Fiscal Year 2023

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

12. Thread Level Parallelism:
Coherence and Synchronization

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W834, Lecture (Face-to-face) Kenji Kise, Department of Computer Science
Mon 13:30-15:10, Thr 13:30-15:10 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Key components of many-core processors

* Main memory and caches

A parallel program has private data and shared data
New issues are cache coherence

System
Chip
o
Core Core Core Core
Procl Proc2 Proc3 Proc4
Caches Caches Caches Caches
| Interconnection network
))
\ 4 \ 4
Main memory (DRAM) I/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Caches are used to reduce latency and to lower network traffic

Four-Way Set Associative Cache

« One word/block, 28 = 256 sets where each with four ways (each with one block)

\

31 30 1312 11 21 O/Byte Oﬂ:set
X
(22 .8
Index
IndexV Tag V Tag V Tag Data V Tag Data
0 0 0 0
1 1 1 1
2 2 2 2
— e ') ’ ° ? ' Py ?
253: 253 253 253
254 254 254 254
255 255 255 255
(—) > —) :’:\ —
J U

> 4x1 select

Hit
P (CSC.T433 Advanced Computer Architecture, Deparfment of Computer Science, TOKYO TECH

‘ Data

Cache writing policy

« Werite-through
 writing is done synchronously both to the cache and to the main

memory. All stores update the main memory and memory bandwidth
becomes a performance bottleneck.

« Write-back
» initially, writing is done only to the cache. The write to the main

memory is postponed until the modified content is about to be
replaced by another cache block.

* reduces the required network and memory bandwidth.

Syst
 preferable for manycore. rsten
Chip
Core Core Core Core
Procl Proc2 Proc3 Proc4
(] [) [) (]
Caches Caches Caches Caches
v v v v
| Interconnection network |
) 3
4 4
Main memory (DRAM) I/0

<

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

Cache coherence problem

A
« Cores see different values for shared data u after event 3 2%

« With write-back caches, value written back to memory depends on which
cache line flushes or writes back

* Processes accessing main memory may see stale (out-of-date) value
« Unacceptable for programming, and its frequent!

@\ I/0 devices
] @)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Cache coherence problem
\
« Cores may see different values through their caches
« assuming a write-back cache

« after the value O of X has been written by A, A's cache
contains the new value, but B's cache and the main memory do

nhot
Memory
Cache contents Cache contents contentsfor
Time Event for core A for core B location X
()]
| Core A reads X | |
2 Core B reads X | 1 1
3 Core A stores 0 0 1 1
into X

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Cache coherence and enforcing coherence X
\

 Cache coherence

* All reads by any core must return the most recently written
value

« Writes to the same location by any two cores are seen in the
same order by all cores

« Cache coherence protocols

* (1) Snooping (write invalidate / write update)
« Each cache tracks sharing status of each cache line

« (2) Directory based
 Sharing status of each cache line kept in one location

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Snooping coherence protocols using bus network

\
« Write invalidate
« On write, invalidate all other copies by an invalidate broadcast

« Use bus itself to serialize
« Write cannot complete until bus access is obtained

Contents of Contents of Contents of
Processor activity Bus activity core A’s cache core B’s cache memory location X
0
Core A reads X Cache miss for X 0 0
Core B reads X Cache miss for X 0 0 0
Core A writes Invalidation for X] 0

altoX
Core B reads X Cache miss for X 1 I 1

« Write update
« On write, update all copies

Af_a'

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Bus Network x
\

* Ncores (| |), Nswitch (O), 1 link (the bus)

 Only 1 simultaneous transfer at a time
« NB (best case) = link (bus) bandwidth x 1
« BB (worst case) = link (bus) bandwidth x 1

* All processors can snoop the bus

A B C D E F
|

Core or processor node

The case where core B sends a packet to someone

A B C D E F
: A b A : A : A : A : A
K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Bus Network with multiplexer (mux)

 one N-input multiplexer for N cores

<

A

D

The bus network organization of 4 cores using a 4-input mux.

