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Exploiting Instruction Level Parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to 
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution 

• Register renaming 

• Dynamic scheduling

• Memory data flow

• Out-of-order execution 

• Another obstacle is data cache

(1) add x5,x1,x2
(2) add x9,x5,x3
(3) lw  x4, 4(x7)
(4) add x8,x9,x4

(3) lw  x4, 4(x7)
(1) add x5,x1,x2
(2) add x9,x5,x3
(4) add x8,x9,x4
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Datapath of OoO execution processor

Instruction cacheInstruction cache

Data cacheData cache

Integer

BranchBranch FP ALUFP ALU
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Reorder buffer (ROB)
Store
queue

Adr gen.Adr gen.Adr gen.Adr gen.ALUALU ALUALU

Register fileRegister file

RS

Branch handlerBranch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decodeInstruction decode

DispatchDispatch

RenamingRenaming

Instruction fetchInstruction fetch

Reservation station (RS)

Instruction window
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The Memory System’s Fact and Goal

• Fact:  
Large memories are slow, and fast memories are small

• How do we create a memory that gives the illusion of being 
large, fast, and cheap?

• Cache memories

• Temporal locality (Locality in Time):

• Keep most recently accessed data items closer to the processor

• Spatial locality (Locality in Space)

• Move blocks consisting of contiguous words to the upper levels 

Lower Level
Memory

Upper Level
Memory

To Processor

From Processor
Block X Block Y

word
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Cache memory

• Cache memory consists of a small, fast memory that acts as a 
buffer for the large memory.

• The nontechnical definition of cache is a safe place for hiding 
things.
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Speed (%cycles): ½’s             1’s                   10’s                    100’s                  1,000’s

Size (bytes):    100’s   K’s                   10K’s                      M’s                  G’s to T’s

Cost:       highest                                                                                     lowest

TLB: Translation Lookaside Buffer
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Characteristics of the Memory Hierarchy

Increasing 

distance from 

the processor 

in access

time

L1$

L2$

Main Memory (DRAM)

Secondary  Memory

Processor

(Relative) size of the memory at each level

Inclusive – what is 

in L1$ is a subset 

of what is in L2$.

L2$ is a subset of 

what is in MM.

MM is a subset of 

is in SM.

4-8 bytes (word)

1,024+ bytes (disk sectors = page)

8-32 bytes (block)
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Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)

20Tag 10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

20

Data

32

Hit

31 30       . . .         13 12  11     . . .        2  1  0
Byte 
offset
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Direct Mapped Cache Example in Verilog HDL

25

w_tag

w_adr

w_v

5

w_index

DataIndex TagValid

0

1

2

.

.

.

29

30

31

31 30     . . .        8 7 6 . . .        2  1  0

Byte 
offset

25

w_dout

32

w_hit

module m_cache_direct_mapped_32 (
input  wire        w_clk,
input  wire        w_we,
input  wire [31:0] w_adr,
input  wire [4:0]  w_wadr,
input  wire [57:0] w_wd,
output wire        w_hit,
output wire [31:0] w_dout

);

reg [57:0] mem [0:31];
integer i; initial for (i=0; i<32; i=i+1) mem[i] = 0;

wire [4:0]  w_index = w_adr[6:2];
wire        w_v;
wire [24:0] w_tag;
assign {w_v, w_tag, w_dout} = mem[w_index];
assign w_hit = w_v & (w_adr[31:7]==w_tag);

always @(posedge w_clk) if (w_we) mem[w_wadr] <= w_wd;
endmodule
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Example Behavior of 4-entry Direct Mapped Cache

0 1 2 3

4 3 4 15

• Consider the main memory word reference string (word 
addresses)        0   1   2   3   4   3   4   15

00    Mem(0) 00    Mem(0)

00    Mem(1)

00    Mem(0) 00    Mem(0)

00    Mem(1)

00    Mem(2)

miss miss miss miss

miss misshit hit

00    Mem(0)

00    Mem(1)

00    Mem(2)

00    Mem(3)

01    Mem(4)

00    Mem(1)

00    Mem(2)

00    Mem(3)

01    Mem(4)

00    Mem(1)

00    Mem(2)

00    Mem(3)

01    Mem(4)

00    Mem(1)

00    Mem(2)

00    Mem(3)

01 4

11 15

00    Mem(1)

00    Mem(2)

00    Mem(3)

Start with an empty cache - all blocks initially marked as not valid

◼ 8 requests, 6 misses

Tag
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8

Index

Data ( 4 word )Index TagValid
0

1

2

.

