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Single-cycle implementation of processors

• Single-cycle implementation also called single clock cycle 
implementation is the implementation in which an instruction is 
executed in one clock cycle. 
While easy to understand, it is too slow to be practical.
It is useful as a baseline for lectures.
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Critical path of rvcore1 (single-cycle version) 

• It is too slow to be practical.
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Single-cycle implementation of laundry 

• (A) Ann,  (B) Brian, (C) Cathy, and (D) Don each have dirty clothes to be 
washed, dried, folded, and put away, each taking 30 minutes.

• The cycle time (the time from the end of one load to the end of the 
next one) is 2 hours.

• For four loads, the sequential laundry takes 8 hours.

cycle time 
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Single-cycle implementation and pipelining

• When the washing of load A is finished at 6:30 p.m., another washing of 
load B starts. 

• Pipelined laundry takes 3.5 hours just using the same hardware 
resources. The cycle time is 30 minutes. 

• What is the latency 
(execution time) of each load?
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Bucket brigade
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Clock rate is mainly determined by

• Switching speed of gates (transistors)

• The number of levels of gates 

• The maximum number of gates cascaded in series in any 
combinational logics.

• In this example, the number of levels of gates is 3.

• Wiring delay and fanout
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Pipelining example: multiply-add operation (1)

• As an example of pipelining, we will see a multiply-add circuit.

• r_b, r_c are input registers and  r_y is output register of the circuit.

• This has two paths named path1 and path2, and path1 is the critical path 
to determine the maximum operating frequency.
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Pipelining example: multiply-add operation (2)

• By inserting register r_d, the critical path can be divided into Path3 
and Path4.

• As a result, the new critical path becomes Path3.

• This has the disadvantage that input b and c in the same clock cycle 
cannot be processed.
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Pipelining example: multiply-add operation (3)

• To overcome this drawback, we insert register r_e.

• This realizes a pipeline with stages 1 and 2. 
A set of registers between two adjacent stages are called a pipeline 
register.
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rvcore_2s : 2-stage pipelining processor

• The strategy is to separate the instruction fetch (IF) step and other (ID, EX, 
MA, WB) steps. The first stage is named IF. The other stage is named EX+.

m_regfile

regfile1

(32bit x 32)

w_rs1

m_imem

imem1

(32bit x 1024)

m_dmem

dmem1

(32bit x 8K)

r_pc

32

+

w_rs2

w_rslt

m_decoder

decoder1 5 w_rrs1

w_rrs2_t

w_rrs2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

w_ldd

M
u
x

w_rslt

D_OUT

w_rrs1

w_imm

w_rrs2

w_rrs1

w_rrs2

w_rrs1

w_imm

D_WE

P1_pc

32

5

5

32

32

1

32

32

32

32

32

32

32

rvcore_2s

w_rd

r_pc

w
_

ir m_alu

alu1

m_bru

bru1
M
u
x

w_itype[`D_S_TYPE] & P1_v

M
u
x

+ w_tkn_pc

M
u
x

32

+

`S
T

A
R

T
_

P
C

w_b_rslt & P1_v

w_imm32

32
4

w_itype[`D_LD__IS]

w_jalr

w_op_im

w_jalr

w_op_im
w_itype

w_bru_c

w_alu_c

w_bru_c
w_alu_c

r_pc

P1_pc

P1_ir

P1_v

P1

P1_v

w_b_rslt & P1_v

IF stage EX+ stage



CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 12

rvcore_2s : 2-stage pipelining processor

CC1 CC2 CC3 CC4 CC5

IF EX+

IF EX+

IF EX+

32’h0 addi x1,x0,3

32’h4 addi x2,x1,4

32’h8 addi x10,x2,5

32’hc addi x30,x10,0

Time
Instructions

EX+

(a) rvcore_2s: 2-stage pipelining processor

(b) a pipeline diagram of rvcore_2s

IF
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Why do branch instructions degrade IPC?

• The branch taken / untaken (branch result) is determined in the EX+
stage of the branch.

• The conservative approach is stalling instruction fetch until the branch 
direction is determined.
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Control dependency

two-stage pipelining processor executing instruction sequence with a branch

stall



CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 14

Why do branch instructions degrade IPC?

• Another approach is fetching the following instruction (an instruction 
at the next address) when a branch (bne) is fetched.

• When a branch (08 bne) is taken, the wrong instruction fetched
(0c add) is flushed.
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Verilog HDL code for rvcore_2s

module m_rvcore_2s ( ///// RVCore two-stage pipelining version
input  wire        w_clk,  // clock signal
input  wire        w_rst,  // reset signal
output wire [31:0] D_ADDR, // data memory, address
output wire [31:0] D_OUT,  // data memory, output data
output wire        D_WE    // data memory, write enable

);
reg  [31:0] r_pc;
reg  [31:0] P1_ir, P1_pc; /* pipeline register */
reg         P1_v;         /* pipeline register */
wire        w_jalr, w_op_im, w_b_rslt;
wire [9:0]  w_itype;
wire [10:0] w_alu_c;
wire [6:0]  w_bru_c;
wire [4:0]  w_rs1, w_rs2, w_rd;
wire [31:0] w_ir, w_rrs1, w_rrs2_t, w_rrs2, w_imm_t, w_imm;
wire [31:0] w_a_rslt, w_rslt, w_tkn_pc, w_ldd;
wire w_miss = w_b_rslt & P1_v;

m_imem imem1 (w_clk, r_pc, w_ir);
m_decoder decoder1 (P1_pc, P1_ir, w_rd, w_rs1, w_rs2,

