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Exploiting Instruction Level Parallelism (ILP) x
—— §§

* A superscalar has to handle some flows efficiently to exploit ILP

« Control flow (control dependence)

« To execute ninstructions per clock cycle, the processor has to

fetch at least ninstructions per cycle.

e The main obstacles are branch instruction (BNE)

 Prediction
« Another obstacle is instruction cache

* Register data flow (data dependence)

* Qut-of-order execution (1)

* Register renaming g;

« Dynamic scheduling (4)

* Memory data flow (3)
« Out-of-order execution g;

* Another obstacle is data cache (4)
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Datapath of OoO execution processor

Instruction cache

f

\ 4

A

Branch handler

Instruction fetch

v

Instruction decode

Instruction flow

Renaming
» Register file > Dispatch
B Integer Floating-point | Memory Memory dataflow
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The Memory System's Fact and Goal X
\

* Fact:
Large memories are slow, and fast memories are small

* How do we create a memory that gives the illusion of being
large, fast, and cheap?
» Cache memories
« Temporal locality (Locality in Time):
« Keep most recently accessed data items closer to the processor
 Spatial locality (Locality in Space)
« Move blocks consisting of contiguous words to the upper levels

To Processor Upper Level Lower Level
Memory Memory
Block X ¢ > Block Y

From Processor - v
> [~
\

ﬁv ~ word
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Cache memory

\
« Cache memory consists of a small, fast memory that acts as a \

buffer for the large memory.

* The nontechnical definition of cache is a safe place for hiding

things.
.................................. e Tannnnr
On-Chip Components .-
Control .-
g5 I g i
.4 o 5 Second Main
- Q9
- W = & Level Memory
Datapath | & S Cache (DRAM)
Sl Bl | §9 (SRAM)
o] I&] | 35
Speed (%cycles): '4's 1's 10’s 100’s
Size (bytes): 100’s K's 10K’s M’s

Cost: highest
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Characteristics of the Memory Hierarchy

Increasing
distance from
the processor
in access
time

Processor

|

4-8 bytes (word)
/u\
*

v
8-82 bytes (block
L2 vies (block)

4
v

Main Memfory (DRAM)

‘ 1,024+ bytes (disk secto
Secondary Memory

v

A

(Relative) size of the memory at each level
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Inclusive — what is
in L19% is a subset
of what is in L2$.

L29% is a subset of
what is in MM.

MM is a subset of
is in SM.
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Direct Mapped Cache Example

« One word/block, cache size = 1K words (4KB)

31 30 1312 11 210 Byte
— offset
Hit Tag | 20 10
1 Index
Index Valid Tag Data
0
1
2
— ? | ¢ 1
1ozi
1022
1023
120 32
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Direct Mapped Cache Example in Verilog HDL

module m_cache_direct_mapped_32 (
input wire w_clk,
input wire w_we,
input wire [31:0] w_adr,
input wire [4:0] w_wadr,
input wire [57:0] w_wd,
output wire w_hit,
output wire [31:0] w_dout

)

reg [57:0] mem [0:31];
integer i; initial for (i=@; i<32; i=i+1l) mem[i] = O;

wire [4:0] w_index = w_adr[6:2];

wire W_V;

wire [24:0] w_tag;

assign {w_v, w_tag, w_dout} = mem[w_index];
assign w_hit = w_ v & (w_adr[31:7]==w_tag);

always @(posedge w_clk) if (w_we) mem[w_wadr] <= w_wd;
endmodule
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i |
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Example Behavior of 4-entry Direct Mapped Cache

\
» Consider the main memory word reference string (word 2%
addresses) O12 3 4 3 4 15

Start with an empty cache - all blocks initially marked as not valid

Tag 0 miss 1 miss 2 miss 3 miss

00 | Mem(0) 00 |Mem(0) 00 | Mem(0) 00 | Mem(0)

00 |Mem(1) 00 | Mem(1) 00 | Mem(1)

00 | Mem(2) 00 [ Mem(2)

00 | Mem(3)

4 Miss 3 hit 4 hit 15 miss

Olm Mem(0)- 01 | Mem(4) 01 | Mem(4) 01 | Mem(4)

00 | Mem(1) 00 | Mem(1) 00 | Mem(1) 00 | Mem(1)

