1

(32bit x 1024)

m_dmem

dmem1

(32bit x 8K)

r_pc

32

+

w_rs2

w_rslt

m_decoder

decoder1 5 w_rrs1

w_rrs2_t

w_rrs2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

w_ldd

M
u
x

w_rslt

D_OUT

w_rrs1

w_imm

w_rrs2

w_rrs1

w_rrs2

w_rrs1

w_imm

D_WE

r_pc

32

5

5

32

32

1

32

32

32

32

32

32

32

rvcore1

w_rd

r_pc

w_ir
m_alu

alu1

m_bru

bru1

M
u
x

w_itype[`D_S_TYPE]

M
u
x

+ w_tkn_pc

M
u
x

32

+

`START_PC

w_b_rslt, w_rst

w_imm32

32
4

w_itype[`D_LD__IS]

w_jalr

w_op_im

w_jalr

w_op_im
w_itype

w_bru_c

w_alu_c

w_bru_c
w_alu_c

r_pc

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 4

Single-cycle implementation of laundry

• (A) Ann, (B) Brian, (C) Cathy, and (D) Don each have dirty clothes to be
washed, dried, folded, and put away, each taking 30 minutes.

• The cycle time (the time from the end of one load to the end of the
next one) is 2 hours.

• For four loads, the sequential laundry takes 8 hours.

cycle time

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 5

Single-cycle implementation and pipelining

• When the washing of load A is finished at 6:30 p.m., another washing of
load B starts.

• Pipelined laundry takes 3.5 hours just using the same hardware
resources. The cycle time is 30 minutes.

• What is the latency
(execution time) of each load?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 6

Bucket brigade

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 7

Clock rate is mainly determined by

• Switching speed of gates (transistors)

• The number of levels of gates

• The maximum number of gates cascaded in series in any
combinational logics.

• In this example, the number of levels of gates is 3.

• Wiring delay and fanout

7

Register A

Register B

AND gate

OR gate

AND gate

Register A

Register B
AND gate

OR gate

Register C

Split a path by placing registers

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 8

Pipelining example: multiply-add operation (1)

• As an example of pipelining, we will see a multiply-add circuit.

• r_b, r_c are input registers and r_y is output register of the circuit.

• This has two paths named path1 and path2, and path1 is the critical path
to determine the maximum operating frequency.

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c

3 r_b
16

×
32

+ r_y
32

+
r_c

32

r_y
32

(a) Path1

(b) Path2

Critical path

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 9

Pipelining example: multiply-add operation (2)

• By inserting register r_d, the critical path can be divided into Path3
and Path4.

• As a result, the new critical path becomes Path3.

• This has the disadvantage that input b and c in the same clock cycle
cannot be processed.

16

16 16

×
32

+
r_c

32 32

r_y
32 32

b

c
y

3

r_d

16

16

×
32

3

r_d

+ r_y
32

r_d

+
r_c

32

r_y
32

(b) Path4

(c) Path2

(a) Path3

r_b

r_b

Critical path

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 10

Pipelining example: multiply-add operation (3)

• To overcome this drawback, we insert register r_e.

• This realizes a pipeline with stages 1 and 2.
A set of registers between two adjacent stages are called a pipeline
register.

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c
y

3

r_e

32

32

stage 1 stage 2

r_d

pipeline register

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c
y

3

r_e

32

32

stage 1 stage 2

r_d

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c

3

(a) original multiply-add circuit (b) two-stage pipelined circuit

Critical path

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 11

rvcore_2s : 2-stage pipelining processor

• The strategy is to separate the instruction fetch (IF) step and other (ID, EX,
MA, WB) steps. The first stage is named IF. The other stage is named EX+.

