Fiscal Year 2024

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

2. Instruction Set Architecture
and single-cycle processor

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No. W8E-308, Lecture (Face-to-face) Kenji Kise, Department of Computer Science
Mon 13:30-15:10, Thr 13:30-15:10 kise _at__ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, ScienSg okyo 1

Two major ISA types: RISC vs CISC

An Instruction Set Architecture (ISA) is part of the abstract model of a compu‘rer\
that defines how the processor is controlled by the software. The ISA acts as an
interface between the hardware and the software.

« RISC (Reduced Instruction Set Computer) philosophy
 fixed instruction lengths
 load-store instruction sets
 limited addressing modes
* limited operations
. RISC: MIPS, Alpha, ARM, RISC-V, ..
« CISC (Complex Instruction Set Computer) philosophy
« | fixed instruction lengths
« lload-store instruction sets
« llimited addressing modes
« Ilimited operations
« CISC: DEC VAXI11, Intel 80x86, ..

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 2

MIPS, ARM, and RISC-V

https://en.wikipedia.org/wiki/MIPS_architecture \

WIKIPEDIA

The Free Encyclopedia

Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate

Contribute

Help

Community portal
Recent changes
Upload file

Tools

What links here

MIPS architecture

From Wikipadia, the free encyclopedia

MIPS (Microprocessor without Interlocked Pipelined Stages)''] is a reduced instruction set computer (RISC)
instruction set architecture (ISA)P14 13119 developed by MIPS Computer Systems, now MIPS Technologies, based in the
United States.

There are multiple versions of MIPS: including MIPS I, 11, IIL, IV, and V; as well as five releases of MIPS32/64 (for 32- and
64-bit implementations, respectively). The early MIPS architectures were 32-bit only; 64-bit versions were developed
later. As of April 2017, the current version of MIPS is MIPS32/64 Release 6.[*115) MIPS32/64 primarily differs from MIPS I-
V by defining the privileged kernel mode System Control Coprocessor in addition to the user mode architecture.

The MIPS architecture has several optional extensions. MIPS-3D which is a simple set of floating-point SIMD instructions
dedicated to common 3D tasks,'®! MDMX (MaDMaX) which is a more extensive integer SIMD instruction set using the 64-
bit floating-point registers, MIPS16e which adds compression to the instruction stream to make programs take up less
room, ! and MIPS MT, which adds multithreading capability.[®]

Computer architecture courses in universities and technical schools often study the MIPS architecture.[®] The architecture
greatly influenced later RISC architectures such as Alpha.

:‘ RISC ¢ Membership

RISC-V is an open standard Instruction Set
(ISA) enabling a new era of processor i
through open collaboration

RISC-V enables the community to share technical

contribute to the strategic future, create more ra

unprecedented design freedom, and substantially req
innovation

RISC-V International is the global non-profit home of the open standard
RISC-V Instruction Set Architecture (ISA), related specifications, and

Article Talk Read Edit View history a r m

Arm "ABCD" E)uilding in Cherry Hinton,
Cambridge, UK

ARM (Advanced RISC Machine)

RISC-V Exchange Technical ~ News&Events ~ Community -~ Q

ISC-V Are you ready to break free?

R »C-\

Understanding the RISC-V ISA Open Standard

stakeholder community At the base level, the RISC-V ISA and extensions ratified by RISC-V International are royalty
free and open base building blocks for anyone to build their own solutions and services on.

3,950 RISC-V members across 70 countries contribute and collaborate to define RISC-V open The RISC-V

ISA and ratified extensions are provided under globally accepted open licenses

specifications as well as convene and govern related technical, industry, domain, and special that are permanently open and remain available for all.

interest groups.

Beyond RISC-V International, the community has opportunity to provide their own free or

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo h’prsi//f‘iSCV.Or‘g/ 3

RISC-V base and extensions

Chapter 1

FE310-G002 Description

1.1

Features
« SiFive E31 Core Complex up to 320MHz.

« Flexible clocking options including inter-
nal PLL, free-running ring oscillator and
external 16MHz crystal.

« 1.61 DMIPs/MHz, 2.73 Coremark/MHz
« RV32IMAC

—
« 8kB OTP Program Memory

» 8kB Mask ROM

« 16kB Instruction Cache

» 16kB Data SRAM

« 3 Independent PWM Controllers

« External RESET pin

« JTAG, SPI 12C, and UART interfaces.
« QSPI Flash interface.

