Fiscal Year 2024

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

1. Design and Analysis of Computer Systems

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No. W8E-308, Lecture (Face-to-face) Kenji Kise, Department of Computer Science
Mon 13:30-15:10, Thr 13:30-15:10 kise _at__ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, ScienSg okyo 1

Syllabus (1/3)

Course description and aims

This course aims to provide students with cutting-edge technologies and future trends of computer architecture with focusing on a

microprocessor which plays an important role in the downsizing, personalization, and improvement of performance and power consumption of
computer systems such as PCs, personal mobile devices, and embedded systems.

In this course, first, along with important concepts of computer architecture, students will learn from instruction set architectures to
mechanisms for extracting instruction level parallelism used in out-of-order superscalar processors. After that, students will learn mechanisms
for exploiting thread level parallelism adopted in multi-processors and multi-core processors.

Student learning outcomes

By taking this course, students will learn:

(1) Basic principles for building today’s high-performance computer systems

(2) Mechanisms for extracting instruction level parallelism used in high-performance microprocessors
(3} Methods for exploiting thread level parallelism adopted in multi-processors and multi-core processors
(4) New inter-relationship between software and hardware

Keywords

Computer Architecture, Processcr, Embedded System, multi-processor, multi-core processor

Competencies that will be developed

v Specialist skills

Class flow

Before coming to class, students should read the course schedule and check what topics will be covered. Required learning should be
completed outside of the classroom for preparation and review purposes.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Syllabus (2/3)

Textbook(s)

John L. Hennessy, David A. Patterson. Computer Architecture A Quantitative Approach, Fifth Edition. Morgan Kaufmann Publishers Inc., 2012

Reference books, course materials, etc.

william James Dally, Brian Patrick Towles. Principles and Practices of Interconnection Networks, Morgan Kaufman Publishers Inc., 2004.

Assessment criteria and methods

Students will be assessed on their understanding of instruction level parallelism, multi-processor, and thread level parallelism. Students”
course scores are based on the mid-term report and assignments (402}, and the final report (60%).

Related courses

CSC.T363 : Computer Architecture
CSC.T341 : Computer Logic Design

Prerequisites (i.e., required knowledge, skills, courses, etc.)

No prerequisites are necessary, but enrollment in the related courses is desirable.

Contact information (e-mail and phone) Notice : Please replace from "[at]"” to "@"(half-width character).

Kise Kenji: kise[at]c.titech.ac.jp

Office hours

Contact by e-mail in advance to schedule an appointment.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Support page https://www.arch.cs.titech.ac.jp/lecture/ACA/

v | @ CSCT433 Advanced Computer X + — 0 e

€ > C Mm % archcstitechacjp/lecture/ACA/ T s Q® =vi=7

CSC.T433 Advanced Computer Architecture Support Page, Dept. of Computer Science, Science Tokyo

News

* This page is updated. (2024-12-09)
* This page is open. (2018-11-28)

Lecture Slides and Materials

Lecture01 2024-12-09 13:30-15:10: Introduction, Design and Analysis of Computer Systems

Lecture02 2024-12-12 13:30-15:10: Instruction Set Architecture

Lecture03 2024-12-16 13:30-15:10: HDL, single-cycle processor, Memory Hierarchy Design

Lecture04 2024-12-20 13:30-15:10: Pipelining

Lecture05 2024-12-23 13:30-15:10: Instruction Level Parallelism: Concepts and Challenges

Lecture06 2024-12-26 13:30-15:10: Instruction Level Parallelism: Instruction Fetch and Branch Prediction

* Year-end holidays

Lecture06 2025-01-06 13:30-15:10: Instruction Level Parallelism: Dynamic Scheduling

Lecture07 2025-01-09 13:30-15:10: Instruction Level Parallelism: Exploiting ILP Using Multiple Issue and Speculation
Lecture08 2025-01-16 13:30-15:10: Instruction Level Parallelism: Out-of-order Execution and Multithreading
Lecture09 2025-01-20 13:30-15:10: Multi-Processor: Distributed Memory and Shared Memory Architecture
Lecturel0 2025-01-23 13:30-15:10: Thread Level Parallelism: Interconnection Network

