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Sample circuit 2

• 2-bit counter as a sample sequential circuit
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w_rst

w_cnt2

module m_counter

r_cnt
[1:0]

`timescale 1ns/100ps
module top();
reg r_clk = 0;
always #50 r_clk = ~r_clk;
reg r_rst = 1;
always @(posedge r_clk) r_rst <= 0;
wire [1:0] w_cnt;
m_counter m1 (r_clk, r_rst, w_cnt);
initial begin $dumpfile("dump.vcd"); $dumpvars(0); end
initial #800 $finish;

endmodule

module m_counter (
input wire w_clk,
input wire w_rst,
output wire [1:0] w_cnt

);
reg [1:0] r_cnt;
always@(posedge w_clk) r_cnt <= (w_rst) ? 0 : r_cnt + 1;
assign w_cnt = r_cnt;

endmodule

w_clk

circuit2.v
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Register (D flip-flop)

Wikipedia
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m_rvcore (RV32I, single-cycle processor)

• around 40MHz operating frequency for Arty A7 FPGA board

• lb, lbu, lh, lhu, sb, sh are not supported
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Steps in processing an instruction

• IF: Instruction Fetch
fetch an instruction from instruction memory or instruction 
cache

• ID: Instruction Decode
decode an instruction and read input operands from register file

• EX: Execution
perform operation, calculate an address of lw/sw

• MEM: Memory Access
access data memory or data cache for lw/sw

• WB: Write Back
write operation result and loaded data to register file

5
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Sample assembly code in RISC-V

• sample assembly code in the instruction memory

• the leftmost number is the instruction memory address where 
the instruction is stored

• the first register x0 is zero register with hardwiring 0

0x00 L1: addi x5, x0, 2      # x5 = 2

0x04 addi x6, x0, 3      # x6 = 3

0x08 add  x7, x5, x6     # x7 = x5 + x6 = 5

0x0c sw   x7, 32(x0)     # mem[0 + 32] = x7 = 5

0x10 lw   x8, 32(x0)     # x8 = mem[0 + 32]

0x14 add  x9, x8, x5     # x9 = x8 + x5 = 7

0x18 bne  x5, x6, L1 # go to L1 if x5!=x6

0x00200293

0x00300313

0x006283B3

0x02702023

0x02002403

0x005404B3

0xFE6294E3
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Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2      # x5 = 2

0x04 addi x6, x0, 3      # x6 = 3

0x08 add  x7, x5, x6     # x7 = x5 + x6 = 5

0x0c sw   x7, 32(x0)     # mem[0 + 32] = x7 = 5

0x10 lw   x8, 32(x0)     # x8 = mem[0 + 32]

0x14 add  x9, x8, x5     # x9 = x8 + x5 = 7

0x18 bne  x5, x6, L1 # go to L1 if x5!=x6

• cycle count 0 (cc0) at 50nsec

0x0

0, 1

0
x
0
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Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2      # x5 = 2

0x04 addi x6, x0, 3      # x6 = 3

0x08 add  x7, x5, x6     # x7 = x5 + x6 = 5

0x0c sw   x7, 32(x0)     # mem[0 + 32] = x7 = 5

0x10 lw   x8, 32(x0)     # x8 = mem[0 + 32]

0x14 add  x9, x8, x5     # x9 = x8 + x5 = 7

0x18 bne  x5, x6, L1 # go to L1 if x5!=x6

• cycle count 1 (cc1) at 150nsec

• executing  
addi x5, x0, 2 
of address 0x00

0x0

0x00200293
0x0

0x4

0

5
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2

2

2

2

2

2

0x4

0

0, 0
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Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2      # x5 = 2

0x04 addi x6, x0, 3      # x6 = 3

0x08 add  x7, x5, x6     # x7 = x5 + x6 = 5

0x0c sw   x7, 32(x0)     # mem[0 + 32] = x7 = 5

0x10 lw   x8, 32(x0)     # x8 = mem[0 + 32]

0x14 add  x9, x8, x5     # x9 = x8 + x5 = 7

0x18 bne  x5, x6, L1 # go to L1 if x5!=x6

• cycle count 2 (cc2) at 250nsec

• executing  
addi x6, x0, 3 
of address 0x04

0x4

0x00300313
0x4

0x8

0

6

0

3

3

3

3

3

3

0x8

0

0, 0
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Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2      # x5 = 2

0x04 addi x6, x0, 3      # x6 = 3

0x08 add  x7, x5, x6     # x7 = x5 + x6 = 5

0x0c sw   x7, 32(x0)     # mem[0 + 32] = x7 = 5

0x10 lw   x8, 32(x0)     # x8 = mem[0 + 32]

0x14 add  x9, x8, x5     # x9 = x8 + x5 = 7

0x18 bne  x5, x6, L1 # go to L1 if x5!=x6

• cycle count 3 (cc3) at 350nsec

• executing  
add  x7, x5, x6 
of address 0x08

0x8

0x006283B3
0x8

0xc

5

7

2

6 3
3

5

5

5

0xc

0

0, 0
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Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2      # x5 = 2

0x04 addi x6, x0, 3      # x6 = 3

0x08 add  x7, x5, x6     # x7 = x5 + x6 = 5

0x0c sw   x7, 32(x0)     # mem[0 + 32] = x7 = 5

0x10 lw   x8, 32(x0)     # x8 = mem[0 + 32]