« Requires 1.8V and 3.3V supplies.

« Hardware Multiply and Divide

1.2 Description

The FE310-G002 is the second Freedom E300
SoC. The FE310-G002 is built around the
E31 Core Complex instantiated in the Freedom
E300 platform.

The FE310-G002 Manual should be read to-
gether with this datasheet. This datasheet pro-
vides electrical specifications and an overview
of the FE310-G002.

The FE310-G002 comes in a convenient, in-
dustry standard 6x6mm 48-lead QFN package
(0.4mm pad pitch).

ISA base and extensions (20191213)

Name Description Version | Status!®!
Base

RVWMO | Weak Memory Ordering 2.0 Ratified
RWV321 Base Integer Instruction Set, 32-bit 2.1 Ratified
RV32E Base Integer Instruction Set (embedded), 32-bit, 16 registers 1.9 Open
RvV641 Base Integer Instruction Set, 64-bit 2.1 Ratified
RV128I | Base Integer Instruction Set, 128-bit 1.7 Open

Extension

M Standard Extension for Integer Multiplication and Division 2.0 Ratified
A Standard Extension for Atomic Instructions 2.1 Ratified
F Standard Extension for Single-Precision Floating-Point 2.2 Ratified
D Standard Extension for Double-Precision Floating-Point 2.2 Ratified
G Shorthand for the base integer set (I) and above extensions (MAFD) N/A N/ A
Q Standard Extension for Quad-Precision Floating-Point 2.2 Ratified
L Standard Extension for Decimal Floating-Point 0.0 Open
C Standard Extension for Compressed Instructions 2.0 Ratified
B Standard Extension for Bit Manipulation 0.92 Open
J Standard Extension for Dynamically Translated Languages 0.0 Open
T Standard Extension for Transactional Memory 0.0 Open
P Standard Extension for Packed-SIMD Instructions 0.2 Open
A" Standard Extension for Vector Operations 0.9 Open
N Standard Extension for User-Level Interrupts 1.1 Open
H Standard Extension for Hypervisor 0.4 Open
ZiCSR Control and Status Register (CSR) 2.0 Ratified
Zifencei | Instruction-Fetch Fence 2.0 Ratified
Zam Misaligned Atomics 0.1 Open
Ztso Total Store Ordering 0.1 Frozen

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

\

RISC-V RV32I base and our target instructions

We do not support some system
instructions (FENCE, ECALL,
EBREAK) and 8-bit or 16-bit loads
(LB, LH, LBU, LHU) and stores (SB,
SH) of RV32I.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

RV 321 Base Instruction Set

imm[31:12 rd 0110111 LUI
imm[31:12 rd 0010111 AUIPC
imm[20[10:1]11]19:12] rd 1101111 JAL
imm|[11:0] sl 000 rd 1100111 JALR
imm|12(10:5 rs2 rsl 000 imm|4:1|11 1100011 BEQ
imm|12[10:5 rs2 rsl 001 imm|4:1|11 1100011 BNE
imm|12(10:5 rs2 rsl 100 imm|4:1|11 1100011 BLT
imm|{12[10:5 rs2 rsl 101 imm{4:1|11 1100011 BGE
imm|1210:5 rs2 rsl 110 imm4:1|11 1100011 BLTU
imm|[12(10:5 rs2 rsl 111 imm[4:1|11 1100011 BGEU
=R 1k HHH reb HR 4
TG st B+ ok 80066+ HH
imm([11:0 rsl 010 rd 0000011 LW
e 2 100 ¥l BooBoH RE
;Illlll 11-{_} lﬁ.‘l }.Dl lll DOGDG}-}- LHU
b ot b BB mrnldd PR Ls
;llllll 1}.-5 J.:”n l?’l GD}- ;J.lll].l. 40 GlODG}-l SH
imm|11:5 rs2 rsl 010 imm|4:0 0100011 SW
imm|11:0 rsl 000 rd 0010011 ADDI
imm|11:0 rsl 010 rd 0010011 SLTI
imm|[11:0 rsl 011 rd 0010011 SLTIU
imm|[11:0 rsl 100 rd 0010011 XORI
imm|[11:0 rsl 110 rd 0010011 ORI
imm|[11:0 rsl 111 rd 0010011 ANDI
0000000 shamt sl 001 rd 0010011 SLLI
0000000 shamt rsl 101 rd 0010011 SRLI
0100000 shamt rsl 101 rd 0010011 SRAIL
0000000 rs2 rsl 000 rd 0110011 ADD
0100000 rs2 rsl 000 rd 0110011 SUB
0000000 rs2 rsl 001 rd 0110011 SLL
0000000 rs2 rsl 010 rd 0110011 SLT
0000000 rs2 rsl 011 rd 0110011 SLTU
0000000 rs2 rsl 100 rd 0110011 XOR
0000000 rs2 rsl 101 rd 0110011 SRL
0100000 rs2 rsl 101 rd 0110011 SRA
0000000 rs2 rsl 110 rd 0110011 OR
0000000 rs2 rsl 111 rd 0110011 AND
ha —pred—o et] 2 HEOL LENCE
5666660660060 80666 566 856666 HIH04 ECALE
FATRTATATATATAYATATATA NI TRTATAY FATATAY FAYATATATAT 1110011 11210 A L