00 | Mem(2) 00 | Mem(2) 00 | Mem(2) 00 | Mem(2)
00 | Mem(3) 00 | Mem(3) 00 | Mem(3) | 14000 [ Mem(3) s

ﬁ, = 8 requests, 6 misses
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 9



Multiword Block Direct Mapped Cache

* Four words/block, cache size = 1K words
Byte

Data

4

i 3130 ... 1312 11 ... 43210
Hit — offset
Tag ~20 438 Block _offset
Index
Index Valid Tag < Data (4 word ) >
0
1
2

> e

253
254
255

420

; A\ 4 \ 4 A\ 4 A\ 4

J N
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Taking Advantage of Spatial Locality

« Let cache block hold more than one word (two words/block)

= 8 requests, 4 misses
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. O12 3 4 3 4 15
0 miss 1 hit 2 MIss
00 [Mem(1) |Mem(0) 00 |[Mem(1) |Mem(0) 00 |Mem(1) |Mem(0)
00 |Mem(3) |Mem(2)
3 hit 01 4 miss ) 3 hit
00 |Mem(1) |Mem(0) L’OS\ Mem‘(‘&5 Mem( § 01 |Mem(5) |Mem(4)
00 [Mem(3) [Mem(2) 00 [Mem(3) [Mem(2) 00 |Mem(3) |[Mem(2)
4 hit 15 miss
01 |Mem(5) |Mem(4) 1401 {Mem(5), [Mem(4) |,
00 |Mem(3) [Mem(2) 08 |Mem(3) "|Mem(

\
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Two-Way Set Associative Cache

« One word/block, 28 = 256 sets where each with three ways (each with one block

219 Byte offset

3130 ... 1312 11
X
Tag ~\22 \\8
Index
IndexV Tag Data V Tag Data
0 0
1 1
2 2
—pl o [ ] ’ o ®
253 253
254 254
255 255
> _ ) > _

\X2x1 select

‘ Data

\
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Three-Way Set Associative Cache

« One word/block, 28 = 256 sets where each with three ways (each with one block

3130 1312 11 21 O/Byte oﬂ’set
X

Index

IndexV Tag Data V Tag Data V Tag Data
0 0 0
1 1 1
2 2 2

—Vl o ® ) ® ® ® ®
253 253 253
254 254 254
255 255 255
) o o

~_3x1 select

‘ Data

\
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Four-Way Set Associative Cache

« One word/block, 28 = 256 sets where each with four ways (each with one block)

\

3130 C 1312 11 210 /Byte Oﬂ:set
X
Tag +22 .38
Index
IndexV Tag V Tag V Tag Data V Tag Data
0 0 0 0
1 1 1 1
2 2 2 2
— Y ' ° ' ° ? ' Py )
253 253 253 253
254 254 254 254
255 255 255 255
(— ) > — ) :’:\ —

> 4x1 select

Hit
P (CSC.T433 Advanced Computer Architecture, Deparfment of Computer Science, Science Tokyo
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Set Associative Caches X
\

* When a miss occurs, which way’s block do we pick for
replacement ?

 Least Recently Used (LRU):
the block replaced is the one that has been unused for the
longest time

* Must have hardware to keep track of when each way’s block was
used

« For 2-way set associative, fakes one bit per set — set the bit
when a block is referenced
(and reset the other way’s bit)

 Random

~ =
@ 15
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Recommended Reading (again)
\
* Focused Value Prediction \

«  Sumeet Bandishte, Jayesh Gaur, Zeev Sperber, Lihu Rappoport, Adi Yoaz, and Sreenivas
Subramoney, Intel

«  ACM/IEEE 47th International Symposium on Computer Architecture (ISCA), pp. 79-91, 2020

* A quote:
"Value Prediction was proposed to speculatively break true data dependencies, thereby allowing Out of
Order (OOOQ) processors to achieve higher instruction level parallelism (ILP) and gain performance.
State-of-the-art value predictors try to maximize the number of instructions that can be value
predicted, with the belief that a higher coverage will unlock more ILP and increase performance.

In this paper we motivate towards lower coverage, but focused, value prediction. Instead of
aggressively increasing the coverage of value prediction, at the cost of higher area and power, we
motivate refocusing value prediction as a mechanism to achieve an early execution of instructions that
frequently create performance bottlenecks in the OOO processor.

Simulation results on 60
diverse workloads show that we deliver 3.3% performance gain over a baseline similar to the Intel
Skylake processor.