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

VVYVYY

A

D

10

Snooping coherence protocols using bus network

« A write invalidate, cache coherence protocol for a private write-back cache
showing the states and state transitions for each block in the cache

CPU read hit
Write miss for this block

Invalidate for
this block

Shared
(read only)

CPU read
Place read miss on bus

Shared
(read only)

CPU
read
miss

CPU
read
miss

CPU write N

£ 'ﬁ Place read '§ =
=1 miss on bus i E @
8l 3|2 8
|0 Slg
ag fe e
218
Write miss = |®
for this block

T
Modified

Exclusive
(read/write)

Read miss

for this block Cache state transitions based
on requests from the bus

Exclusive
(read/write)

Cache state transitions
based on requests from CPU

CPU write miss

Write-back cache block
Place write miss on bus

CPU write hit
CPU read hit

@3 MSI (Modified, Shared, Invalid) protocol
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Orchestration

LOCK and UNLOCK around critical section
« Lock provides exclusive access to the locked data.
« Set of operations we want to execute atomically

BARRIER ensures all reach here

el

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0; /* variable in shared memory */
int ncores = 2;
pthread mutex_t m = PTHREAD MUTEX_INITIALIZER;
pthread_barrier_t barrier;
void solve pp (int pid) {
int i, done = 0;
int mymin = 1 + (pid * N/ncores);
int mymax = mymin + N/ncores - 1;
while (!done) {
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i
mydiff = mydiff + fabsf(B[i] - A{1]);

/* private variables */
/* private variable */
/* private variable */

}
pthread_mutex_lock(&m);

diff = diff + mydiff;
pthread_mutex_unlock(&m);

pthread_barrier_wait(&barrier)s

if (diff <TOL) done = 1;

pthread _barrier wait(&barrier);

if (pid==1) diff = 0.0;

for (i=mymin; i<=mymax; i++) A[i] =
pthread_barrier_wait(&barrier);

B[i];

These operations must be executed
atomically

(1) load diff
(2) add
(3) store diff

L=

After all cores update the diff,
~ if statement must be executed.

if (diff <TOL) done = 1;

12

TOKYO TECH

Cache miss and the addressed block is invalid

e CoreA

Source: Core

State: Invalid

Request: Read miss (u)
Function: Place read miss on bus

A Source: Core

\

| Request: Read miss (u) (I:
I I I I
I I I I
I I M I '8 I M
Bus ﬁop ‘gr(\kdop ‘gr]:jop
Source: Core
A | Request: Read miss (u) C
| No action | No action No action
I u=7 I I I
I I I I
S|u=b I I I
Bus \ read miss
=
ﬁy load a block from memory
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Cache miss and the addressed block is invalid

- 3

 Source: Core

« State: Invalid

« Request: Read miss (u)

* Function: Place read miss on bus

Source: Core
A B . C D
I | Request: Read miss (u) | |
I I L L
I I L L
Slu=5 I " L D L)

Bus ﬁ%o; ‘gr(\ko’o’;) ‘grflgo)l;)

Source: Core

A B |Request: Read miss (u)| C D
| [s\jaorcc:lﬂ ;O(;‘ a{ra | | No action | No action
I I u=7 I I
I place cache I I I
S| u=5 blockonbus |g]| y=5 T I
Bus . u=5 read miss
ﬁ’ load a block from memory or allow shared cache to service data
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Cache miss and the addressed block is invalid

e CorebD

 Source: Core
« State: Invalid
« Request: Read miss (u)
* Function: Place read miss on bus

\

Source: Core

A B D :
I I | Request: Read miss (u)
I I T I
I I I I
S|uz5 S[us5| o I ~ [T N
Bus ﬁOD ﬁop gr?\dop
Source: Core
A o action/ B o action D | Request: Read miss (u)
0 acTtion 0 actrtion .
i I sercide data T I sercide data T No action T I =7
I I place cache I T
S|u=hH S| u=56 | blockonbus [T S| u=5
Bus \ u=5 read miss (u)

load a block from memory or allow shared cache to service data

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

15

Snooping coherence protocols using bus network

« The coherence mechanism of a private cache (using word processor for core).

<

State of
addressed Type of
Request Source cache block cache action Function and explanation
Read hit ~ Processor Shared or Nommnal hit ~ Read data in local cache.
modified
Read miss Processor Invalid Normmal miss Place read miss on bus.
Read miss Processor Shared Replacement Address conflict miss: place read miss on bus.
Read miss Processor Modified Replacement Address conflict miss: write-back block, then place read miss on
bus.
Write hit Processor Modified Normal hit ~ Write data in local cache.
rite hi rocessor Share oherence ace invalidate on bus. These operations are often callec
Cohl Write hit P Shared Col Pl lidat k Tl perat ft lled
upgrade or ownership misses, since they do not fetch the data but
only change the state.
Write miss Processor Invalid Normal miss Place write miss on bus.
Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.
Write miss Processor Modified Replacement Address conflict miss: write-back block, then place write miss on
bus.
Read miss Bus Shared No action Allow shared cache or memory to service read miss.
Coh? Read miss Bus Modified Coherence Attempt to share data: place cache block on bus and change state
to shared.
Coh3 Invalidate Bus Shared Coherence Attempt to write shared block; invalidate the block.
Coh4 Write miss Bus Shared Coherence Attempt to write shared block: invalidate the cache block.
Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-back the

Cohb

cache block and make its state invalid in the local cache.