w_op_im, w_itype, w_jalr, w_alu_c, w_bru_c, w_imm_t, w_imm);
m_regfile regfile1 (w_clk, w_rs1, w_rs2, w_rrs1, w_rrs2_t, w_rd, P1_v, w_rslt);
assign w_rrs2 = (w_op_im) ? w_imm : w_rrs2_t;
m_alu alu1 (w_rrs1, w_rrs2, w_alu_c, w_a_rslt);
m_bru bru0 (w_rrs1, w_rrs2, w_bru_c, w_b_rslt);
assign D_ADDR = w_rrs1 + w_imm;
assign D_OUT  = w_rrs2;
assign D_WE   = w_itype[`D_S_TYPE] & P1_v;
m_dmem dmem1 (w_clk, D_WE, D_ADDR, D_OUT, w_ldd);

assign w_rslt = (w_itype[`D_LD__IS]) ? w_ldd : w_a_rslt;
assign w_tkn_pc = ((w_jalr) ? w_rrs1 : P1_pc) + w_imm_t;
always @(posedge w_clk) begin

r_pc  <= (w_rst) ? `START_PC :
(w_b_rslt & P1_v) ? w_tkn_pc : r_pc + 4;

P1_ir <= w_ir;
P1_pc <= r_pc;
P1_v  <= (w_rst) ? 0 : !w_miss;

end
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rvcore_3s : 3-stage pipelining processor

• The strategy is to separate the instruction fetch (IF) step, instruction decode (ID) step, 
and other (EX, MA, WB) steps. The first stage is named IF. The second stage is named ID. 
The last stage is named EX+.
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Exercise 1

• Draw the main datapath of the processor rvcore_3s and write the valid 
values on wires when the processor is executing these three 
instructions

0x00 addi x1, x0, 3     # x1 = 3

0x04 addi x2, x1, 4     # x2 = 3 + 4 = 7

0x08 add  x5, x1, x2    # x5 = 3 + 7 = 10

addi x1, x0, 3addi x2, x1, 4add x5, x1, x2
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m_regfile with bypassing

module m_regfile ( ///// register file
input  wire        w_clk,
input  wire [ 4:0] rs1, rs2,
output wire [31:0] rdata1, rdata2,
input  wire [ 4:0] rd,
input  wire        we,
input  wire [31:0] wdata

);
reg [31:0] mem [0:31];
integer i; initial begin for(i=0; i<32; i=i+1) mem[i]=0; end
wire bp1 = (we & rs1==rd); // bypassing for rdata1
wire bp2 = (we & rs2==rd); // bypassing for rdata2
assign rdata1 = (rs1==0) ? 0 : (bp1) ? wdata : mem[rs1];
assign rdata2 = (rs2==0) ? 0 : (bp2) ? wdata : mem[rs2];
always @(posedge w_clk) if(rd!=0 && we) mem[rd] <= wdata;

endmodule
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);
reg [31:0] mem [0:31];
integer i; initial begin for(i=0; i<32; i=i+1) mem[i]=0; end
assign rdata1 = (rs1==0) ? 0 : mem[rs1];
assign rdata2 = (rs2==0) ? 0 : mem[rs2];
always @(posedge w_clk) if(rd!=0 && we) mem[rd] <= wdata;

endmodule
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Why do branch instructions degrade IPC?

• Another approach is fetching the following instructions (0c add, 10
add) after a branch (bne) is fetched.

• When a branch (08 bne) is taken, the wrong instructions fetched
(0c add, 10 add) are flushed.

IF ID EX+

IF ID EX+

IF ID EX+

IF ID EX+

IF ID EX+

IF ID EX+

IF ID EX+

00 add

04 add

08 bne

0c add

10 add

30 addi

34 addi

cc1  cc2  cc3   cc4  cc5  cc6  cc7  cc8  cc9  cc10

Control dependency

three-stage pipelining processor executing instruction sequence with a taken branch

Flush these wrong instructions
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rvcore_4s : 4-stage pipelining processor

• The strategy is to separate the instruction fetch (IF) step, instruction decode (ID) step, 
and write back(WB) step, and other (EX, MA) steps. The first stage is named IF. The 
second stage is named ID. The third stage is named EX+. The last stage is named WB.
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rvcore_4s : 4-stage pipelining processor

• Critical path

• deley(register read) + delay(mux) + delay(mux) + delay(adder) + delay(dmem read)
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Exercise 2

• Draw the main datapath of the processor rvcore_4s and write the valid 
values on wires when the processor is executing these three 
instructions in ID, EX+, and WB stages

0x00 addi x1, x0, 3     # x1 = 3

0x04 addi x2, x1, 4     # x2 = 3 + 4 = 7

0x08 add  x5, x1, x2    # x5 = 3 + 7 = 10

addi x1, x0, 3addi x2, x1, 4add x5, x1, x2
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Why do branch instructions degrade IPC?

• Another approach is fetching the following instructions (0c add, 10
add) after a branch (bne) is fetched.

• When a branch (08 bne) is taken, the wrong instructions fetched
(0c add, 10 add) are flushed.

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

IF ID EX+ WB

00 add

04 add

08 bne

0c add

10 add

30 addi

34 addi

cc1  cc2  cc3   cc4  cc5  cc6  cc7  cc8  cc9  cc10

Control dependency

four-stage pipelining processor executing instruction sequence with a taken branch

Flush the wrong insn.
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Comparison of critical path between rvcore1 and rvcore_4s

(a) the critical path of rvcore_1s

deley(register read) + delay(imem read) + delay(decode) 
+ delay(regfile read) + delay(adder) + delay(dmem read) 
+ delay(mux) 

(b) the critical path of rvcore_4s

deley(register read) + delay(mux) + delay(mux) 
+ delay(adder) + delay(dmem read)
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