~ =
! 16
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Recommended Reading

18%

16%

14%

12%

10%

8%

6%

4%

Performance over Skylake baseline

2

=R

0%

16%

2.6%

FSPECO6

mFVP IPC -#-FVP Coverage

35%

31%

18%

5.7%
4.6%
I 0.9%

ISPECO6 Server

SPEC17

25%

3.3%

Geomean

Fig. 6. Performance and Coverage of FVP on Skylake

FVP (Focused Value Prediction, proposal)
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40%

35%

30%

25%

20%

Coverage

15%

10%

Front End

4 wide fetch and decode , TAGE/ITTAGE branch predic-
tors [24], 20 cycles mis-prediction penalty, 64KB, 8-way
L1 instruction cache, 4 wide rename into OOO with macro
and micro fusion

Execution

224 ROB entries, 64 Load Queue entries, 60 Store Queue
entries and 97 Issue Queue entries. 8§ Execution units
(ports) including 2 load ports, 3 store address ports (2
shared with load ports), 1 store-data port, 4 ALU ports,
3 FP/AVX ports, 2 branch ports. 8§ wide retire and full
support for bypass. Aggressive memory disambiguation

predictor. Out of order load scheduling to L1

Caches

32 KB, 8-way LI data caches with latency of 5 cycles,
256 KB 16-way L2 cache (private) with a round-trip
latency of 15 cycles. 8 MB, 16 way shared LLC with
data round-trip latency of 40 cycles. Aggressive multi-
stream prefetching into the L2 and LLC. PC based stride
prefetcher at L1

Memory

Two DDR4-2133 channels, two ranks per channel, eight
banks per rank, and a data bus width per channel of 64
bits. 2 KB row buffer per bank with 15-15-15-39 (tCAS-
tRCD-tRP-tRAS) timing parameters

omnetpp, astar, xalancbmk

TABLE II
CORE PARAMETERS FOR SIMULATION
Benchmarks Category
P b2 s ek P20 | spic T 206
g > , sjeng, q » (ISPEC06)

bwaves, gamess, milc, zeusmp,
soplex, povray, calculix, gemsfdtd,
tonto, wrf, sphinx3 gromacs,
cactusADM, leslie3D, namd, deall

SPEC FP 2006
i (FSPEC06)

nab, cam4, pop2, roms, leela,
cactubssn, xz, gee, mef, xalanc,
exchange2, omnetpp, perlbench,
bwaves, 1bm, fotonik3d

SPEC17

lammps [4], hplinpack [3],
tpce, spark, cassandra [1],
specjbb [5]. specjenterprise,
hadoop [2], specpower [6]

Server

TABLE III
APPLICATIONS USED IN THIS STUDY



Recommended Reading
\
« Emulating Optimal Replacement with a Shepherd Cache 2%

 Kaushik Rajan, Govindarajan Ramaswamy, Indian Ins’ru‘ru’re
of Science

« MICRO-40, pp. 445-454,2007
 Session 8: Cache Replacement Policies

* A quote:
“The inherent temporal locality in memory accesses is filtered out by
the L1 cache. As a consequence, an L2 cache with LRU replacement
incurs significantly higher misses than the optimal replacement policy
(OPT). We propose to harrow this gap through a novel replacement
strategy that mimics the replacement decisions of OPT."

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 18



Memory Hierarchy Design

\ — 4—\ — —
Memory Hierarchy
Fp— L2 and lower caches

@ Objective : Need to reduce expensive
memory accesses

@ Design : Large size, Higher associativity,

CONFLICT - MITENTTY. g
sasses, ([ e Complex design
w.‘\-\. f.-'hcmm
INTERACTION |

@ Problem : Do not interact with program
directly and observe filtered temporal locality

@ High Associativity — replacement policy crucial to performance

@ L1 cache services temporal accesses — Lack of temporal
accesses at L2 — LRU replacement inefficient

@ Replacement decisions are taken off the processor critical path

ﬁ Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo




LRU has room for improvement
T— ——— ———— —e —

LRU vs OPT

© |Es1zke-lru1s B 512k84ruFa [ 256KB-0pts [ 512KB-opti6

I [0/ 100 O mmmm

D_

aart mcf gee luca swim applr’ﬁﬁjmp twulf‘ vpr-i'_'_-f_ﬁ;:-éﬁrﬁgrid ap%i?:avgzﬁ

MPKI

for SPEC2000 suite, Benchmarks with MPKI < 5 not plotted but
count towards average

Huge performance gap between LRU and OPT
OPT at half the size preferable to LRU at double the size

<

MPKI: Miss Per Kilo Instructions Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

\
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OPT: Optimal Replacement Policy
T ——— —_— .y, — o

<

The Optimal Replacement Policy

@ Replacement Candidates : On a miss any replacement policy
could either choose to replace any of the lines in the cache or
choose not to place the miss causing line in the cache at all.

