
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 1

Advanced Computer Architecture

3. HDL, single-cycle processor

Ver. 2024-12-16aFiscal Year 2024

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No. W8E-308, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 2

Sample circuit 2

• 2-bit counter as a sample sequential circuit

+

1

2

w_rst

w_cnt2

module m_counter

r_cnt
[1:0]

`timescale 1ns/100ps
module top();
reg r_clk = 0;
always #50 r_clk = ~r_clk;
reg r_rst = 1;
always @(posedge r_clk) r_rst <= 0;
wire [1:0] w_cnt;
m_counter m1 (r_clk, r_rst, w_cnt);
initial begin $dumpfile("dump.vcd"); $dumpvars(0); end
initial #800 $finish;

endmodule

module m_counter (
input wire w_clk,
input wire w_rst,
output wire [1:0] w_cnt

);
reg [1:0] r_cnt;
always@(posedge w_clk) r_cnt <= (w_rst) ? 0 : r_cnt + 1;
assign w_cnt = r_cnt;

endmodule

w_clk

circuit2.v

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 3

Register (D flip-flop)

Wikipedia

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 4

m_rvcore (RV32I, single-cycle processor)

• around 40MHz operating frequency for Arty A7 FPGA board

• lb, lbu, lh, lhu, sb, sh are not supported

m_regfile

regfile1

(32bit x 32)

w_rs1

m_imem

imem1

(32bit x 1024)

m_dmem

dmem1

(32bit x 8K)

r_pc

32

+

w_rs2

w_rslt

m_decoder

decoder1 5 w_rrs1

w_rrs2_t

w_rrs2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

w_ldd

M
u
x

w_rslt

D_OUT

w_rrs1

w_imm

w_rrs2

w_rrs1

w_rrs2

w_rrs1

w_imm

D_WE

r_pc

32

5

5

32

32

1

32

32

32

32

32

32

32

m_rvcore1
(proc1.v)

w_rd

r_pc

w_ir
m_alu

alu1

m_bru

bru1

M
u
x

w_itype[`D_S_TYPE]

M
u
x

+ w_tkn_pc

M
u
x

32

+

`START_PC

w_b_rslt, w_rst

w_imm32

32
4

w_itype[`D_LD__IS]

w_jalr

w_op_im

w_jalr

w_op_im
w_itype

w_bru_c

w_alu_c

w_bru_c
w_alu_c

r_pc

w_clk
w_clk

w_clk

w_clk

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 5

Steps in processing an instruction

• IF: Instruction Fetch
fetch an instruction from instruction memory or instruction
cache

• ID: Instruction Decode
decode an instruction and read input operands from register file

• EX: Execution
perform operation, calculate an address of lw/sw

• MEM: Memory Access
access data memory or data cache for lw/sw

• WB: Write Back
write operation result and loaded data to register file

5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 6

Sample assembly code in RISC-V

• sample assembly code in the instruction memory

• the leftmost number is the instruction memory address where
the instruction is stored

• the first register x0 is zero register with hardwiring 0

0x00 L1: addi x5, x0, 2 # x5 = 2

0x04 addi x6, x0, 3 # x6 = 3

0x08 add x7, x5, x6 # x7 = x5 + x6 = 5

0x0c sw x7, 32(x0) # mem[0 + 32] = x7 = 5

0x10 lw x8, 32(x0) # x8 = mem[0 + 32]

0x14 add x9, x8, x5 # x9 = x8 + x5 = 7

0x18 bne x5, x6, L1 # go to L1 if x5!=x6

0x00200293

0x00300313

0x006283B3

0x02702023

0x02002403

0x005404B3

0xFE6294E3

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 7

Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2 # x5 = 2

0x04 addi x6, x0, 3 # x6 = 3

0x08 add x7, x5, x6 # x7 = x5 + x6 = 5

0x0c sw x7, 32(x0) # mem[0 + 32] = x7 = 5

0x10 lw x8, 32(x0) # x8 = mem[0 + 32]