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

16

Exercise 1

e Cohl (Core A) .

* Source: Core

« State: Shared

* Request: Write hit (u)

* Function: Place invalidate on bus

Source: Core
A |Request: Write hit (u) | B

I I
u=7/ I
I
S

u=5 u=5

njHH

invalidate

Bus

Coh3 (Core B, D)

‘gr#do}p

\

Source: Bus
State: Shared
Request: Invalidate

Function: attempt to write shared block;
invalidate the block

C D
| |

Lol L L
niHH

u=5

oo <o

Draw the behavior of this request

Af_a'

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

17

Coherence 1 (Cohl) and Coherence3 (Coh3)

e Cohl (Core A)
* Source: Core
* State: Shared
* Request: Write hit (u)

 Function: Place invalidate on bus

Source: Core

Coh3 (Core B, D)

« Source: Bus

« State: Shared
« Request: Invalidate

« Function: attempt to write shared block;
invalidate the block

\

A |Request: Write hit (u) | B C D
| | | |
I u=7 I I I
I I I I
Slu=b Slu=b I Slu=bH M
Bus invalidate ‘grijop {rtiop ‘gr;kdop
Source: Core
A ReqUQST: Write hit (U) B Source: Bus C No acti D Source: Bus
| | Request: Inv. | 0 action | Request: Inv.
I u=7 I I I
I I I I
M| u=7 I I I
Bus invalidate

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

18

Snooping coherence protocols using bus network

« The coherence mechanism of a private cache (using word processor for core).

<

State of
addressed Type of
Request Source cache block cache action Function and explanation
Read hit Processor Shared or Normal hit Read data in local cache.
modified
Read miss Processor Invalid Normal miss Place read miss on bus.
Read miss Processor Shared Replacement Address conflict miss: place read miss on bus.
Read miss Processor Modified Replacement Address conflict miss: write-back block, then place read miss on
bus.
Write hit ~ Processor Modified Normal hit ~ Write data in local cache.

Cohl Write hit Processor Shared Coherence Place mvalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data but
only change the state.

Write miss Processor Invalid Normal miss Place write miss on bus.

Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.

Write miss Processor Modified Replacement Address conflict miss: write-back block, then place write miss on
bus.

Read miss Bus Shared No action Allow shared cache or memory to service read miss.

Coh?2 Read miss Bus Modified Coherence Attempt to share data: place cache block on bus and change state
to shared.

Coh3 Invalidate Bus Shared Coherence Attempt to write shared block; invalidate the block.

Coh4 Write miss Bus Shared Coherence Attempt to write shared block: invalidate the cache block.

Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-back the

Cohb

cache block and make its state invalid in the local cache.

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

19

Coherence 2 (Coh2)

« CoreC
Source: Core
State: Invalid
Request: Read miss (u)

—

Function: Place read miss on bus

« Coh2 (Core A)
Source: Bus
State: Modified

Request:

Read miss (u)

\

Function: attempt to shared data; place cache
block on bus and change state to shared

A C | Source: Core _ D
| | Request: Read miss (u) |
I I I > _ I
I I T cache miss T
M| u=7 I 'S I I 'S
Bus ‘fftiop ‘ﬁiop read miss (u) 'ﬁop
A | Source: Bus : C | Source: Core D :
| Request: Read miss No action | Request: Read miss (u) | No action
% place cache % % > date %
sl o=7 block on bus T =7 T
Bus u=7
re

write-back to memory
SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

20

Snooping coherence protocols using bus network

« The coherence mechanism of a private cache

<

State of
addressed Type of
Request Source cache block cache action Function and explanation
Read hit Processor Shared or Normal hit Read data in local cache.
modified
Read miss Processor Invalid Normal miss Place read miss on bus.
Read miss Processor Shared Replacement Address conflict miss: place read miss on bus.
Read miss Processor Modified Replacement Address conflict miss: write-back block, then place read miss on
bus.
Write hit ~ Processor Modified Normal hit ~ Write data in local cache.

Cohl Write hit Processor Shared Coherence Place mvalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data but
only change the state.