Q Self Replacement : The latter choice is referred to as a
self-replacement or a cache bypass

Optimal Replacement Policy
On a miss replace the candidate to which an access is least
imminent [Belady 1966 Mattson 1970, McFarling-thesis]

@ Lookahead Window : Window of accesses between miss causing

access and the access to the least imminent replacement
candidate. Single pass simulation of OPT make use of lookahead
windows to identify replacement candidates and modify current

cache state [Sugumar-SIGMETRICS1993]

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo
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Example of Optimal Replacement Policy
e

T

—

gy -

Ty,

Understanding OPT

AW ‘A IA A JA A A TA A A LA
Access Sequence 5)%1; 6/ 3171 45T 21T s T e g
OPTorderfor Asf" (g ! {1} ioi3iaf | |

i i Lo I i I I I —
DPImﬂmfnr%j Co o223y b4

@ Consider 4 way associative cache with one set initially containing lines
(41,42 43 _44), consider the access stream shown in table
@ Access 45 misses, replacement decision proceeds as follows

& Identify replacement candidates : (4y 45 A3, 44.45)
& Lookahead and gather imminence order - shown in table,
lookahead window circled

) Make replacement decision : A4s replaces A
@ Ag self-replaces, lookahead window and imminence order in table

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo
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Four-Way Set Associative Cache

« One word/block, 28 = 256 sets where each with four ways (each with one block)

\

3130 1312 11 21 O/Byte Oﬂ:set
X
Tag +22 .38
Index
IndexV Tag Data V Tag Data V Tag Data V Tag Data
0 0 0 0
1 1 1 1
2 2 2 2
S A [ T 221 ¢ T As| ¢ 1Az
253: 253; 253 253
254 254 254 254
255 255 255 255
© o o =
® SN

> 4x1 select

Hit
P (CSC.T433 Advanced Computer Architecture, Deparfment of Computer Science, Science Tokyo

‘ Data
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Shepherd Cache emulation OPT
e,

Emulating OPT with a Shepherd Cache

FPROCESSOR

Shepherd| |
Cache

MEMORY

@ Split the cache into two logical parts

@ Main Cache (MC) for which optimal
replacement is emulated

@ Shepherd Cache (5C) used to provide a
lookahead and guide replacements from MC
towards OPT

@ Operation

& Buffer lines temporarily in SC before moving
them to MC,. SC acts as a FIFO buffer

@ While in SC, gather imminence information and
emulate lookahead

& When forced out of SC, make an MC
replacement based on the gathered imminence
order

<

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

\



Shepherd Cache Overview

S

Overview of Shepherd Caching

NV, | NV,

SC,
SC)

MC | Ag

CM

"I'E,ﬁl,*ﬂ‘“ﬁ,ﬂlﬁl,ﬁi

|
I
|
I
|
|
|
|
|
|
I
|
A..j |
|
|
|
|
|
|
|
|
I
|
I
|
|

Ag Ay As A7 AgAg |

Ty, - ——

To emulate MC with 4 ways per set and 2 SC
ways per set

To gather imminence order add a counter
matrix (CM)

CM has one column per SC way to track
imminence order w.r.t to it

CM has one row per SC and MC line as any
of them can be a replacement candidate

Each column has one |[Next Value Counter
(NVC) to track the next value to assign along
column

<

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo
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Exercise 1

NVC, VC,

SC,
SC)

MC

M
]-'-"*5,-“1,-"&,-“3,-"‘ 1.4,
AsAgAgsAqAgAg

(a) Initial State
MC (Main Cache)
SC (Schepherd Cache)
CM (Counter Matrix)

NVC (Next Value Counter)

NVC, NVC,
=

SC,

SC)

MC

Chl

A5 Ay Ag Ag Ag Agl

|

NVC, NVC,)

|

|

SCy |
SC, !
1

A :

1

Az |

MC [AS |
3 !