RISC-V general-purpose registers

XLEN

for 32bit ISA x3

<

XLEN-1

x0 / zero

=32 x1

x2

x4

ABI(Application Binary Interface) name

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

%15

%16

%17

x18

x19

%20

x21

x22

%23

x24

%25

%26

x27

%28

%29

x30

x31

Register | ABI Name | Description Saver
x0 zero Hard-wired zero —
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer —
x4 tp Thread pointer —
x5-7 t0-2 Temporaries Caller
x8 s0/fp Saved register /frame pointer Callee
x9 si Saved register Callee
x10-11 | a0-1 Function arguments/return values | Caller
x12-17 | a2-7 Function arguments Caller
x18-27 | s2-11 Saved registers Callee
x28-31 | t3-6 Temporaries Caller
o7 | £t0-7 FP temporaries Caller
£8-9 fs FP saved registers Callee
f10-11 | fa0-1 uments/return values Caller
£12-17 | fa2 7 FP argumen Caller
£18 27 | £fs2-11 FP saved registers Callee
£28 31 | ft8 11 FP temporaries —Galler

XLEN
XLEN-1

pc

XLEN

Figure 2.1: RISC-V base unprivileged integer register state.

Table 18.2: RISC-V calling convention register usage.

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

RV32T does not have floating point regesters of fO - f31.

RISC-V instruction length encoding

The RISC-V Instruction Set Manual
Volume I: Unprivileged ISA

Document Version 20191214-draft We SUPPOI"T 32-bit Ieng'l‘h instructions.
16-bit length instructions called
Editors: Andrew Waterman', Krste Asanovié¢!'? Compr‘essed instructions are used in

ISiFive Inc., some embedded systems.

2CS Division, EECS Department, University of California, Berkeley
andrew@sifive.com, krste@berkeley.edu
November 12, 2021

| xxxxxxxxxxxxxxaa | 16-bit (aa # 11)

I XXXXXXXXXXXXXKXX l XXXXXXXXXXXbbbl1] 32-bit (bbb # 111)

- XXXX | XXXXXXXXXXXXXXXX | xxxxxxxxxx011111 ‘ 48-bit

- XXXX | XXXXXXXXXXXXXKXX | xxxxxxxxx0111111 ‘ 64-bit

- XXXX | XXXXXXXXXXXXKXXXX | xnnnxxxxx1111111 ‘ (80+16*nnn)-bit, nnn#111

- XXXX | XXXXXXXXXXXXXXXX | x11lxxxxx1111111 ‘ Reserved for >192-bits

Byte Address: base+4 base+2 base

Figure 1.1: RISC-V instruction length encoding. Only the 16-bit and 32-bit encodings are consid-

ered frozen at this time.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

RISC-V base instruction format

Figure 2.3: RISC-V base instruction formats showing immediate variants.

E CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
funct7 rs2 rsl funct3 rd opcode | R-type
imm[11:0] rsl funct3 rd opcode | I-type
imm|11:5] rs2 rsl funct3 imm[4:0] opcode | S-type
imm[12] | imm|[10:5] rs2 rsl funct3 | imm|4:1] | imm[11] | opcode | B-type
imm|[31:12] rd opcode | U-type
imm|[20] imm|[10:1] imm|[11] imm[19:12] rd opcode | J-type

RISC-V Arithmetic Instructions

\
« RISC-V assembly language arithmetic statement 2%

add x7, x8, X9

destination <- sourcel op source2

= Operand order is fixed (destination first)

= Those operands are all contained in the datapath’s register
file (x0, ..., x31)

@@;dap‘red from Computer Organization and Design, Patterson & Hennessy, © 2005 9
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Exercise 1

« Compiling a C assignment using registers

f=(g+h)-(C1+7);

« The variables f, g, h, i, and j are assigned to the registers
s0, s1, s2, s3, and s4, respectively.

= = v) Register | ABI Name | Description Saver

What is the compiled RISC-V code? " . i -
x1 ra Return address Caller
x2 sp Stack pointer Callee

x3 gp Global pointer —

x4 tp Thread pointer —

S @ = (S 1 + S 2) - (S 3 + S4) ; x5-7 t0-2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
x9 s1 Saved register Callee
x10-11 | a0-1 Function arguments/return values | Caller
x12-17 | a2-7 Function arguments Caller

-t @ —_ S 1 + S 2 . x18-27 | s2-11 Saved registers Callee

J x28-31 | t3-6 Temporaries Caller
£0-7 £t0-7 FP temporaries Caller

't 1 — S 3 + S4 ; £8-9 fs0-1 FP saved registers Callee
f10-11 | fa0-1 FP arguments/return values Caller
£12-17 | fa2-7 FP arguments Caller

S @ = t@ - t 1 ; £18-27 fs2-11 FP saved registers Callee
£28-31 | ft8-11 FP temporaries Caller

Table 18.2: RISC-V calling convention register usage.

(1) Machine Language - Add instruction (add)

« Instructions are 32 bits long
* Arithmetic Instruction Format (R-type):

\

add x7, x8, x9

funct? rs2 rsi funct3 rd opcode R-Type

opcode 7-bits
rsi 5-bits
rs2 5-bits
rd 5-bits

opcode that specifies
register file address
register file address

register file address

the operation
of the first source operand
of the second source operand

of the result’s destination

funct3 and funct7 10-bits select the type of operation (function)

@dapmd from Computer Organization and Design, Patterson & Hennessy, © 2005 11
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

(2) RISC-V Add immediate instruction (addi)

\
Small constants are used often in typical code 2%

Possible approaches?
 put "typical constants” in memory and load them
 create hard-wired registers (like x0) for constants like 1
* have special instructions that contain constants |

addi x7, x8, -2 # x7 = x8 + (-2)

Machine for@%ﬁ:\

imm[11:0] rs1 | funct3| rd opcode I-type

The constant is kept inside the instruction itself
» Immediate format limits values to the range +2!!-1 1o -2!

@dapmd from Computer Organization and Design, Patterson & Hennessy, © 2005 12
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

RISC-V Memory Access Instructions X
\

RISC-V has two basic data transfer instructions for
accessing memory

lw x5, 24(x7) # load word from memory

sw x3, 28(x9) # store word to memory

« The data is loaded into (Iw) or stored from (sw) a register
in the register file

* The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
offset value

ﬁ;dapmd from Computer Organization and Design, Patterson & Hennessy, © 2005 13
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

(3) Machine Language - Load word instruction (Iw)

A

* Load Instruction Format (I-type):
lw x5, 8(x7)

imm[11:0] rs1 | funct3| rd opcode | I-type

Memory

OxFFFFFFf

P 3 0x12000008

X7 —> 0x12000000

0x000000aC
0Xx00000008
0Xx00000004
0Xx00000000

data address (hex)
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
C

SC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 14

Exercise 2

« Compiling an assignment when an operand is in memory

g = h + A[2];

* Let's assume that A is an array of 100 words and the compiler has
associated the variable g and h with the registers s1 and s2 as before.
Let's also assume that the starting address, or base address, of the array

is in s3. Compile this C code.