m_regfile

regfile1

(32bit x 32)

w_rs1

m_imem

imem1

(32bit x 1024)

m_dmem

dmem1

(32bit x 8K)

r_pc

32

+

w_rs2

w_rslt

m_decoder

decoder1 5 w_rrs1

w_rrs2_t

w_rrs2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

w_ldd

M
u
x

w_rslt

D_OUT

w_rrs1

w_imm

w_rrs2

w_rrs1

w_rrs2

w_rrs1

w_imm

D_WE

P1_pc

32

5

5

32

32

1

32

32

32

32

32

32

32

rvcore_2s

w_rd

r_pc

w
_

ir m_alu

alu1

m_bru

bru1
M
u
x

w_itype[`D_S_TYPE] & P1_v

M
u
x

+ w_tkn_pc

M
u
x

32

+

`S
T

A
R

T
_

P
C

w_b_rslt & P1_v

w_imm32

32
4

w_itype[`D_LD__IS]

w_jalr

w_op_im

w_jalr

w_op_im
w_itype

w_bru_c

w_alu_c

w_bru_c
w_alu_c

r_pc

P1_pc

P1_ir

P1_v

P1

P1_v

w_b_rslt & P1_v

IF stage EX+ stage

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 12

rvcore_2s : 2-stage pipelining processor

CC1 CC2 CC3 CC4 CC5

IF EX+

IF EX+

IF EX+

32’h0 addi x1,x0,3

32’h4 addi x2,x1,4

32’h8 addi x10,x2,5

32’hc addi x30,x10,0

Time
Instructions

EX+

(a) rvcore_2s: 2-stage pipelining processor

(b) a pipeline diagram of rvcore_2s

IF

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 13

Why do branch instructions degrade IPC?

• The branch taken / untaken (branch result) is determined in the EX+
stage of the branch.

• The conservative approach is stalling instruction fetch until the branch
direction is determined.

IF EX+

IF EX+

IF EX+

IF EX+

IF EX+

IF EX+

IF EX+

1. add

2. add

3. bne

4. add

5. add

6. add

7. add

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9

Control dependency

two-stage pipelining processor executing instruction sequence with a branch

stall

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 14

Why do branch instructions degrade IPC?

• Another approach is fetching the following instruction (an instruction
at the next address) when a branch (bne) is fetched.

• When a branch (08 bne) is taken, the wrong instruction fetched
(0c add) is flushed.

IF EX+

IF EX+

IF EX+

IF EX+

IF EX+

IF

IF EX+

00 add

04 add

08 bne

0c add

10 add

14 add

18 add

cc1 cc2 cc3 cc4 cc5 cc6 cc7

IF EX+

IF EX+

IF EX+

IF EX+

IF EX+

IF

IF EX+

00 add

04 add

08 bne

0c add

30 addi

34 addi

38 addi

cc1 cc2 cc3 cc4 cc5 cc6 cc7

(a) branch untaken case (b) branch taken case

Control dependency

Flush the wrong insn.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 15

Verilog HDL code for rvcore_2s

module m_rvcore_2s (///// RVCore two-stage pipelining version
input wire w_clk, // clock signal
input wire w_rst, // reset signal
output wire [31:0] D_ADDR, // data memory, address
output wire [31:0] D_OUT, // data memory, output data
output wire D_WE // data memory, write enable

);
reg [31:0] r_pc;
reg [31:0] P1_ir, P1_pc; /* pipeline register */
reg P1_v; /* pipeline register */
wire w_jalr, w_op_im, w_b_rslt;
wire [9:0] w_itype;
wire [10:0] w_alu_c;
wire [6:0] w_bru_c;
wire [4:0] w_rs1, w_rs2, w_rd;
wire [31:0] w_ir, w_rrs1, w_rrs2_t, w_rrs2, w_imm_t, w_imm;
wire [31:0] w_a_rslt, w_rslt, w_tkn_pc, w_ldd;
wire w_miss = w_b_rslt & P1_v;

m_imem imem1 (w_clk, r_pc, w_ir);
m_decoder decoder1 (P1_pc, P1_ir, w_rd, w_rs1, w_rs2,