Ay E

CM 1

1

(b} Ax insered

at 57
NVC, NVCo
|
SC, i

SC

I I
Al I
Ao I
— |
MC A5 !
|
Ay |
CM i
Ag Ay Ap iz Ayl
|
1

AgAgzAgAqAg Ag

1
NVC, NV
SC,
sC,
Al
Ag
MC |[AS
Ay
CM

A Ay fg Ay Ay Ayl

(c) A1 added w
the optimal order
of S

NVC, NVC!
SC,
sC)
Al
As
MC [Ag
Ay
CM
Ag Ay Ag Ay Ay Ay

Access Sequence ASEAlEAGEA3EA15A4EA5EA'&EA55A7EA6E As
— T —~12 added w
OPTorderfor As| i(o{ {11! i2i3i4f | | ! limal order of
1 1 [ 1 1 1 1 1 1 1 1 [} SC.I
IOPT order for A6 i i E 0 i 1 i 2 E 3 E E i i 4_; 1. 2]

NVC, ’“"C:i

SC,
SC)

A

Az
MC |[As

Ay

M

AsA A Az A Ayl AsA | Agdza) Ay

1 1
AsAsy AgAg Ag Agl Ag Az AsAg Ag Agl As AjAsAg Ag Ag!

dy Ag inserted
at 5C

NVC, NVCa:
=
1
sSC, !
- |
SC, i
Al I
An I
- 1
MC [A5 !
1
CM i
Ag Ay Ag, *"3.;" Ry
|
5A2 A5 A7 AL Ag

ij}) As  moves

from SC o MC
replacing Aa

(e} Aa added to
the optimal order

of 577,50
1
1
SC, |
sSC, I
1
A i
An :
- 1
MC |[As !
1
CM i
Mg A, *’“6.‘*‘3.*"‘1:}"'4.:
1
AgAg AgAg A gAg

(k) As added to
optimal order

NVC, ’“"C:i
|

SC,
sSC,

A

Az
MC |[As

Ay

M

NVC, NVC,

SC,
sC,

Al

Al
MC [A3

Ay

C

AgAg Ag Az A Ay

(M A1 added 1o
optimal order of
SCa

NVC, NVC,)
|
|

SC, !
S€y :
1

A, :

— |

|

Ay i

.Y

1

A A Ag Az Ay Ay
1

Asn"l'& .IJ'l'I.j A-"-|A'El"q'|§'|

(1} Self Replace-
ment (Ag evicts
itself)



MC

M
ll.‘a.i.‘a. A A A Ay

AgshqAsAgAg Ag

(a) Initial State

MC (Main Cache)

SC (Schepherd Cache)

CM (Counter Matrix)

NVC (Next Value Counter)

NVCs

:

i

sco{ Ag 0fe] |
SC_As ele| |
A o1} .
e Az ele| i
Az 1O

Ay 202

M

A A AL AL A 4.45
|

(g) A4 added to
optimal order of
5C,5C

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

empty increment

| | | | |
NV E| ! NVCs ! ! NVCs I NVCs !
- H— | . - | ey
sc e Ni\s, e |1 scfAg 0] e[ N\OsC,[ Ay Ofe| | SofAL Ole| i
SCyLAs el |1 55 ?‘\*\c roSCy As ele| | SCINAs elelr SCILAS ele| !
A el | Ay o | A 0e| : \{}\De i A 1)
MC "2 Ll me - i I [ S i L [ AE\\ i I 2 elen
Az e i Ag e i Az ele i Azl o i Az 1|0 i
Ay el | Ag el || Ay elel ! Ay ele| | Ay ele| |
| | | | |

CM M M CM CM
. : : n : | : N
S5 ApAA AL AsA RALAZ A Agr AsA ALAZ A Ay AsA A AJA Ay AsAAgAzd g
= o= S 2

1

by As
at Sy

inseried

NVCs

|
.

T

s Ag Ole| |
SC Ag 33 :
Ay 0l 1]

Ag ele i

MCF 0] !
Ay 2[2]1

cM i

A Ay Ag Az A Ayl
|

A5AnAgAgAgAg!