to
sl

A[2]; # address is s3 + 8

s2 + tO;

s3

to <«

Memory

data

OxFFEFFFfe

0x12000010 A[4]
0x1200000c A[3]
0x12000008 A[2]
0x12000004 A[1]

0x12000000 A[O]

0x00000vaC
0x000000038
0x00000004
0Xx00000000

address (hex)

\

15

(4) Machine Language - Store word instruction (sw) \
\
« Load Instruction Format (S-type): 2%

sw x5, 8(x7)

imm[11:5] rs2 rs1l | funct3|imm[4:0]| opcode | S-type

Memory

S ARARARR

X5 —— 0x12000008

X7 —l 0x12000000

0Xx0000000aC
0Xx00000008
0Xx00000004
0XxX00000000

ﬁ: data address (hex)
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 16

Exercise 3

« Compiling using load and store

A[1] = h + A[2];

« Assume variable h is associated with register s2 and base
address of the array A is in s3. What is the RISC-V
assembly code for the C program?

t0 = A[2];

address 1is s3 + 8

t1 = s2 + tO;

A[1] = t1;

address is s3 + 4

\

17

(5) RISC-V branch if not equal instructions (bne)
\
« RISC-V conditional branch instructions X

(bne, branch if not equal) :
bne x4, x5, Lbl # go to Lbl if x4!=x5

Ex: if (i==j) h =1 + j;

bne x4, x5, Lbll # if (i!=7) goto Lbll
add x6, x4, x5 # h=1+ 7;
Lbll:

* Instruction Format (B-type):

imm(12| | imm|10:5 rs2 rsl funct3 | imm|4:1| | imm|11] | opcode | B-type

« How is the branch destination address specified?

@%dap‘red from Computer Organization and Design, Patterson & Hennessy, © 2005 18
CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

Exercise 4

« Compiling using add, addi, and bne

void main(){
int 1, sum=0;
for(i=1; i<11; i++) sum = sum + i;

}
* What is the RISC-V assembly code for the C program?

void main(){
int s2, s3=11, s4=0;
for(s2=1; s2<s3; s2++) s4 = s4 + s2;

Single-cycle implementation of processors \
\

« Single-cycle implementation also called single clock cycle
implementation is the implementation in which an instruction is

executed in one clock cycle.
While easy to understand, it is too slow to be practical.

It is useful as a baseline for lectures.

m_rvcorel

w_jalr
r_pe
L) ., (procl.v)
w_alu_c w_rrsl g [w_tkn_pe
w_bru_c N +

— ngp_im
w_jalr \l,w_bru_c

4
g
=3

—
32 w.imm t w_tts] —> m bl 1
— w_b_rslt
) w_rrs2] brul
32 w_imm
rpe > w_clk
w b rslt, w_rst m_decoder M . w alu_c W itype['D LD _IS]
l welk 432 ‘l*dk decoderl | 5 w_rsl o wosl
5 o) 32 J-op-im m alu| 32 w_a_rslt
. r pe m_imem w_ir W_IS “ alul
START_FC § £ pe imem1 m regiile | w 2 t [= § 32
x i regfilel e =
(32bit x 1024) 5 wrd g) [
(32bit x 32)| w_imm - w_clk

w_rrsl 32 D ADDR

w_rslt

32
32 B—‘ w_imm 32 n:‘,dmerln
4 Yo mem w_ldd
, w_trs2 D_OUT | (39hit x 8K)

w_itype['D_S TYPE] W

w_rslt

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 20

Sample circuit 2

« 2-bit counter as a simple sequential circuit circuit2.v

module top();
reg r clk = 0;

module m_counter always #50 r_clk = ~r_clk;

w_clk reg r_rst = 1;

w_ist always @(posedge r_clk) r_rst <= 0;
E —— wire [1:0] w_cnt;

m_counter ml1 (r_clk, r_rst, w_cnt);

initial begin $dumpfile("dump.vcd"); $dumpvars(@); end
1— initial #8060 $finish;

u endmodule

module m_counter (

2 | ent 2\ _cnt input wire w_clk,
> [1:0] 7 input wire w_rst,
output wire [1:0] w_cnt
)
reg [1:0] r_cnt;
always@(posedge w_clk) r cnt <= (w_rst) ? @ : r_cnt + 1;
assign w_cnt = r_cnt;
endmodule
Signals
Time
w_rst=t
r cnt[1:0] =t

w_cnt[1:0] =t
~o

m_rvcore (RV32I, single-cycle processor)