Lecturel1 2025-01-27 13:30-15:10: Thread Level Parallelism: Coherence and Synchronization

Lecturel2 2025-01-30 13:30-15:10: Thread Level Parallelism: Memory Consistency Model

Lecturel3 2025-02-03

* Final Report by February 10, 2025

For Verilog HDL description, please refer to lectures 2 to 4 of Computer Logic Design.

Materials for Advanced Computer Architecture

o RICSCM Rofarenre Card S e

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

The birth of microprocessors in 1971

__,m — —

Name Year # of transistors

ﬁn Intel 4004 1971 2,250
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Growth in processor performance

mmamumm»mw
el Xoon 4 cores 3.6 Gibr (Booat to 4.0 Gots)
Intel Cove (7 4 coves 3.4 GHE (Doost v 3.8 GHz)
o Xeon & 3 3 GM2 (boost w0 3 6 GMzZ)
Irtad Maon 4 cores. 3.3 boost to 30 GMr)
ndel Core (7 Exveme 4 cores 3.2 GHz (Doost 10 35 GHE)

il Core Duo Extrere 2 cores, 3.0 G
Intel Core 2 Exvera 2 cores, 2 0 GHe - ;
10008 FroorsorrerrvrsrrrrssasvessrmssrarrrnsererssrsrserasssesTsssurrsser e T T s S re s -y A g Iwm S
intel Xoon B 3.2 Gz ! ,.&ﬁ iy W
Wi DESOEMVR =i odrd () 06 GHE Pervtum & protessed wilh Hypsd. Thisades Teinsy) T pind ;
B Powerd, 1.3 Gz g7 4195
el WCEXD motherboard. 1.0 GHZ Pertium B processor
Protessonal Workstason XP1000. 667 My 21 2644 ghid
A S VSR R SR Dt AchaSeosr 400 G375, 5TS MHL 21004 o = 1207
AlphaSenver 4000 S50, 600 Mz 21164 ‘-.

Digtal Aphastation 4706, 266 Mg ,,-“

‘m P p—p—— hﬁﬁ.ﬁ_inwdﬁ“.‘

HP G000 TE0, 66 M g 4"

»
A

1BM RSA000540, 30 MHz_ o 24 52%/year

MIPS L2000, 24 W .
MPS W120, 167 Mz o1 _ .
B0 hoccvracerrercoronmonnesaresesseeania ettt = SA SIS

Performance (vs. VAX-11/780)

AX-B1THRO. § MMz

1 - L] -I."l'l_ — L] L] L L L] L] . ¥ L] L] . L] L] L] L]
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Program in C and RISC-V assembly code

int main(){
int i, sum=1;
for(i=1; i<10; i++) sum
return sum;

sum + 1i;

mainl.c

}
mainl.s :

main:
addi aod, zero, 1
addi a5, zero, 1
addi a4, zero, 10

.L2:
beq a5, a4, .L3
add ad, a0, ab
addi a5, a5, 1
beq zero, zero,

.L3:
ret

.L2

H H H

H H HF H

+H

sum = 1
1 =1
a4 = 10

branch if i==10 to
sum = sum + i

i++

branch .L2

return

.L3

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Venus RISC-V editor and simulator