(hl Az added to
optimal order of
SC1.5C

As Aj Ag Ag Ag Ag : As Ag Asg Ag Ag Ag :

ic) A1 added o (dy Ag insered {e) Az added to (" A1 added to
the optimal order at S the optimal order optimal order of
of S of S .85 S
oldest (FIFO
( ) oldest
1 1 1
NWVCs 5|5| ! MV Cs |ﬂ 5| ! MY Cs .{|-ﬁ- ' MYV Cs :
by ] bt |
L ! S S b |
sc Ag e E sc\ Ag ele E scf Ag 05 E sc VA 0l el |
sC | A 33| s JIE el0|! SCy|_Aq e|0] | SCy Aq ele !
Ay of 1] | A el 1] 1 Ay el 1] | A elel |
1 1 1 [l
w2l L4 LAS] [el3]r | [ AS] [e]3]: A5 lelel
Az 0] Ag €| 0] Ag el0] METa elel
|
Ay 212] Ag el 2] ! Ay HEN Ay ele| !
CM i CM i CM i oM |
1
A A Ag Az Ay Ayl ”‘i‘*‘l-'*ﬁ.*"?,.ﬂl.'*-l.: ‘*‘5-'*1.”‘6.‘*‘3.'*1:}*"4.: AsApAgAz A Ayl
[ 1 1 1 1
-'!"j_-""},""'_:,"&'?_'a‘ﬁ,"'"‘ﬂ! 5_,‘-"”_. ﬁ.j__—‘l 7 Aﬁ.'a'ﬂl Aj_.ﬁ. 4 As ;—";-:_A ﬂ.AHE A 5.AE.A5.'5' ?.A'EA.AS:
, | Access Sequence [Agi A TAGAIA A LAGA TASA LA
(i) A2 added to () oi 11 6 3 1 4 5 2 5 7 6
optimal order of fromPPTorderfor As|  1(g: 3¢ 1213140 &+ 10
S0 PSP T order for agl | F feiari2isi 11 T4

creative procrastination
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Shepherd cache bridges 32 - 52% of the gap
S ——— —— — ——

Bridging the performance gap

Bridging the LRU-OPT gap

W 1lru=18 (JB}
10 M @ SC-4 bridges 32-52%
9 A& sc-6 (T1E) ngap
 oo=-4 (48E)
o 8 < sce2 (258 @ SC moves closer to
= ] M opt-16 () OPT as cache size
juk] e
& increases
S 6-
=T
-
4
3
2 T T 1
512KB 1ME 2MB 4MB
AVQ MPKI over SPEC2000 suite MPKT: Miss Per Kilo Instructions

<

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo
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The Cache Design Space x
\

« Several interacting dimensions Cache Size
« cache size t
* block size Associativity
 associativity
* replacement policy
 write-through vs write-back
 write allocation .

Block Size

« The optimal choice is a compromise
 depends on access characteristics

« workload Bad
 I-cache, D-cache
 depends on technology / cost Good |Factor A Factor B

« Simplicity often wins

Less More

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 29



Multiprogramming

« Several independent programs run at the same time.

Instruction window
| J[8][6][5]
L L el 7]

Instruction window Instruction window

pr'ogr'am A (Thr'ead A) Instruction window

) I O

pr'ogr'am B (Thread B) Instruction window
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Multithreaded Execution Models

* During a branch miss recovery and
access to the main memory by a
cache miss, ALUs have no jobs to do

Gnd have o be ldle Thread 1 OS context switch code Thread 2
* interrupt, exception, or OS call cﬁvemmal E E i E I E E E E E E EE E E E E
- Executing multiple independent e mepnenc et i ]
Thr‘eads (pr‘OQPGmS) WI” ml'|'|9Cl'|'e The B) Thread 1 Thread 2 Thread 3 Thread 1
overhead prrecell=ie) 1| EEElEEL Lt
« They are called coarse-grained and ~ “™® comree b comme b commer 1

fine-grained multithreaded

oo e ne -tz COHRICHENREIARCEAE

(FMT)
« Simultaneous Multithreading (SMT) D)
can improve hardware resource Nrultithreaded I E E ! ! i H E I I ﬁ I ! ! ﬂ I ! E
usage. M

Execution T
Units Time

Figure 1. Multithreaded Execution with Increasing Levels of TLP Hardware Support
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Simultaneous multithreading (SMT)

Cycle 1

Cycle 2

IF ID Renaming Instruction window Issue | Execute | Commit Retire
() O | O] O » ) O L
() O | OO O » ) L

