
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 1

Advanced Computer Architecture

2. Instruction Set Architecture
and single-cycle processor

Ver. 2024-12-12aFiscal Year 2024

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No. W8E-308, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 2

Two major ISA types: RISC vs CISC

• RISC (Reduced Instruction Set Computer) philosophy

• fixed instruction lengths

• load-store instruction sets

• limited addressing modes

• limited operations

• RISC: MIPS, Alpha, ARM, RISC-V, …

• CISC (Complex Instruction Set Computer) philosophy

• ! fixed instruction lengths

• ! load-store instruction sets

• ! limited addressing modes

• ! limited operations

• CISC : DEC VAX11, Intel 80x86, …

2

An Instruction Set Architecture (ISA) is part of the abstract model of a computer
that defines how the processor is controlled by the software. The ISA acts as an
interface between the hardware and the software.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 3

MIPS, ARM, and RISC-V

https://riscv.org/

https://en.wikipedia.org/wiki/MIPS_architecture

3

ARM (Advanced RISC Machine)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 4

RISC-V base and extensions

4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 5

RISC-V RV32I base and our target instructions

5

We do not support some system
instructions (FENCE, ECALL,
EBREAK) and 8-bit or 16-bit loads
(LB, LH, LBU, LHU) and stores (SB,
SH) of RV32I.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 6

RISC-V general-purpose registers

6

ABI(Application Binary Interface) name
XLEN = 32
for 32bit ISA

RV32I does not have floating point regesters of f0 - f31.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 7

RISC-V instruction length encoding

7

We support 32-bit length instructions.
16-bit length instructions called
compressed instructions are used in
some embedded systems.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 8

RISC-V base instruction format

8

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 9

RISC-V Arithmetic Instructions

• RISC-V assembly language arithmetic statement

◼ Each arithmetic instruction performs only one operation

◼ Each arithmetic instruction fits in 32 bits and specifies
exactly three operands

◼ Operand order is fixed (destination first)

◼ Those operands are all contained in the datapath’s register
file (x0, ..., x31)

9

add x7, x8, x9

sub x7, x8, x9

destination <- source1 op source2

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 10

Exercise 1

• Compiling a C assignment using registers

• The variables f, g, h, i, and j are assigned to the registers
s0, s1, s2, s3, and s4, respectively.
What is the compiled RISC-V code?

f = (g + h) – (i + j);

s0 = (s1 + s2) – (s3 + s4);

t0 = s1 + s2;

t1 = s3 + s4;

s0 = t0 – t1;

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 11

(1) Machine Language - Add instruction (add)

• Instructions are 32 bits long

• Arithmetic Instruction Format (R-type):

opcode 7-bits opcode that specifies the operation

rs1 5-bits register file address of the first source operand

rs2 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

funct3 and funct7 10-bits select the type of operation (function)

11

R-typefunct7 rs2 rs1 funct3 rd opcode

add x7, x8, x9

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 12

(2) RISC-V Add immediate instruction (addi)

• Small constants are used often in typical code

• Possible approaches?

• put “typical constants” in memory and load them

• create hard-wired registers (like x0) for constants like 1

• have special instructions that contain constants !

• Machine format (I format):

• The constant is kept inside the instruction itself

• Immediate format limits values to the range +211–1 to -211

addi x7, x8, -2 # x7 = x8 + (-2)

12
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

I-typeimm[11:0] rs1 funct3 rd opcode

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 13

RISC-V Memory Access Instructions

• RISC-V has two basic data transfer instructions for
accessing memory

• lw x5, 24(x7) # load word from memory

• sw x3, 28(x9) # store word to memory

• The data is loaded into (lw) or stored from (sw) a register
in the register file

• The memory address – a 32 bit address – is formed by
adding the contents of the base address register to the
offset value

13
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 14

3

(3) Machine Language - Load word instruction (lw)

14

• Load Instruction Format (I-type):

lw x5, 8(x7)

Memory

data address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xffffffff

x7 0x12000000

0x12000008x5

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

I-typeimm[11:0] rs1 funct3 rd opcode

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 15

Exercise 2

• Compiling an assignment when an operand is in memory

• Let’s assume that A is an array of 100 words and the compiler has
associated the variable g and h with the registers s1 and s2 as before.
Let’s also assume that the starting address, or base address, of the array
is in s3. Compile this C code.

g = h + A[2];

3

Memory

data address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xffffffff

s3 0x12000000 A[0]

t0
0x12000004 A[1]
0x12000008 A[2]
0x1200000c A[3]
0x12000010 A[4]

t0 = A[2]; # address is s3 + 8

s1 = s2 + t0;

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 16

(4) Machine Language - Store word instruction (sw)

16

• Load Instruction Format (S-type):

sw x5, 8(x7)

S-typeimm[11:5] rs1 funct3 imm[4:0] opcoders2

Memory

data address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xffffffff

x7 0x12000000

0x12000008x5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 17

Exercise 3

• Compiling using load and store

• Assume variable h is associated with register s2 and base
address of the array A is in s3. What is the RISC-V
assembly code for the C program?