__,‘_,—\ —

* http

s://venus.cs6lc.org/

G v

€ 2> C [% venuscsélcorg b g o | ° -
|
i Venus Editor Simulator Chocopy
m Step Prev Reset Dump Re-assemble from Editor Registers Memory Cache VDR :
Integer (R) Floating (F)
PC Machine Code Basic Code Original Code zere 000000000
oxe ©x00100513 ad 8 x0 1 addi ae, zero, 1 # s ra (x1) | exoeo00000
oxa ©x00108793 addi x15 x@ 1 addi a5, zero, 1 # i =1 sp (x2) exrrRRROC
ox8 000000713 addi x14 x@ 10 addi a4, zero, 16 # a4 = 10 gp (X3) ox10000000
oxc ©XPBE78863 beq x15 x14 16 beq a5, a4, .L3 # branch if i==1@ to .L3 tp (x4) 0x00000000
ox10 Ox0OF50533 add x18 x18 x15 add a®, a®, a5 # sum = sum + i 10 (x5) 0x00000000
ox14 0x00178793 addi x15 x15 1 addi a5, a5, 1 # i++ t1 (x6) 0x00000000
| 0x18 OxFEBBBAE3 beq x8 x@ -12 beq zero, zero, .L2 # branch .L2 2 (x7) 2x00000000
oxlc 0x08008067 jalr x@ x1 @ ret # return 50 (x8) 2x00000000

console output

s1 (x9) 0x00600000
ae (x10) 000000001
al (x11) @xTFFFFFDC
a2 (x12) 0x80000000
a3 (x13) 000000000

a4 (x14) 0x00000000

Copy! Download! Clear! a5 (x15) |exeeeeeeee

a6 (x16) 0x00000000

a7 (x17) 000000000 -
Display Hex v
Settings

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Defining performance and speedup x
\

* Normally interested in reducing

« Execution time (response fime) — the tfime between the start and
the completion of a program

« Performance is the inverse of execution time.
performance, = 1 / execution_timey

« Thus, to maximize performance, need to minimize execution time
If X is n times faster than Y, then

performancey execution_time,
erformance execution_time
y X

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 9

Performance Factors

CPU execution time _ # CPU clock cycles .
= X clock cycle time
for a program for a program
or

CPU execution time ___ # CPU clock cycles for a program _
for a program clock rate

CPU execution time ___ # CPU clock cycles for a program __
for a program F

Clock rate or Frequency F is the inverse of clock cycle time

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Performance Factors

CPU execution time # CPU clock cycles for a program

for a program F

Performance is the inverse of CPU execution time

Performance = F x 1/ # CPU clock cycles for a program
for a program executing N instructions

Multiply both sides if the equation by N
Performance_x_N = F x N/ # CPU clock cycles for a program

« Performance = F x IPC

F: frequency (clock rate)
IPC : executed instructions per cycle (N / clock cycles)

= The performance can be improved by increasing either F or IPC

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

11

The past, present, and future of the world's most im

T — T

est of Hands On > Stronger Softw, 5

T‘he,f[nal delight of FewergBugs S TH The Next Step in Worker FOR THE | EDITOR'S NOTE
functional progr. Productivity > EEG Brain TECHNOLOGY] I ==

bl ming Scans INSTDER

DECEMBER 2022

IEEE Spectrum

are,

'The Device

p —

The ‘That Changed

A L :
ey Everything
N }I Transistors are civilization’s
@ ;I 75 | invisible infrastructure
The Past, Present,
and Future of

was roaming around the JEEE Spectrum office
a couple of months ago, looking at the display

the corridor that runs along the conference
rooms at 3 Park. They feature photos of illustrious
engineers, plaques for IEEE milestones, and a
handful of vintage electronics and memorabilia
including an original Sony Walkman, an Edison
Mazda lightbulb, and an RCA Radiotron vacuum
tube. And, to my utter surprise and delight, a
replica of the first point-contact transistor
invented by John Bardeen, Walter Brattain, and
William Shockley 75 years ago this month.

I dashed over to our photography director,
RandiKlett, and startled her with my excitement,
which, when she saw my discovery, she under-
stood: We needed a picture of that replica, which

she expertly shot and now accompanies this
column.