w_op_im, w_itype, w_jalr, w_alu_c, w_bru_c, w_imm_t, w_imm);
m_regfile regfile1 (w_clk, w_rs1, w_rs2, w_rrs1, w_rrs2_t, w_rd, P1_v, w_rslt);
assign w_rrs2 = (w_op_im) ? w_imm : w_rrs2_t;
m_alu alu1 (w_rrs1, w_rrs2, w_alu_c, w_a_rslt);
m_bru bru0 (w_rrs1, w_rrs2, w_bru_c, w_b_rslt);
assign D_ADDR = w_rrs1 + w_imm;
assign D_OUT = w_rrs2;
assign D_WE = w_itype[`D_S_TYPE] & P1_v;
m_dmem dmem1 (w_clk, D_WE, D_ADDR, D_OUT, w_ldd);

assign w_rslt = (w_itype[`D_LD__IS]) ? w_ldd : w_a_rslt;
assign w_tkn_pc = ((w_jalr) ? w_rrs1 : P1_pc) + w_imm_t;
always @(posedge w_clk) begin

r_pc <= (w_rst) ? `START_PC :
(w_b_rslt & P1_v) ? w_tkn_pc : r_pc + 4;

P1_ir <= w_ir;
P1_pc <= r_pc;
P1_v <= (w_rst) ? 0 : !w_miss;

end

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 16

rvcore_3s : 3-stage pipelining processor

• The strategy is to separate the instruction fetch (IF) step, instruction decode (ID) step,
and other (EX, MA, WB) steps. The first stage is named IF. The second stage is named ID.
The last stage is named EX+.

m_regfile

regfile1

(bypass)

w_rs1

m_imem

imem1

m_dmem

dmem1

r_pc

32

+

w_rs2

w_rslt

5 w_rrs1

w_rrs2_t

w
_

rr
s2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

w_ldd

M
u
x

w_rslt

D_OUT

P2_rrs1

P2_imm

P2_rrs2

P2_rrs1

P2_rrs2

P2_rrs1

w_imm

D_WE

P1_pc

32

5

5

32

32

1

32

32

32

32

32

32

32

w_rd

r_pc

w
_

ir

m_alu

alu1

m_bru

bru1

M
u
x

P2_itype[`D_S_TYPE] & P2_v

M
u
x

+ w_tkn_pc

M
u
x

32

+

w_b_rslt

& P2_v

w_imm32

32
4

P2_itype[`D_LD__IS]

P2_jalr

w_op_im

w_jalr

w_op_im
w_itype

P2_bru_c

P2_alu_c

w_bru_c
w_alu_c

P1

P2_v

w_b_rslt & P2_v

IF stage ID stage EX+ stage

P2_rd

`S
T

A
R

T
_

P
C

m
_
d
ec

o
d
er

d
ec
o
d
er
1

P2

P1_pc

P1_ir

P1_v

P2_

rrs2

P2_

rrs1

P2_pc

P2_

imm_t

P2_

imm

P2_v

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 17

Exercise 1

• Draw the main datapath of the processor rvcore_3s and write the valid
values on wires when the processor is executing these three
instructions

0x00 addi x1, x0, 3 # x1 = 3

0x04 addi x2, x1, 4 # x2 = 3 + 4 = 7

0x08 add x5, x1, x2 # x5 = 3 + 7 = 10

addi x1, x0, 3addi x2, x1, 4add x5, x1, x2

m_regfile

regfile1

(bypass)

w_rs1

m_imem

imem1
r_pc

w_rs2

w_rrs1

w_rrs2_t

w
_

rr
s2

M
u
x

w_rslt

w_imm

w_rd

m_alu

alu1

M
u
x

P2_v

P2_rd

m
_
d

ec
o

d
er

d
ec
o
d
er
1

P1_ir

P2_

rrs2

P2_

rrs1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 18

m_regfile with bypassing

module m_regfile (///// register file
input wire w_clk,
input wire [4:0] rs1, rs2,
output wire [31:0] rdata1, rdata2,
input wire [4:0] rd,
input wire we,
input wire [31:0] wdata