+ around 40MHz operating frequency for Arty A7 FPGA board
« Ib, Ibu, Ih, lhu, sb, sh are not supported

W jalr m_rvcorel
r pc
- 8 (procl.v)
32
w_alu ¢ w_1rs] —> < [——> w_tkn_pc
w_bru_c +
w_itype >
S N\ W_op_im
w_jalr \llwibruic
32 w_imm t w_rrsl
i w_b_rslt
w_Irs2 3|
32 w_imm
r pc ——> w_clk
w_b rslt, w_rst m_decoder ‘I/ 30 w_alu ¢ w_itype['D_LD__IS]
w ok 4732 w_clk decoderl | 5 w rsl £ wosl
il ¥ = 7 ‘
v g . 5 wrs2 32 \llWiome m_alu 3/2 w_a_rslt
‘ r pc m_imem w_ir WARME > |3 alul 4
START_PC | Z| 51p po imem1 m_ri.glﬁie w_rs2_t |2 g 32
x (32bit x 1024) 5 w_rd | regiie — SIX | w ms2
(32bitx 32)[w_imm w_clk
N “ |
32 w_rslt w_rrsl D _ADDR
~ . + d 32
3 i ‘ w_imm 32 n(ll_ me;n
4—p > f mem w_ldd
w_rs2 P_OUT 1 (32bit x 8K)
w_itype['D_S_TYPE] W
- w_rslt

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo 22

m_rvcore (RV32I, single-cycle processor)

21 /exexx subset of RV3ZI where LB, LH, LBU, LHU, SB, SH are not supported KKK/
PV ST TS TS LS LS LS TS T I LS L EEEEE LI TTTS e L LSS LT TT TS L L LIS LTI TT TS EELEEEIL
23 module m_rvcore (///// R¥Core Simple Version
24 input wire wclk, // clock signal
25 input wire w rst, // reset signal
26 output wire [31:0] D ADDR, // data memory, address
27 output wire [31:0] D OUT, // data memory, output data
%g) output wire D _WE // data memory, write enable
30 reg [31:0] r _pc;
31 Wire w jalr, wop_im, wbh rslt;
32 wire [8:0] w_itype;
33 wire [10:0] w alu c;
34 wire [B:0] w bru c
35 wire [4:0] w_rs1, w rs2, w rd;
36 wire [31:0] w ir, 81 W rrs 2 t, worrs?, w imm_t, w_imm;
gg wire [31:0] wa rslt w rslt, w tkn_pc, w_ldd;
i% m_imem imeml (w clk, r_pc, w_ir);

m_decoder decoder! (r_pc, w_ir, w_rd, w rsl, w_rsZ,

w op_im, w_itype, w jalr, waluc, wbruc, w imm t, w _immj;

mregfile regfilel (woclk, worsl, wrs2, worrsl, worrsZ2 t, wrd, wrslt);
assign w rrs2 = (w op_im) ? w_imm Dow rra? i

malualul (wrrsl, wrrs2, waluc, wa rslt);
mbru brud (w rrsl, w rrs2, wbruc, wb relt);

assign D_ADDR
assign D _OUT
assign D_WE

m_dmem dmeml (w

rrsl + w_imm;

rre?;

itypel 'D_S_TYPE]:

k, D_WE, D_ADDR, D 0OUT, w_ldd):

nono
OEEE

assign w rslt = (w itype[D LD _IS]) 7 w ldd : wa rslt;

aszign w thn pc = ((w jalr) 2 w rrsl @ r pc] +ow imm t;
always @lposedge w clk) r pc <= (w_rst) 7 "START PC : (w_b_rslt) 7w tkn pc o1 pc + 4
59 endmodu | e

Simulation in the ACRi room environment

cd
mkdir aca
cd aca

iverilog circuitl.v
./a.out

B B A A B A

$ /usr/bin/gtkwave dump.vcd

cp /home/tu_kise/aca/circuitl.v .

cd
cd aca

cd rvcorel
make
make run

p-a -2 - - N S N o

cp -r /home/tu_kise/aca/rvcorel .

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, Science Tokyo

24