0x14 add x9, x8, x5 # x9 = x8 + x5 = 7

0x18 bne x5, x6, L1 # go to L1 if x5!=x6

• cycle count 0 (cc0) at 50nsec

0x0

0, 1

0
x
0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 8

Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2 # x5 = 2

0x04 addi x6, x0, 3 # x6 = 3

0x08 add x7, x5, x6 # x7 = x5 + x6 = 5

0x0c sw x7, 32(x0) # mem[0 + 32] = x7 = 5

0x10 lw x8, 32(x0) # x8 = mem[0 + 32]

0x14 add x9, x8, x5 # x9 = x8 + x5 = 7

0x18 bne x5, x6, L1 # go to L1 if x5!=x6

• cycle count 1 (cc1) at 150nsec

• executing
addi x5, x0, 2
of address 0x00

0x0

0x00200293
0x0

0x4

0

5

0

2

2

2

2

2

2

0x4

0

0, 0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 9

Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2 # x5 = 2

0x04 addi x6, x0, 3 # x6 = 3

0x08 add x7, x5, x6 # x7 = x5 + x6 = 5

0x0c sw x7, 32(x0) # mem[0 + 32] = x7 = 5

0x10 lw x8, 32(x0) # x8 = mem[0 + 32]

0x14 add x9, x8, x5 # x9 = x8 + x5 = 7

0x18 bne x5, x6, L1 # go to L1 if x5!=x6

• cycle count 2 (cc2) at 250nsec

• executing
addi x6, x0, 3
of address 0x04

0x4

0x00300313
0x4

0x8

0

6

0

3

3

3

3

3

3

0x8

0

0, 0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 10

Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2 # x5 = 2

0x04 addi x6, x0, 3 # x6 = 3

0x08 add x7, x5, x6 # x7 = x5 + x6 = 5

0x0c sw x7, 32(x0) # mem[0 + 32] = x7 = 5

0x10 lw x8, 32(x0) # x8 = mem[0 + 32]

0x14 add x9, x8, x5 # x9 = x8 + x5 = 7

0x18 bne x5, x6, L1 # go to L1 if x5!=x6

• cycle count 3 (cc3) at 350nsec

• executing
add x7, x5, x6
of address 0x08

0x8

0x006283B3
0x8

0xc

5

7

2

6 3
3

5

5

5

0xc

0

0, 0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 11

Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2 # x5 = 2

0x04 addi x6, x0, 3 # x6 = 3

0x08 add x7, x5, x6 # x7 = x5 + x6 = 5

0x0c sw x7, 32(x0) # mem[0 + 32] = x7 = 5

0x10 lw x8, 32(x0) # x8 = mem[0 + 32]

0x14 add x9, x8, x5 # x9 = x8 + x5 = 7

0x18 bne x5, x6, L1 # go to L1 if x5!=x6

• cycle count 4 (cc4) at 450nsec

• executing
sw x7, 32(x0)
of address 0x0c

0xc

0x02702023
0xc

0x10

0

0

0

7 5

0x10
0

32

32

32

5

5

1

0, 0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 12

Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2 # x5 = 2

0x04 addi x6, x0, 3 # x6 = 3

0x08 add x7, x5, x6 # x7 = x5 + x6 = 5

0x0c sw x7, 32(x0) # mem[0 + 32] = x7 = 5

0x10 lw x8, 32(x0) # x8 = mem[0 + 32]

0x14 add x9, x8, x5 # x9 = x8 + x5 = 7

0x18 bne x5, x6, L1 # go to L1 if x5!=x6

• cycle count 5 (cc5) at 550nsec

• executing
lw x8, 32(x0)
of address 0x10

0x10

0x02002403
0x10

0x14

0

8

0

0x14
0

32

32

32

5

0

5

5

0, 0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 13

Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2 # x5 = 2

0x04 addi x6, x0, 3 # x6 = 3

0x08 add x7, x5, x6 # x7 = x5 + x6 = 5

0x0c sw x7, 32(x0) # mem[0 + 32] = x7 = 5

0x10 lw x8, 32(x0) # x8 = mem[0 + 32]