What amazed me most besides the fact that
the very thing this issue is devoted to was here
with us? I'd passed by it countless times and
never noticed it, even though it is tens of billions
times the size of one of today’s transistors. In fact,
each of us is surrounded by billions, if not trillions
of transistors, none of which are visible to the
naked eye. It is a testament to imagination and
i ity of three i f el ics engi-
neers who took the (by today’s standards) mam-
moth point-contact transistor and shrunk it
down to the point where transistors are so ubiq-
uitous that civilization as we know it would not
exist without them.

the world‘s MOSt cases the IEEE History Center has installed in
Important Device /

Lol o [S S

IEEE Spectrum, December 2022

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

| The best
explanation
| of the point-
| contact
‘ transistoris
in Bardeen’s
[1956 Nobel
Prize lecture,
but even
that left out
important
details.

iginal point-contact

This replica of the or:

transis':.or is on display outside IEEE Spectrup' s
conference rooms.

Of course, this wouldn't be a Spectrum specia]
issue if we didn’t tell you how the origina]
point-contact transistor worked, lscmething that
even the inventors seemed a little fuzzy on,
According to our editorial director for content
development, Glenn Zorpette, the best explana-
tion of the point-contact transistor is in Bardeen’s
1956 Nobel Prize lecture, but even that left out
important details, which Zorpette explores in clas-
sic Spectrum style in “The First Transistor and
How It Worked,” on page 24.

And while we're celebrating this historic
accomplishment, Senior Editor Samuel K. Moore,
who covers semiconductors for Spectrum and
curated this special issue, looks at what the tran-
sistor might be like when it turns 100. For “The
Transistor of 2047” [p. 38], Moore talked tg the
leading lights of semiconductor engi neering, many
of them IEEE Fellows, to get a glimpse of a future
where transistors are stacked on top of each other
and are made of increasingly exotic 2D materials,
evenas the OG of transistor materials, germanium,
is poised for a comeback.

When I was talking to Moore a few weeks ago
about this issue, he mentioned that he's attending

out, the 68th edition of IEE ¥'s International Elec-
tron Devices Meeting, in San Francisco, The
mind-bending advances that emer e from that
conference always get him excited about theengi-
neering feats oceurring in today's labs and on

tomorrow's production lines. This ye 1 he’s most
excited about new devices that com ¢ comput-
ing capability with memory to s« d machine
learning.whu knows, maybe the tra: istor of 2047

will make its debut there, too, »

his favorite conference just as this issue comes

ortant device

PORTAALT BY SERGIO ALBIAC; RANDI KLETT

S

12

Moore's Law
_-7 ~\.’—-\ R e SRS gy

* Moore's law is the observation that the
number of fransistors in a dense integrated
circuit doubles about every two years. The
observation is named after Gordon Moore,
the co-founder of Fairchild Semiconductor
and Intel, whose 1965 paper described a
doubling every year in the number of
components per integrated circuit, and
projected this rate of growth would continue
for at least another decade. In 1975, looking
forward to the next decade, he revised the
forecast to doubling every two years. The
period is often quoted as 18 months because
of a prediction by Intel executive David
House (being a combination of the effect of
more transistors and the transistors being
faster).

¢ WIKIPEDIA
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

N
T
omponent

er of components per integrated

function for minimum cost per ¢

extrapolated ve time,

O—mpwWwhoO~N0WY
TTTTTT T T T Tl

Fige. 2 Numb

LOG, OF THE NUMBER OF
COMPONENTS PER INTEGRATED FUNCTION

13

Moore's Law

VISUALIZING PROGRESS

[
| f -t |_] |]S | S -t O I_S W e re e O | e If the transistors in & microprocessor were represented by people,
the following timeline gives an idea of the pace of Moore’s Law

. “u
8 > >
2,300 134,000 32 Million 1.3 Billion
Average music hall capacity Large stadium capacity Population of Tokyo Population of China
1970 12980 2000 2011
Intel 4004 Intel 286 Pentium Il Core i7 Extreme Edition

Now imagine that those 1.3 billion people could fit onstage in the original music hall. That's the scale of Moore’s Law.