A[1] = h + A[2];

t0 = A[2]; # address is s3 + 8

t1 = s2 + t0;

A[1] = t1; # address is s3 + 4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 18

(5) RISC-V branch if not equal instructions (bne)

18

• RISC-V conditional branch instructions
(bne, branch if not equal) :
bne x4, x5, Lbl # go to Lbl if x4!=x5

Ex: if (i==j) h = i + j;

bne x4, x5, Lbl1 # if (i!=j) goto Lbl1
add x6, x4, x5 # h = i + j;

Lbl1: ...

• Instruction Format (B-type):

• How is the branch destination address specified?

Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 19

Exercise 4

• Compiling using add, addi, and bne

• What is the RISC-V assembly code for the C program?

void main(){

int i, sum=0;

for(i=1; i<11; i++) sum = sum + i;

}

void main(){

int s2, s3=11, s4=0;

for(s2=1; s2<s3; s2++) s4 = s4 + s2;

}

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 20

Single-cycle implementation of processors

• Single-cycle implementation also called single clock cycle
implementation is the implementation in which an instruction is
executed in one clock cycle.
While easy to understand, it is too slow to be practical.
It is useful as a baseline for lectures.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 21

Sample circuit 2

• 2-bit counter as a simple sequential circuit

+

1

2

w_rst

w_cnt2

module m_counter

r_cnt
[1:0]

module top();
reg r_clk = 0;
always #50 r_clk = ~r_clk;
reg r_rst = 1;
always @(posedge r_clk) r_rst <= 0;
wire [1:0] w_cnt;
m_counter m1 (r_clk, r_rst, w_cnt);
initial begin $dumpfile("dump.vcd"); $dumpvars(0); end
initial #800 $finish;

endmodule

module m_counter (
input wire w_clk,
input wire w_rst,
output wire [1:0] w_cnt

);
reg [1:0] r_cnt;
always@(posedge w_clk) r_cnt <= (w_rst) ? 0 : r_cnt + 1;
assign w_cnt = r_cnt;

endmodule

w_clk

circuit2.v

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 22

m_rvcore (RV32I, single-cycle processor)

• around 40MHz operating frequency for Arty A7 FPGA board

• lb, lbu, lh, lhu, sb, sh are not supported

m_regfile

regfile1

(32bit x 32)

w_rs1

m_imem

imem1

(32bit x 1024)

m_dmem

dmem1

(32bit x 8K)

r_pc

32

+

w_rs2

w_rslt

m_decoder

decoder1 5 w_rrs1

w_rrs2_t

w_rrs2

w_imm_t

w_a_rslt

w_b_rslt

D_ADDR

w_ldd

M
u
x

w_rslt

D_OUT

w_rrs1

w_imm

w_rrs2

w_rrs1

w_rrs2

w_rrs1

w_imm

D_WE

r_pc

32

5

5

32

32

1

32

32

32

32

32

32

32

m_rvcore1
(proc1.v)

w_rd

r_pc

w_ir
m_alu

alu1

m_bru

bru1

M
u
x

w_itype[`D_S_TYPE]

M
u
x

+ w_tkn_pc

M
u
x

32

+

`START_PC

w_b_rslt, w_rst

w_imm32

32
4

w_itype[`D_LD__IS]

w_jalr

w_op_im

w_jalr

w_op_im
w_itype

w_bru_c

w_alu_c

w_bru_c
w_alu_c

r_pc

w_clk
w_clk

w_clk

w_clk

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 23

m_rvcore (RV32I, single-cycle processor)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 24

Simulation in the ACRi room environment

$ cd
$ mkdir aca
$ cd aca
$ cp /home/tu_kise/aca/circuit1.v .
$ iverilog circuit1.v
$./a.out

$ /usr/bin/gtkwave dump.vcd

$ cd
$ cd aca
$ cp –r /home/tu_kise/aca/rvcore1 .
$ cd rvcore1
$ make
$ make run