0x14 add  x9, x8, x5     # x9 = x8 + x5 = 7

0x18 bne  x5, x6, L1 # go to L1 if x5!=x6

• cycle count 4 (cc4) at 450nsec

• executing  
sw  x7, 32(x0) 
of address 0x0c

0xc

0x02702023
0xc

0x10

0

0

0

7 5

0x10
0

32

32

32

5

5

1

0, 0
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Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2      # x5 = 2

0x04 addi x6, x0, 3      # x6 = 3

0x08 add  x7, x5, x6     # x7 = x5 + x6 = 5

0x0c sw   x7, 32(x0)     # mem[0 + 32] = x7 = 5

0x10 lw   x8, 32(x0)     # x8 = mem[0 + 32]

0x14 add  x9, x8, x5     # x9 = x8 + x5 = 7

0x18 bne  x5, x6, L1 # go to L1 if x5!=x6

• cycle count 5 (cc5) at 550nsec

• executing  
lw  x8, 32(x0) 
of address 0x10

0x10

0x02002403
0x10

0x14

0

8

0

0x14
0

32

32

32

5

0

5

5

0, 0
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Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2      # x5 = 2

0x04 addi x6, x0, 3      # x6 = 3

0x08 add  x7, x5, x6     # x7 = x5 + x6 = 5

0x0c sw   x7, 32(x0)     # mem[0 + 32] = x7 = 5

0x10 lw   x8, 32(x0)     # x8 = mem[0 + 32]

0x14 add  x9, x8, x5     # x9 = x8 + x5 = 7

0x18 bne  x5, x6, L1 # go to L1 if x5!=x6

• cycle count 6 (cc6) at 650nsec

• executing  
add  x9, x8, x5 
of address 0x14

0x14

0x005404B3
0x14

0x18

5

9

2

0x18

0

7

7

8 5 7

5

0, 0
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Processing behabior of rvcore1

0x00 L1: addi x5, x0, 2      # x5 = 2

0x04 addi x6, x0, 3      # x6 = 3

0x08 add  x7, x5, x6     # x7 = x5 + x6 = 5

0x0c sw   x7, 32(x0)     # mem[0 + 32] = x7 = 5

0x10 lw   x8, 32(x0)     # x8 = mem[0 + 32]

0x14 add  x9, x8, x5     # x9 = x8 + x5 = 7

0x18 bne  x5, x6, L1 # go to L1 if x5!=x6

• cycle count 7 (cc7) at 750nsec

• executing  
bne  x5, x6, L1 
of address 0x18

0x18

0xFE6294E3
0x18

0x1c

5 2

0x1c

0

6 3

3

0x18

-0x18

0x0

0x0

2

3

1

1, 0
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Exercise 1

• Draw the block diagram of pvcore1 and write the line number of source 
code where that hardware is described.

regfile1
imem1

dmem1

r_pc

+

decoder1

alu1

bru1

+

+

4
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m_rvcore (RV32I, single-cycle processor)
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Simulation in the ACRi room environment

$ cd
$ mkdir aca
$ cd aca
$ cp /home/tu_kise/aca/circuit1.v .
$ iverilog circuit1.v
$ ./a.out

$ /usr/bin/gtkwave dump.vcd

$ cd
$ cd aca
$ cp –r /home/tu_kise/aca/rvcore1 .
$ cd rvcore1
$ make
$ make run



CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 18

Single-cycle implementation of processors

• Single-cycle implementation also called single clock cycle 
implementation is the implementation in which an instruction is 
executed in one clock cycle. 
While easy to understand, it is too slow to be practical.
It is useful as a baseline for lectures.
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Single-cycle implementation of laundry 

• (A) Ann,  (B) Brian, (C) Cathy, and (D) Don each have dirty clothes to be 
washed, dried, folded, and put away, each taking 30 minutes.

• The cycle time (the time from the end of one load to the end of the 
next one) is 2 hours.

• For four loads, the sequential laundry takes 8 hours.

cycle time 
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Single-cycle implementation and pipelining

• When the washing of load A is finished at 6:30 p.m., another washing of 
load B starts. 

• Pipelined laundry takes 3.5 hours just using the same hardware 
resources. The cycle time is 30 minutes. 

• What is the latency 
(execution time) of each load?
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Clock rate is mainly determined by

• Switching speed of gates (transistors)

• The number of levels of gates 

• The maximum number of gates cascaded in series in any 
combinational logics.

• In this example, the number of levels of gates is 3.

• Wiring delay and fanout

21

Register A

Register B

AND gate

OR gate

AND gate

Register A

Register B
AND gate

OR gate

Register C

Split a path by placing registers
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Pipelining example: multiply-add operation (1)

• As an example of pipelining, we will see a multiply-add circuit.

• r_b, r_c are input registers and  r_y is output register of the circuit.

• This has two paths named path1 and path2, and path1 is the critical path 
to determine the maximum operating frequency.

16

r_b
16 16

×
32
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r_c

32 32

r_y
32 32

b
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3 r_b
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×
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+ r_y
32

+
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32

r_y
32

(a) Path1

(b) Path2

Critical path 
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Pipelining example: multiply-add operation (2)

• By inserting register r_d, the critical path can be divided into Path3 
and Path4.

• As a result, the new critical path becomes Path3.

• This has the disadvantage that input b and c in the same clock cycle 
cannot be processed.
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r_b

Critical path 
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Pipelining example: multiply-add operation (3)

• To overcome this drawback, we insert register r_e.

• This realizes a pipeline with stages 1 and 2. 
A set of registers between two adjacent stages are called a pipeline 
register.
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(a) original multiply-add circuit (b) two-stage pipelined circuit

Critical path 