Moore’s Law

Moore’s Law states that the transistor density on integrated
circuits doubles about every two years. Moore's Law has been
amazingly accurate over time. In 1971, the Intel 4004 processor
held 2,300 transistors. In 2005, the Intel® Itanium® processor
held more than 1 billion transistors. Intel continues to drive
Moore’s Law, increasing functionality and performance, and
helping to bring growth to industries worldwide.

6008 processor

i
g
§

Pl

1970 1975

Year of Introduction

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Moore's Law

EUV Litho

Super

MIM Capacitor | |L rrll_i

First FinFET
[TCTTITTIT]

Intel

WATT

Bidabaaian

1
[TISTNRTTT]

Hi-K Metal Gate
Denser design

Stf‘?i%‘d ;] [TTTTTITIT
Silicon
I | h g : libraries
L1] E Inte| Transistor Il'1r;r(':c.qsloc
- . - optimization ransistor
| T 8 Ly » - = for parformance dirive current
32nm

-
= MARRALL i
1 [T Intel = T— Metal stack I?_cd.uwa i
TITTTITI! enhancements ks
TITTITTITY Intel |
[ncreased
Intel 65nm H - Enhanced use of ELV
90nm ElS FinFET
H = _
[TTTITTTTT Enhancecd
FinFET

Enhanced
HKMG

Ahundananl

R

LITITTTT]
IYYYYITT]

o
L
(®]
z
<
+3
o
C.
w
o
s
o

Enhanced Strain

e

Figure 2: Transistor innovations over time

https://www.intel.com/content/www/us/en/newsroom/opinion/moore-law-now-and-in-the-future.html

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Transistor

« TInannMOS transistor, when a positive voltage is applied to the gate terminal \
relative to the source terminal, it creates an electric field that attracts

electrons towards the gate. This forms a conductive channel between the source
and drain terminals allowing current to flow through.

turn on turn on
when a positive voltage is applied when a negative voltage is applied
Gate terminal Gate terminal
Source terminal I | Drain termional Source terminal I | Drain termional
nMOS pMOS

_ _

ﬁ current current
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 16

Transistor and Gate

\
NAND gate
a
]

b a
Truth table of NAND gate
a bl c J— J—

GND

— V/dd

pMOS

1
1
1
0

—_— OO0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 17

Clock rate F is mainly determined by x
\

« Switching speed of gates (transistors)

« The number of levels of gates

* The maximum number of gates cascaded in series in any
combinational logics.

* In this example, the number of levels of gates is 3.
* Wiring delay and fanout

— |
i Register
Register AND gate

OR gate _:>_

AND gate

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 18

Sample circuit 1 and Verilog HDL code 1

* AND gate

w_a ——-
2 s

Truth table of AND gate

W awb|wc
0 5 0
0 1 0
1 5 0
1 1 1

module addgate (

input wire w_a,

input wire w_b,

output wire w_c
E

assign w ¢ = w_a & w_b;
endmodule

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

\

19

Sample circuit 1 and Verilog HDL code 2

module top();
wire w_c;
reg r_a = 0;
reg r_ b = 0;
initial #10 r_a = 1;
initial #20 r b = 1;
always #1 $display("%d: %d %d %d", $time, r_a, r_b, w_c);
initial #30@ $finish();
addgate ml(r_a, r_ b, w c);

o NOUVI A WNBR

endmodule

module addgate (

input wire w_a,

input wire w_b,

output wire w_c
)

assign #5 w_c = w_a & w_b;
endmodule

Af_a‘

%]
%]
%]
0
0
0
0
0
%]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

P RPRPRPRPPRPPPRPPPOOODOIIODODOIODOIODOODOOOOOOOOOO
P RPRPPRPPRPRPOOODODODIDIODODDODODODODDOOOO®OOO® X X X X

Clock rate (MHz)