);
reg [31:0] mem [0:31];
integer i; initial begin for(i=0; i<32; i=i+1) mem[i]=0; end
wire bp1 = (we & rs1==rd); // bypassing for rdata1
wire bp2 = (we & rs2==rd); // bypassing for rdata2
assign rdata1 = (rs1==0) ? 0 : (bp1) ? wdata : mem[rs1];
assign rdata2 = (rs2==0) ? 0 : (bp2) ? wdata : mem[rs2];
always @(posedge w_clk) if(rd!=0 && we) mem[rd] <= wdata;

endmodule

32

32

32

5

5

5

rs1

rs2

rd

wdata

rdata1

rdata2

regfile

1
we

module m_regfile (///// register file
input wire w_clk,
input wire [4:0] rs1, rs2,
output wire [31:0] rdata1, rdata2,
input wire [4:0] rd,
input wire we,
input wire [31:0] wdata

);
reg [31:0] mem [0:31];
integer i; initial begin for(i=0; i<32; i=i+1) mem[i]=0; end
assign rdata1 = (rs1==0) ? 0 : mem[rs1];
assign rdata2 = (rs2==0) ? 0 : mem[rs2];
always @(posedge w_clk) if(rd!=0 && we) mem[rd] <= wdata;

endmodule

32

32

32

5

5

5

rs1

rs2

rd

wdata

rdata1

rdata2

regfile

1
we

m_regfile for rvcore1 and rvcore_2s

m_regfile for rvcore_3s

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 19

Why do branch instructions degrade IPC?

• Another approach is fetching the following instructions (0c add, 10
add) after a branch (bne) is fetched.

• When a branch (08 bne) is taken, the wrong instructions fetched
(0c add, 10 add) are flushed.

IF ID EX+

IF ID EX+

IF ID EX+

IF ID EX+

IF ID EX+

IF ID EX+

IF ID EX+

00 add

04 add

08 bne

0c add

10 add

30 addi

34 addi

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9 cc10

Control dependency

three-stage pipelining processor executing instruction sequence with a taken branch

Flush these wrong instructions

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 20

rvcore_4s : 4-stage pipelining processor

• The strategy is to separate the instruction fetch (IF) step, instruction decode (ID) step,
and write back(WB) step, and other (EX, MA) steps. The first stage is named IF. The
second stage is named ID. The third stage is named EX+. The last stage is named WB.

m_regfile

regfile1

(bypass)

w_rs1

m_imem

imem1
r_pc

32

+

w_rs2

w_rslt

5 w_rrs1

w_rrs2_t

w
_

rr
s2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

M
u
x

w_rslt

D_OUT

w_exrrs1

P2_imm

w_exrrs2

w_exrrs1

w_exrrs2

w_exrrs1

w_imm

D_WE

P1_pc

32

5

5

32

32

1

32

32

32

32

32

32

32

w_rd

r_pc

w
_

ir m_alu

alu1

m_bru

bru1

M
u
x

P2_itype[`D_S_TYPE] & P2_v

M
u
x

+ w
_

tk
n
_

p
c

M
u
x

32

+

w_b_rslt

& P2_v

w_imm32

32
4

P
3

_
it

y
p

e[
`D

_
L

D
_

_
IS

]