Write miss Processor Invalid Normal miss Place write miss on bus.

Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.

Write miss Processor Modified Replacement Address conflict miss: write-back block, then place write miss on
bus.

Read miss Bus Shared No action Allow shared cache or memory to service read miss.

Coh? Read miss Bus Modified Coherence Attempt to share data: place cache block on bus and change state
to shared.

C0h3 Invalidate Bus Shared Coherence Attempt to write shared block; invalidate the block.

Coh4 Write miss Bus Shared Coherence Attempt to write shared block: invalidate the cache block.

Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-back the

Cohb

cache block and make its state invalid in the local cache.

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

21

Coherence 4 (Coh4)

« CoreB

« Source: Core
« State: Invalid

« Request: Write miss (u)

« Coh4 (Core A, C)
Source: Bus

« Function: Place write miss on bus

State: Shared

Request: Write miss (u)

Function: attempt to write shared block;
invalidate the cache block

A B | Source: Core C
| | Request: Write miss I
I I =9 ; I
Slu=7| -~ I Slu=7| =~ I ~
Bus €0 write miss (u) oo o,
A | Source: Bus B | Source: Core C |Source: Bus _
| Request: Write miss I Request: Write miss | Request: Write miss No action
: = B :
I M| u=9 I I

™

ﬁ, Bus
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

load a black from memory or allow shared cache to service data

22

Snooping coherence protocols using bus network

Cohl

Coh?2

Coh3
Coh4

Cohb

The coherence mechanism of a private cache

State of
addressed Type of

Request Source cache block cache action Function and explanation

Read hit Processor Shared or Normal hit Read data in local cache.

modified

Read miss Processor Invalid Normal miss Place read miss on bus.

Read miss Processor Shared Replacement Address conflict miss: place read miss on bus.

Read miss Processor Modified Replacement Address conflict miss: write-back block, then place read miss on
bus.

Write hit ~ Processor Modified Normal hit ~ Write data in local cache.

Write hit Processor Shared Coherence Place mvalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data but
only change the state.

Write miss Processor Invalid Normal miss Place write miss on bus.

Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.

Write miss Processor Modified Replacement Address conflict miss: write-back block, then place write miss on
bus.

Read miss Bus Shared No action Allow shared cache or memory to service read miss.

Read miss Bus Modified Coherence Attempt to share data: place cache block on bus and change state
to shared.

Invalidate Bus Shared Coherence Attempt to write shared block: invalidate the block.

Write miss Bus Shared Coherence Attempt to write shared block: invalidate the cache block.

Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-back the

cache block and make its state invalid in the local cache.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

23

Snooping coherence protocols using bus network

« A write invalidate, cache coherence protocol for a private write-back cache
showing the states and state transitions for each block in the cache

CPU read hit
Write miss for this block

Invalidate for
this block

Shared
(read only)

CPU read
Place read miss on bus

Shared
(read only)

CPU
read
miss

CPU
read
miss

CPU write N

£ 'ﬁ Place read '§ =
=1 miss on bus i E @
8l 3|2 8
|0 Slg
ag fe e
218
Write miss = |®
for this block

T
Modified

Exclusive
(read/write)

Read miss

for this block Cache state transitions based
on requests from the bus

Exclusive
(read/write)

Cache state transitions
based on requests from CPU

CPU write miss

Write-back cache block
Place write miss on bus

CPU write hit
CPU read hit

@3 MSI (Modified, Shared, Invalid) protocol
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Snooping coherence protocols using bus network x
\

« The basic coherence protocol
* MSI (Modified, Shared, Invalid) protocol
 Extensions
* MESTI (Modified, Exclusive, Shared, Invalid) protocol
« MOEST (MEST + Owned) protocol

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

Intel Single-Chip Cloud Computer (2009)
\

« To research multi-core processors and parallel processing.

Inside the SCC

Dual-core SCDC Tile
q1° 24Tiles
=1 - 24 Routers -

= 48 |IA cores -

o st St RN

T o | T\

ROUTER

L2 Cache

« 2D mesh network with 256
GB/s bisection bandwidth

* 4 Integrated DDR3 memory
controllers (64GB addressable)

o
w
-
-
o
o
-
—
o
(&
>
o
o
=
w
=

A many-core architecture
with 2D Mesh NoC

Intel Single-Chip Cloud Computer (48 Core)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

Directory protocols
 Snooping coherence protocols are based on the use of bus i\%

network.
What are the protocols for mesh topology NoC?