Growth in clock rate F of microprocessors

T e

Intel 4004 clocked at 740KHz in 1971

10,000 :
Intel Pentium4 Xeon Intel Nehalem Xeon
3200 MHz in 2003 3330 MHz in 2010
Intel Pentium Il
1000 MHz in 2000
1000 4 3 ; e -
Digital Alpha 21164A
500 MHz in 1996
o 1%/year
Digital Alpha 21064 .- lyea
150 MHz in 1992
100 4 |
MIPS M2000
25 MHz in 1989 .-
40%/year
10- _azsatliie Sun-4 SPARC ,
"""""""" 16.7 MHz in 1986
Digital VAX-11/780
5 MHz in 1978
15%/year
' T T T

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

From CAQA 5t edition

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

RS- e, &

13th Generation Intel® Core™ i9 Processors

Products formerly Raptor Lake
Desktop

i9-13900K

Launched

Q4'22

Intel 7

$589.00 - $599.00

CPU Specifications

Total Cores @ 24

of Performance-cores 8

of Efficient-cores 16

Total Threads @ 32

Max Turbo Frequency ® 5.80 GHz
Intel® Thermal Velocity Boost Frequency @ 5.80 GHz
Intel® Turbo Boost Max Technology 3.0 Frequency te 5.70 GHz
Performance-core Max Turbo Frequency @ 5.40 GHz
Efficient-core Max Turbo Frequency @ 4.30 GHz
Performance-core Base Frequency 3.00 GHz
Efficient-core Base Frequency 2.20 GHz

Syllabus (3/3)

Course schedule/Required learning

Class 1

Class 2

Class 3

Course schedule

Design and Analysis of Computer Systems

Instruction Set Architecture

Memory Hierarchy Design

Required learning

Understand the basic of design and analysis of
computer systems.

Understand the examples of instruction set
architectures

Understand the organization of memery hierarchy
designs

Class 4

Class 5

Class &

Class 7

Class &

Class &

Class 10

Pipelining

Instruction Level Parzllelism:

Instruction Level Parzllelism:

Instruction Level Parzllelism:

Instruction Level Parzllelism:

Instruction Level Parallelism:

Speculation

Instruction Level Parallelism:

Concepts and Challenges

Instruction Fetch and Branch Prediction

Advanced Techniques for Branch Prediction

Dynamic Scheduling

Exploiting ILP Using Multiple Issue and

Out-of-order Execution and Multithreading

Understand the idea and organization of pipelining

Understand the idea and requirements for exploiting
instruction level parallelism

Understand the organization of instruction fetch and
branch predictions to exploit instruction level
parallelism

Understand the advanced technigues for branch
prediction to exploit instruction level parallelism

Understand the dynamic scheduling to exploit
instruction level parallelism

Understand the multiple issue mechanism and
speculation to expleit instruction level parallelism

Understand the out-of-order execution and
multithreading to exploit instruction level parzllelism

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

From multi-core era to many-core era

S

Many-core Era
Massively parallel
applications
] 1004
Increasing HW
Threads
Per Socket Multi-core Era
104 Scalar and
parallel applications
HT
14 g
[l 1 [l 1 [l [l [l 1 [l 1 [l
1 | 1 1 1 1 1 1 1 1 1
2003 2005 2007 2009 201 2013

Figura 1: Currant and expacted eras of Intal® processor architectures

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Pollack's Rule \
\
« Pollack's Rule states that 2%

microprocessor performance increase due to
microarchitecture advances is roughly proportional
to the square root of the increase in complexity.