ROB
ROB

IF ID Renaming Instruction window Issue | Execute | Commit Retire
[ O | e O O~ R | e L
L DI O ) L

ROB| | | | | | HEEN N
RoB[ | | | | | I

Instructions to be executed of program A

Newer instructions

| |18|17]16]15]14|13]12]11|10| 9|8 |7 |65 |4 |32 1]

Instructions to be executed of program B

™

=1

Newer instructions

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

| [18[17]16]15|14|13|12|11|10] 9|87 [6[5]4[3|2]1]

32



Simultaneous multithreading (SMT)

Cycle 3 IF ID Renaming Instruction window Issue | Execute | Commit Retire
L LT L e L L L
L LI L »L ] [ ]
ROB
ROB
Cycle 4 IF ID Renaming Instruction window Issue | Execute | Commit Retire
I PO e - R L
L L L 2] (I »00] [ |
RoB| | | | | | | [ | J2f1] |
roB| | | | | [ [ | [ | [ 1|

Instructions to be executed of program A

| | | | [18|17|1e6|15|14|13]|12]| 11|10 9|8 |7 |6 |5|4|3|2|1] | |

Newer instructions
Instructions to be executed of program B

_ | | | | [18]17|16|15|14|13]|12]|11]10] 9|8 |7 |6 [5[4[3|2]|1]| |

X = ; B
(7 Newer instructions

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo



Simultaneous multithreading (SMT)

Cycle 5 IF ID Renaming Instruction window Issue | Execute | Commit Retire
(L 2] ] >L 1 L[ L
(6] [4 E (20 [ ]
ROB 2|1
ROB 2] 1
Cycle 6 IF ID Renaming Instruction window Issue | Execute | Commit Retire
HNEE > [ L
[6]] [e] [ L L[] > [ |
RoB| | | | | | | [4]3]2]1] |
RoB| | | | | | | | | J2f1] |

Instructions to be executed of program A

| | | | [18|17|1e6|15|14|13]|12]| 11|10 9|8 |7 |6 |5|4|3|2|1] | |

Newer instructions
Instructions to be executed of program B

_ | | | | [18]17|16|15|14|13]|12]|11]10] 9|8 |7 |6 [5[4[3|2]|1]| |

X = ; B
(7 Newer instructions
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Simultaneous multithreading (SMT)

Cycle 7

Cycle 8

IF ID Renaming Instruction window Issue | Execute | Commit Retire
EENE >
[6]] Le] 4 2 [ ] ]

ROB 4[3]2]1
ROB 4]3]2]1
IF ID Renaming Instruction window Issue | Execute | Commit Retire
N >
[e ]| | L L[ _J[e] B
RoB| | | | | Je[5[4]3[2]1] |
roB| | | | | | | J4f3f2f1] |

Instructions to be executed of program A

Newer instructions

|18 [17|16|15]14 13|12 11]10]| 9|8 |7 |6 |54 [3 |2 ] 1]

Instructions to be executed of program B

™

=1 |

Newer instructions

|18[17|16]15[14]13|12|11]10] 9|8 |7 |6 |54 [3]2]|1]
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Datapath of SMT Oo0O execution processor

Instruction cache

P || f

Branch handler

A

\ 4

Instruction flow

Instruction fetch

v

Instruction decode

Renaming Map table/free tag buffer J
Register file > Dispatch
RS Integer Floating-point | Memory Memory dataflow
¥ v ¥ : : —
LIt LIttty CIiI1i] [L11T]] I T 111 [ILITIT]]||TInhstructionwindow
v v v v v
| A | | AU | | Branch | FP ALU | Adrgen. | | Adrgen. |
\ 4 A 4 ¢ e
[(TTTITTITITTIITIT || T Stor N
Reor'der buffer (ROB) queue h bata cache
o Register dataflow ! v

Af_a'
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From multi-core era to many-core era

S

Many-core Era
Massively parallel
applications
] 1004
Increasing HW
Threads
Per Socket Multi-core Era
104 Scalar and
parallel applications
HT
14 g
[l 1 [l 1 [l [l [l 1 [l 1 [l
1 | 1 1 1 1 1 1 1 1 1
2003 2005 2007 2009 201 2013

Figura 1: Currant and expacted eras of Intal® processor architectures

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005
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