« Directory protocols

* A logically-central directory keeps track of where the copies
of each cache block reside. Caches consult this directory to
ensure coherence.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

Snooping coherence protocol and one with directory

Source: Core

A

A |Request: Write hit B D
I I I
I u=7 I I I
I I I I
Slu=b Stush| M I 'S Stu=5| M
Bus invalidate (bf’OGdCGS'I') T ﬁop T ‘grtop T ‘g:zop
I I I
Source: Core
A |Request: Write hit B D
I I I
I u=7/ I I I
I I I I
Slu=b Stu=5 I Stu=5
N (1) Access directory ¥ -
N (2) send invalidate fo proper cores
' N
DIreCTory u | Shared by A B-D

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

28

Two caches of different block sizes

« Temporal Locality (Locality in Time): x
« Keep most recently accessed data items closer to the processor

 Spatial Locality (Locality in Space)
* Move blocks consisting of contiguous words to the upper levels

Byte

Hit offset Data
U E— — ! | T "
Hit ag S 10 Data Tag N % N 8 Block offset
4+ Index A Index
Index Valid Tag Data Index Valid Tag < Data (4 word) R
0 0
1 1
2 2
— ? ' >
1021 253
1022 o
1023 ~ 20
T 20 4. 32
S \ 4 \ 4
<
I S
I 3
. 39. cache line of one word cache line of four words (multiword block)
P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

Coherence influences the cache miss rate

A
 Coherence misses

« True sharing misses
« Write to shared block (invalidation)
* Read

 False sharing misses

Senario: Areadsu -> Breadsu -> Breadsw -> Awritesu -> Breadsw

read w, hit read w,
A B | A B | false shaing miss
Sluzh , S|luzh 1S u=5[w=6| 1S u=5[w=6|
u= Slw=b i
> invalidate u u=> invalidate u and w
M[u=7 I § [M[u=7 [w=6 | rl [|
S|w=6 !

. cache line of two words (multiword block)
cache line of one word u and w are in the same cache block

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30

Key components of many-core processors

* Main memory and caches

A parallel program has private data and shared data

« New issues are cache coherence memory consistency
[]
System
a hardware e il | Wi e
mCChGnism TO SUppOr'T Thr'ead Caches Caches Caches Caches
sy n C h r.o n i zaT i O n | ; In’rirconnecﬁon nef;wor'k ;
v v
Main memory (DRAM) I/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Caches are used to reduce latency and to lower network traffic

31

Snooping coherence protocols using bus network

« A write invalidate, cache coherence protocol for a private write-back cache
showing the states and state transitions for each block in the cache

CPU read hit
Write miss for this block

Invalidate for
this block

Shared
(read only)

CPU read
Place read miss on bus

Shared
(read only)

CPU
read
miss

CPU
read
miss

CPU write N

£ 'ﬁ Place read '§ =
=1 miss on bus i E @
8l 3|2 8
|0 Slg
ag fe e
218
Write miss = |®
for this block

T
Modified

Exclusive
(read/write)

Read miss

for this block Cache state transitions based
on requests from the bus

Exclusive
(read/write)

Cache state transitions
based on requests from CPU

CPU write miss

Write-back cache block
Place write miss on bus

CPU write hit
CPU read hit

@3 MSI (Modified, Shared, Invalid) protocol
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Snooping coherence protocols using bus network

« The coherence mechanism of a private cache (using word processor for core).

<

State of
addressed Type of
Request Source cache block cache action Function and explanation
Read hit Processor Shared or Normal hit Read data in local cache.
modified
Read miss Processor Invalid Normal miss Place read miss on bus.
Read miss Processor Shared Replacement Address conflict miss: place read miss on bus.
Read miss Processor Modified Replacement Address conflict miss: write-back block, then place read miss on
bus.
Write hit ~ Processor Modified Normal hit ~ Write data in local cache.

Cohl Write hit Processor Shared Coherence Place mvalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data but
only change the state.

Write miss Processor Invalid Normal miss Place write miss on bus.

Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.

Write miss Processor Modified Replacement Address conflict miss: write-back block, then place write miss on
bus.

Read miss Bus Shared No action Allow shared cache or memory to service read miss.

Coh? Read miss Bus Modified Coherence Attempt to share data: place cache block on bus and change state
to shared.

C0h3 Invalidate Bus Shared Coherence Attempt to write shared block; invalidate the block.

Coh4 Write miss Bus Shared Coherence Attempt to write shared block: invalidate the cache block.

Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-back the

Cohb

cache block and make its state invalid in the local cache.

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

33