? WIKIPEDIA
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 24

From multi-core era to many-core era

EV6 EV6 EV6
Ev4
EVE- EV6 EV6 EV6
EVS
EVE EV6 EV6 EV6

Figure 1. Relative sizes of the cores used in
the study

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36

E CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Intel Sandy Bridge, January 2011
e, P —_— .y,

e 4 core

. Processor
Graphics

il = W,
T = I L i
i . ! P Sy M 8RR = H
= : | R | | =IIEE L dEy
e I | - AR
i 1 i | oot o
2 i

E BE FuUiah |-
B #8 B Shared L3 Cache** i

d '
assss Memory Controller 1/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

System
Agent &
Memory

- Controller

including
DMI, Display
and Misc. 170

Intel Skylake-X, Core i9-7980XE, 2017

18 core

—

CORE i9

X-series

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Syllabus (3/3)

Course schedule/Required learning

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Class 8

Class 2

Class 10

Course schedule

Design and Analysis of Computer Systems

Instruction Set Architecture

Memory Hierarchy Design

Pipelining

Instruction Level Parzllelism: Concepts and Chellenges

Instruction Level Parzllelism: Instruction Fetch and Branch Preadiction

Instruction Level Parzllelism: Advanced Techniques for Branch Prediction

Instruction Level Parallelism: Dynamic Scheduling

Instruction Level Parzllelism: Expleiting ILP Using Multiple Issue and
Speculation

Instruction Level Parzllelism: Out-of-order Execution and Multithreading

Required learning

Understand the basic of design and analysis of
computer systems.

Understand the examples of instruction set
architectures

Understand the organization of memary hierarchy
designs

Understand the idea and organization of pipelining

Understand the idea and requirements for exploiting
instruction level parallelism

Understand the organization of instruction fetch and
branch predictions to exploit instruction lavel
parallelism

Understand the advanced techniques for branch
prediction to exploit instruction level parallelism

Understand the dynamic scheduling to exploit
instruction level parallelism

Understand the multiple issue mechanism and
speculation to exploit instruction level parallelism

Understand the out-of-order execution and
multithreading to exploit instruction level parzllelism

Class 11

Class 12

Class 13

Class 14

Multi-Processor: Distributed Memory and Shared Memory Architecture

Thread Level Parzllelism: Coherence and Synchronization

Thread Level Parallelism: Memory Consistency Model

Thread Level Parallelism: Interconnection Network and Man-core
Processors

Understand the distributed memeory and shared
memory architecture for multi-processors

Understand the coherence and synchronization for
thread level parallelism

Understand the memory consistency medel for thread
level parallelism

Understand the interconnection network and many-
core processors for thread level parallelism

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Adaptive Computing Research Initiative (ACRI) x
\

* Theaim
« Aiming to develop the high-performance Adaptive Computing Systems that
utilize FPGAs

« Working out to distribute the FPGA-related technologies, including our
developed systems, as an outreach activity for research results

* Main research theme
1. Development for FPGA accelerator to speed up processing of AT eftc.
2. Development for FPGA accelerators and FPGA systems for IoT.
« Activity
« Establishment Date: April 151 2020
« Activity period : First period of 3 years

The Adaptive Computing Research Initiative is an organization
to seek out and research ways to utilize FPGAs.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 29

Please apply for your user account on this site today

« https://gw.acri.c.titech.ac.jp/wp/manual/apply-for-account

o MR
ACRIi L—LDF7HD > MEREENZE

D2020.08.11 ©2020.06.30

0O B%x mua)

ACRi JL— D15

£32F
s =
1. Zho 2 boesE R
BRI A—DLADAD
o« PRI RREAOSIE Ta—AEALTFTRIBER
2. 094 BELBIIR I L —ZXDES TA S
" TREATL oS U — S RER
« ACRiDH—)t
AT ODHEE O+ >0 77 -~
04 >
| B8 TA— ANDOAS
BEIDCE [FAOOb@EE] U 200w 08 5. Dd‘{\/’bi\iﬂ\gﬁ/\:f‘; ACRl)lJ_[ACD*IJFHE%HH

(BIZFEY—) IDTARERDA—2) T ITALTIIEZN, BEDBACE. OF12
TA—LOETICHD FRI-—T—88] #0Uvy oL TIZELY,

FIlFAIEH

E CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

\

Discussion: software and hardware

\—"-"—\ = —

—

#include <stdio.h>
main()

{
printf(“hello, world¥n”);

Hardware to light up some LEDs

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

