
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 1

Advanced Computer Architecture

1. Design and Analysis of Computer Systems

Ver. 2024-12-09aFiscal Year 2024

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No. W8E-308, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 2

Syllabus (1/3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 3

Syllabus (2/3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 4

Support page https://www.arch.cs.titech.ac.jp/lecture/ACA/

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 5

The birth of microprocessors in 1971

Name Year # of transistors

Intel 4004 1971 2,250

ENIAC, 1940s

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 6

Growth in processor performance

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 7

Program in C and RISC-V assembly code

7

main1.s

int main(){
int i, sum=1;
for(i=1; i<10; i++) sum = sum + i;
return sum;

}

main1.c

main:
addi a0, zero, 1 # sum = 1
addi a5, zero, 1 # i = 1
addi a4, zero, 10 # a4 = 10

.L2:
beq a5, a4, .L3 # branch if i==10 to .L3
add a0, a0, a5 # sum = sum + i
addi a5, a5, 1 # i++
beq zero, zero, .L2 # branch .L2

.L3:
ret # return

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 8

Venus RISC-V editor and simulator

• https://venus.cs61c.org/

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 9

Defining performance and speedup

• Normally interested in reducing
• Execution time (response time) – the time between the start and

the completion of a program

• Performance is the inverse of execution time.

• Thus, to maximize performance, need to minimize execution time

performanceX = 1 / execution_timeX

If X is n times faster than Y, then

performanceX execution_timeY
-------------------- = --------------------- = n

performanceY execution_timeX

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 10

Performance Factors

• Want to distinguish elapsed time and the time spent on our task

• CPU execution time (CPU time) : time the CPU spends working on a task

• Does not include time waiting for I/O or running other programs

CPU execution time # CPU clock cycles

for a program for a program
= x clock cycle time

CPU execution time # CPU clock cycles for a program

for a program clock rate
= ---

or

Clock rate or Frequency F is the inverse of clock cycle time

CPU execution time # CPU clock cycles for a program

for a program F
= ---

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 11

Performance Factors

• Performance = F x IPC
• F : frequency (clock rate)

• IPC : executed instructions per cycle (N / clock cycles)

Performance = F x 1 / # CPU clock cycles for a program

for a program executing N instructions

Performance is the inverse of CPU execution time

◼ The performance can be improved by increasing either F or IPC

CPU execution time # CPU clock cycles for a program

for a program F
= ---

Performance_x_N = F x N / # CPU clock cycles for a program
Multiply both sides if the equation by N

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 12

The past, present, and future of the world’s most important device

IEEE Spectrum, December 2022

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 13

Moore’s Law

• Moore's law is the observation that the
number of transistors in a dense integrated
circuit doubles about every two years. The
observation is named after Gordon Moore,
the co-founder of Fairchild Semiconductor
and Intel, whose 1965 paper described a
doubling every year in the number of
components per integrated circuit, and
projected this rate of growth would continue
for at least another decade. In 1975, looking
forward to the next decade, he revised the
forecast to doubling every two years. The
period is often quoted as 18 months because
of a prediction by Intel executive David
House (being a combination of the effect of
more transistors and the transistors being
faster).

WIKIPEDIA

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 14

Moore’s Law

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 15

Moore’s Law

https://www.intel.com/content/www/us/en/newsroom/opinion/moore-law-now-and-in-the-future.html

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 16

Transistor

• In an nMOS transistor, when a positive voltage is applied to the gate terminal
relative to the source terminal, it creates an electric field that attracts
electrons towards the gate. This forms a conductive channel between the source
and drain terminals allowing current to flow through.

turn on
when a positive voltage is applied

nMOS pMOS

Gate terminal

Source terminal Drain termional

current current

turn on
when a negative voltage is applied

Gate terminal

Source terminal Drain termional

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 17

Transistor and Gate

NAND gate
a

b
c

a b c
0 0 1
1 0 1
0 1 1
1 1 0

a

b

c

ab

Gnd
nMOS nMOS

pMOS

pMOS

GND

Vdd

Truth table of NAND gate

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 18

Clock rate F is mainly determined by

• Switching speed of gates (transistors)

• The number of levels of gates

• The maximum number of gates cascaded in series in any
combinational logics.

• In this example, the number of levels of gates is 3.

• Wiring delay and fanout

18

Register
Register

AND gate

OR gate

AND gate

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 19

Sample circuit 1 and Verilog HDL code 1

• AND gate

w_a w_b w_c
0 0 0
0 1 0
1 0 0
1 1 1

w_a

w_b
w_c

module addgate (

input wire w_a,

input wire w_b,

output wire w_c

);

assign w_c = w_a & w_b;

endmodule

Truth table of AND gate

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 20

Sample circuit 1 and Verilog HDL code 2

module top();

wire w_c;

reg r_a = 0;

reg r_b = 0;

initial #10 r_a = 1;

initial #20 r_b = 1;

always #1 $display("%d: %d %d %d", $time, r_a, r_b, w_c);

initial #30 $finish();

addgate m1(r_a, r_b, w_c);

endmodule

module addgate (

input wire w_a,

input wire w_b,

output wire w_c

);

assign #5 w_c = w_a & w_b;

endmodule

1: 0 0 x
2: 0 0 x

3: 0 0 x
4: 0 0 x

5: 0 0 0

6: 0 0 0

7: 0 0 0
8: 0 0 0

9: 0 0 0

10: 1 0 0
11: 1 0 0

12: 1 0 0

13: 1 0 0
14: 1 0 0
15: 1 0 0
16: 1 0 0

17: 1 0 0

18: 1 0 0

19: 1 0 0

20: 1 1 0

21: 1 1 0
22: 1 1 0

23: 1 1 0
24: 1 1 0

25: 1 1 1
26: 1 1 1
27: 1 1 1

28: 1 1 1

29: 1 1 1
30: 1 1 1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 21

Growth in clock rate F of microprocessors

From CAQA 5th edition

Intel 4004 clocked at 740KHz in 1971

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 22

Syllabus (3/3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 23

From multi-core era to many-core era

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 24

Pollack’s Rule

• Pollack's Rule states that
microprocessor performance increase due to
microarchitecture advances is roughly proportional
to the square root of the increase in complexity.
Complexity in this context means processor logic,
i.e. its area.

WIKIPEDIA

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 25

From multi-core era to many-core era

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 26

Intel Sandy Bridge, January 2011

• 4 core

26

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 27

Intel Skylake-X, Core i9-7980XE, 2017

• 18 core

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 28

Syllabus (3/3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 29

Adaptive Computing Research Initiative (ACRi)

• The aim

• Aiming to develop the high-performance Adaptive Computing Systems that
utilize FPGAs

• Working out to distribute the FPGA-related technologies, including our
developed systems, as an outreach activity for research results

• Main research theme

1. Development for FPGA accelerator to speed up processing of AI etc.

2. Development for FPGA accelerators and FPGA systems for IoT.

• Activity

• Establishment Date： April 1st 2020

• Activity period ： First period of 3 years

The Adaptive Computing Research Initiative is an organization
to seek out and research ways to utilize FPGAs.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 30

Please apply for your user account on this site today

• https://gw.acri.c.titech.ac.jp/wp/manual/apply-for-account

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 31

Discussion: software and hardware

#include <stdio.h>

main()

{

printf(“hello, world¥n”);

}

Hardware to light up some LEDs