.

.

253

254

255

31 30   . . .         13 12  11    . . .    4  3 2  1 0
Byte 
offset

20

20Tag

Hit Data

32

Block offset

Multiword Block Direct Mapped Cache

• Four words/block, cache size = 1K words
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Taking Advantage of Spatial Locality 

0

• Let cache block hold more than one word (two words/block)

• 0   1   2   3   4   3   4   15

1 2

3 4 3

4 15

00    Mem(1)    Mem(0)

miss

00    Mem(1)    Mem(0)

hit

00    Mem(3)    Mem(2)

00    Mem(1)    Mem(0)

miss

hit

00    Mem(3)    Mem(2)

00    Mem(1)    Mem(0)

miss

00    Mem(3)    Mem(2)

00    Mem(1)    Mem(0)
01 5 4

hit

00    Mem(3)    Mem(2)

01    Mem(5)    Mem(4)

hit

00    Mem(3)    Mem(2)

01    Mem(5)    Mem(4)

00    Mem(3)    Mem(2)

01    Mem(5)    Mem(4)

miss

11 15 14

◼ 8 requests, 4 misses
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Two-Way Set Associative Cache

• One word/block, 28 = 256 sets where each with three ways (each with one block)
31 30       . . .        13 12  11     . . .        2  1  0 Byte offset

DataTagV
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2x1 select
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Three-Way Set Associative Cache

• One word/block, 28 = 256 sets where each with three ways (each with one block)
31 30       . . .        13 12  11     . . .        2  1  0 Byte offset

DataTagV
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1
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.

.

.
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8
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Hit Data

3x1 select
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Four-Way Set Associative Cache

• One word/block, 28 = 256 sets where each with four ways (each with one block)
31 30       . . .        13 12  11     . . .        2  1  0 Byte offset

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253
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255

DataTagV
0

1

2

.

.

.
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255

Index DataTagV
0

1

2

.

.

.

253

254

255

8

Index

22Tag

Hit Data

32

4x1 select
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Set Associative Caches

• When a miss occurs, which way’s block do we pick for 
replacement ?
• Least Recently Used (LRU):

the block replaced is the one that has been unused for the 
longest time
• Must have hardware to keep track of when each way’s block was 

used 
• For 2-way set associative, takes one bit per set → set the bit 

when a block is referenced 
(and reset the other way’s bit)

• Random

• N-way set associative cache costs
• N comparators (delay and area)
• MUX delay (set selection) before data is available
• Data available after set selection and Hit/Miss decision.   
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Recommended Reading (again)

• Focused Value Prediction

• Sumeet Bandishte, Jayesh Gaur, Zeev Sperber, Lihu Rappoport, Adi Yoaz, and Sreenivas 
Subramoney, Intel

• ACM/IEEE 47th International Symposium on Computer Architecture (ISCA),  pp. 79-91, 2020 

• A quote:
“Value Prediction was proposed to speculatively break true data dependencies, thereby allowing Out of 
Order (OOO) processors to achieve higher instruction level parallelism (ILP) and gain performance. 
State-of-the-art value predictors try to maximize the number of instructions that can be value 
predicted, with the belief that a higher coverage will unlock more ILP and increase performance.
Unfortunately, this comes at increased complexity with implementations that require multiple 
different types of value predictors working in tandem, incurring substantial area and power cost. 
In this paper we motivate towards lower coverage, but focused, value prediction. Instead of 
aggressively increasing the coverage of value prediction, at the cost of higher area and power, we 
motivate refocusing value prediction as a mechanism to achieve an early execution of instructions that 
frequently create performance bottlenecks in the OOO processor. Since we do not aim for high 
coverage, our implementation is light-weight, needing just 1.2 KB of storage. Simulation results on 60 
diverse workloads show that we deliver 3.3% performance gain over a baseline similar to the Intel 
Skylake processor. This performance gain increases substantially to 8.6% when we simulate a 
futuristic up-scaled version of Skylake. In contrast, for the same storage, state-of-the-art value 
predictors deliver a much lower speedup of 1.7% and 4.7% respectively. Notably, our proposal is 
similar to these predictors in performance, even when they are given nearly eight times the storage 
and have 60% more prediction coverage than our solution.
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Recommended Reading

FVP (Focused Value Prediction, proposal)
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Recommended Reading