P2_jalr

w_op_im

w_jalr

w_op_im
w_itype

P2_bru_c

P2_alu_c

w_bru_c
w_alu_c

P1

P3_v

w_b_rslt & P2_v

IF stage ID stage EX+ stage

P3_rd

`S
T

A
R

T
_

P
C

m
_
d
ec

o
d
er

d
ec
o
d
er
1

P2

P1_pc

P1_ir

P1_v

P2_

rrs2

P2_

rrs1

P2_pc

P2_

imm_t

P2_

imm

P2_v

WB stage

P3_

ldd

P3_v

P3

M
u
x

M
u
x

w_exrrs1

w_exrrs2

m_dmem

dmem1

P3_

a_rslt

d
at

a
fo

rw
ar

d
in

g

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 21

rvcore_4s : 4-stage pipelining processor

• Critical path

• deley(register read) + delay(mux) + delay(mux) + delay(adder) + delay(dmem read)

m_regfile

regfile1

(bypass)

w_rs1

m_imem

imem1
r_pc

32

+

w_rs2

w_rslt

5 w_rrs1

w_rrs2_t

w
_

rr
s2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

M
u
x

w_rslt

D_OUT
P2_imm

w_exrrs2

w_exrrs1

w_exrrs2

w_exrrs1

w_imm

D_WE

P1_pc

32

5

5

32

32

1

32

32

32

32

32

w_rd

r_pc

w
_

ir m_alu

alu1

m_bru

bru1

M
u
x

P2_itype[`D_S_TYPE] & P2_v

M
u
x

+ w
_

tk
n
_

p
c

M
u
x

32

+

w_imm32

32
4

P
3

_
it

y
p

e[
`D

_
L

D
_

_
IS

]

P2_jalr

w_op_im

w_jalr

w_op_im
w_itype

P2_bru_c

P2_alu_c

w_bru_c
w_alu_c

P1

P3_v

w_b_rslt & P2_v

P3_rd

`S
T

A
R

T
_

P
C

m
_
d
ec

o
d
er

d
ec
o
d
er
1

P2

P1_pc

P1_ir

P1_v

P2_

rrs2

P2_

rrs1

P2_pc

P2_

imm_t

P2_

imm

P2_v

P3_

ldd

P3_v

P3

M
u
x

M
u
x

w_exrrs1

w_exrrs2

m_dmem

dmem1

P3_

a_rslt

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 22

Exercise 2

• Draw the main datapath of the processor rvcore_4s and write the valid
values on wires when the processor is executing these three
instructions in ID, EX+, and WB stages

0x00 addi x1, x0, 3 # x1 = 3

0x04 addi x2, x1, 4 # x2 = 3 + 4 = 7

0x08 add x5, x1, x2 # x5 = 3 + 7 = 10

addi x1, x0, 3addi x2, x1, 4add x5, x1, x2

m_regfile

regfile1

(bypass)

w_rs1

m_imem

imem1
r_pc

w_rs2

w_rrs1

w_rrs2_t
w

_
rr

s2

M
u
x

w_rslt

w_imm

w_rd

m_alu

alu1

M
u
x

P3_v

P3_rd

m
_
d
ec

o
d
er

d
ec
o
d
er
1

P1_ir

P2_

rrs2

P2_

rrs1 P3_

a_rslt

M
u
x

M
u
x

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 23

Why do branch instructions degrade IPC?

• Another approach is fetching the following instructions (0c add, 10
add) after a branch (bne) is fetched.

• When a branch (08 bne) is taken, the wrong instructions fetched
(0c add, 10 add) are flushed.

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

00 add

04 add

08 bne

0c add

10 add

30 addi

34 addi

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9 cc10

Control dependency

four-stage pipelining processor executing instruction sequence with a taken branch

Flush the wrong insn.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 24

Comparison of critical path between rvcore1 and rvcore_4s

(a) the critical path of rvcore_1s

deley(register read) + delay(imem read) + delay(decode)
+ delay(regfile read) + delay(adder) + delay(dmem read)
+ delay(mux)

(b) the critical path of rvcore_4s

deley(register read) + delay(mux) + delay(mux)
+ delay(adder) + delay(dmem read)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 25

Recommended Reading

• Increasing Processor Performance by Implementing Deeper Pipelines

• Eric Sprangle , Doug Carmean (Intel Corporation)

• ISCA-2002 pp. 25-34 (2002)