0x14 add x9, x8, x5 # x9 = x8 + x5 = 7

0x18 bne x5, x6, L1 # go to L1 if x5!=x6

• cycle count 6 (cc6) at 650nsec

• executing
add x9, x8, x5
of address 0x14

0x14

0x005404B3
0x14

0x18

5

9

2

0x18

0

7

7

8 5 7

5

0, 0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 14

Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2 # x5 = 2

0x04 addi x6, x0, 3 # x6 = 3

0x08 add x7, x5, x6 # x7 = x5 + x6 = 5

0x0c sw x7, 32(x0) # mem[0 + 32] = x7 = 5

0x10 lw x8, 32(x0) # x8 = mem[0 + 32]

0x14 add x9, x8, x5 # x9 = x8 + x5 = 7

0x18 bne x5, x6, L1 # go to L1 if x5!=x6

• cycle count 7 (cc7) at 750nsec

• executing
bne x5, x6, L1
of address 0x18

0x18

0xFE6294E3
0x18

0x1c

5 2

0x1c

0

6 3

3

0x18

-0x18

0x0

0x0

2

3

1

1, 0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 15

Exercise 1

• Draw the block diagram of pvcore1 and write the line number of source
code where that hardware is described.

regfile1
imem1

dmem1

r_pc

+

decoder1

alu1

bru1

+

+

4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 16

m_rvcore (RV32I, single-cycle processor)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 17

Simulation in the ACRi room environment

$ cd
$ mkdir aca
$ cd aca
$ cp /home/tu_kise/aca/circuit1.v .
$ iverilog circuit1.v
$./a.out

$ /usr/bin/gtkwave dump.vcd

$ cd
$ cd aca
$ cp –r /home/tu_kise/aca/rvcore1 .
$ cd rvcore1
$ make
$ make run

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 18

Single-cycle implementation of processors

• Single-cycle implementation also called single clock cycle
implementation is the implementation in which an instruction is
executed in one clock cycle.
While easy to understand, it is too slow to be practical.
It is useful as a baseline for lectures.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 19

Single-cycle implementation of laundry

• (A) Ann, (B) Brian, (C) Cathy, and (D) Don each have dirty clothes to be
washed, dried, folded, and put away, each taking 30 minutes.

• The cycle time (the time from the end of one load to the end of the
next one) is 2 hours.

• For four loads, the sequential laundry takes 8 hours.

cycle time

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 20

Single-cycle implementation and pipelining

• When the washing of load A is finished at 6:30 p.m., another washing of
load B starts.

• Pipelined laundry takes 3.5 hours just using the same hardware
resources. The cycle time is 30 minutes.

• What is the latency
(execution time) of each load?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 21

Clock rate is mainly determined by

• Switching speed of gates (transistors)

• The number of levels of gates

• The maximum number of gates cascaded in series in any
combinational logics.

• In this example, the number of levels of gates is 3.

• Wiring delay and fanout

21

Register A

Register B

AND gate

OR gate

AND gate

Register A

Register B
AND gate

OR gate

Register C

Split a path by placing registers

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 22

Pipelining example: multiply-add operation (1)

• As an example of pipelining, we will see a multiply-add circuit.

• r_b, r_c are input registers and r_y is output register of the circuit.

• This has two paths named path1 and path2, and path1 is the critical path
to determine the maximum operating frequency.

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c

3 r_b
16

×
32

+ r_y
32

+
r_c

32

r_y
32

(a) Path1

(b) Path2

Critical path

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 23

Pipelining example: multiply-add operation (2)

• By inserting register r_d, the critical path can be divided into Path3
and Path4.

• As a result, the new critical path becomes Path3.

• This has the disadvantage that input b and c in the same clock cycle
cannot be processed.

16

16 16

×
32

+
r_c

32 32

r_y
32 32

b

c
y

3

r_d

16

16

×
32

3

r_d

+ r_y
32

r_d

+
r_c

32

r_y
32

(b) Path4

(c) Path2

(a) Path3

r_b

r_b

Critical path

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 24

Pipelining example: multiply-add operation (3)

• To overcome this drawback, we insert register r_e.

• This realizes a pipeline with stages 1 and 2.
A set of registers between two adjacent stages are called a pipeline
register.

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c
y

3

r_e

32

32

stage 1 stage 2

r_d

pipeline register

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c
y

3

r_e

32

32

stage 1 stage 2

r_d

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c

3

(a) original multiply-add circuit (b) two-stage pipelined circuit

Critical path