• Emulating Optimal Replacement with a Shepherd Cache

• Kaushik Rajan, Govindarajan Ramaswamy, Indian Institute 
of Science

• MICRO-40,  pp. 445-454, 2007 

• Session 8: Cache Replacement Policies

• A quote:
“The inherent temporal locality in memory accesses is filtered out by 
the L1 cache. As a consequence, an L2 cache with LRU replacement 
incurs significantly higher misses than the optimal replacement policy 
(OPT). We propose to narrow this gap through a novel replacement 
strategy that mimics the replacement decisions of OPT.”
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Memory Hierarchy Design

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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LRU has room for improvement

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007MPKI: Miss Per Kilo Instructions
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OPT: Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Example of Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Four-Way Set Associative Cache

• One word/block, 28 = 256 sets where each with four ways (each with one block)
31 30       . . .        13 12  11     . . .        2  1  0 Byte offset
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Shepherd Cache emulation OPT

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Shepherd Cache Overview

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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MC (Main Cache)
SC (Schepherd Cache)
CM (Counter Matrix)
NVC (Next Value Counter)

Exercise 1
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empty increment dummy

oldest (FIFO)
oldest

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
creative procrastination

MC (Main Cache)
SC (Schepherd Cache)
CM (Counter Matrix)
NVC (Next Value Counter)
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Shepherd cache bridges 32 – 52% of the gap

MPKI: Miss Per Kilo Instructions

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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• Several interacting dimensions
• cache size

• block size

• associativity

• replacement policy

• write-through vs write-back

• write allocation

• The optimal choice is a compromise
• depends on access characteristics

• workload

• I-cache, D-cache

• depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

The Cache Design Space
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Instruction window

Multiprogramming

• Several independent programs run at the same time.

Instruction window
(c)

Instruction window

8 5

7

6

4

Instruction window
(d)

Instruction window

program A (Thread A)

program B (Thread B)
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Multithreaded Execution Models

• During a branch miss recovery and 
access to the main memory by a 
cache miss, ALUs have no jobs to do 
and have to be idle.

• interrupt, exception, or OS call

• Executing multiple independent 
threads (programs) will mitigate the 
overhead.

• They are called coarse-grained and 
fine-grained multithreaded 
processors having multiple 
architecture states.

• Simultaneous Multithreading (SMT) 
can improve hardware resource 
usage. 

http://www.realworldtech.com/alpha-ev8-
smt/ http://www.realworldtech.com/alpha-ev8-smt/
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Simultaneous multithreading (SMT)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed of program A

Newer instructions
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17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed of program B

Newer instructions

1

12 11 10 9 8 7 6 5 4 3 2ROB RF

Instruction windowIF ID Renaming

8

10

13

14

Cycle 2
1

2
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11

7

12

9
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5

6
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4
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12 11 10 9 8 7 6 5 4 3 2ROB
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12 11 10 9 8 7 6 5 4 3 2ROB RF
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Simultaneous multithreading (SMT)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed of program A

Newer instructions

1

Instruction windowIF ID Renaming

8

10

Cycle 3
11

7

12

9
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5

6
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Instructions to be executed of program B

Newer instructions
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Simultaneous multithreading (SMT)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218
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2
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Simultaneous multithreading (SMT)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed of program A

Newer instructions
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Instructions to be executed of program B

Newer instructions

1

12 11 10 9 8 7 6 4 3 2 1ROB RF

Instruction windowIF ID Renaming

8

10

Cycle 8
5

6

4

9

Issue

3

4

Execute

3

2

Commit

1

2

12 11 10 9 8 6 5 4 3 2 1ROB

Retire

RF

12 11 10 9 8 7 6 4 3 2 1ROB RF

8

10

3

4

4

9

3

2

5

6

5

6

7

8

7

8

1

2

1 1

1

2

5

6

7

8



CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 36

Datapath of SMT OoO execution processor

Instruction cacheInstruction cache

Data cacheData cache

Integer

BranchBranch FP ALUFP ALU

Floating-point Memory

Reorder buffer (ROB)
Store
queue

Adr gen.Adr gen.Adr gen.Adr gen.ALUALU ALUALU

Register fileRegister file

RS

Branch handlerBranch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decodeInstruction decode

DispatchDispatch

RenamingRenaming

Instruction fetchInstruction fetch

Reservation station (RS)

Instruction window

PCPCPCPC

Map table/free tag bufferMap table/free tag bufferMap table/free tag bufferMap table/free tag buffer

Register fileRegister file



CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 37

From multi-core era to many-core era

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005


