Fiscal Year 2023

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

9. Instruction Level Parallelism: Out-of-order
Execution and Multithreading
&

www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W834, Lecture (Face-to-face) Kenji Kise, Department of Computer Science
Mon 13:30-15:10, Thr 13:30-15:10 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

t‘—\

gy -

Exploiting Instruction Level parallelism (ILP)
2P o x

* A superscalar has to handle some flows efficiently to exploit ILP

« Control flow (control dependence)

« To execute ninstructions per clock cycle, the processor has to

fetch at least ninstructions per cycle.

* The main obstacles are branch instruction (BNE)

 Prediction
e Another obstacle is instruction cache

 Register data flow (data dependence)

« OQOut-of-order execution (1)

* Register renaming g;

« Dynamic scheduling (4)

* Memory data flow (3)
« Out-of-order execution g;

* Another obstacle is data cache (4)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

add
add

add

1w
add
add
add x

x5,x1,x2
x9,x5,x3
x4, 4(x7)
x8,x9,x4

x4, 4(x7)
x5,x1,x2
x9 x5,x3

»X9,Xx4

3

Instruction pipeline of OoO execution processor

3
* Allocating instructions to instruction window is called dispatch 2%
« Issue or fire wakes up instructions and their executions begin

« Incommit stage, the computed values are written back to ROB
(reorder buffer)

« The last stage is called retire or graduate.
The completed consecutive instructions can be retired.
The result is written back to register file (architectural register file
of 32 registers) using a logical register number from x0 to x31.

Instruction
window
eteh | Decode ::r?;fr:rii; Dl Out-of-order back-end
In-order front-end Issue E&‘Z;‘ffy/ Commit
I
ROB[[[[T [T T [T T[] NAlC

ﬁ’ In-order retirement [
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

The key idea for OoO execution (last lecture)

window and reorder buffer (ROB)

In-order front-end, OoO execution core, in-order retirement using instruction

In commit stage, the computed

Cycle 6 IF ID Renaming Instruction window Issue values are written back to ROB
@ [7] 1] 1[e][5] (reorder buffer)

L8)| Ll Jla]l2] Head of the FIFO
__ rosl | | [[| lelsl4lsfeld]

Cycle 7 IF ID Renaming | | Instruction window Issue | Execute The completed consecutive
5 @ G| OEEE| B D] e
wol| | (I |] D [51| registerfie

ROR | | | | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1' Completed consecutive insns

Cycle 8 IF ID Renaming Instruction window Issue | Execute | Commit // Reftire
(| L [8][6][5] > 2]

(2]} | [J{10][9][7] [1| » L[] {LAI [|
os T o5 [s]7 e [s4Ialeli]/

Cycle 9 IF ID Renaming Instruction window Issue | Execute /Commi‘r Retire
[13]| | (e[> [«)]

1)) | CJo)6]71][]l LA O
~@‘Q' ro[12[11]10] 98|76 [5]43]2] |

4

Architectural register file

Register dataflow

« In-flight instructions are ones processing in a processor

Cycle 8

\

@) @

Y@

Data flow graph
IF ID Renaming Instruction window Issue | Execute | Commit Retire
(1t | _J[8][6][5] > [2]
(1201 | |__J[10][9 [7] 1| »] | |
RoB| | Jo]o|8f7]6]5]4]3[2]1]
Front-end Back-end
- o~ g N —
Instructions to be executed for an application Instruction window 000 Core |Executed insns
| | | J16|15]|14]13]12|11]10]9 |8 |76 |54 |32t | | | |

Af_a'

Newer instructions

—

In-flight instructions

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Case 1: Register dataflow from a far previous instn

* One source operand of insn I2 is from a retired instruction Ia. \

« Because Ia is retired long ago, the physical destination register has been freed.
The tag of the source register x3 can not be renamed at the renaming stage for
I2, still having the logical register tag x3.

Ia: add x3,x0,x0

« Where does the operand x3 of I2 come from? I1: sub pNZ

I2: add plo,p9,x3

I3: or pl1,x4,x5
I4: and pl2,plo,pll

Cycle 8 IF ID Renaming Instruction window Issue | Execute | Commit Retire
(1) L J[8lle][5] = L

(2] | [[o][o][7z]| [»[] L

roe[] [10[9]8]7]6]5 48] 2]1]

Instructions to be executed

Newer instructions

Executed insns
Ib|Ia| | |

000 Core
41321

Instruction window
10/9/8|7]|6]|5

Front-end
1615|1413 [12] 11

—

In-flight instructions

Data dependence

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Case 1: Register dataflow from RF

* One source operand of insn I2 is from a retired instruction Ia. \

« Because Ia is retired long ago, the physical destination register has been freed.
The tag of the source register x3 can not be renamed at the renaming stage for
T2, still having the logical register tag x3.

Ia: add x3,x0,x0
* Where does the operand x3 of I2 come from? I1: sub pNZ

I2: add plo,p9,x3
I3: or pl1,x4,x5
I4: and pl2,plo,pll

Cycle 8 IF ID Renaming Instruction window Issue | Execute | Commit Retire
Lul | L 8]lellsp—=> A L
[2]] | [Jlof[o][7z) | [» [L

roB[| Jwofo[s]7]e]5]4]3]2]1] RF

Instructions to be executed Front-end Instruction window 000 Core |Executed insns
L] 1T | | lwe|s|14|13]12]11|10|9|8|7]6]|5][4]3|2]1]1b|1a] | |
Newer instructions i

—

In-flight instructions

ﬁj Data dependence
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Example behavior of register renaming and valid bit

« A processor remembers a set of renamed logical registers. x
« If x1and x2 are not renamed for in-flight insn, it uses x1 and x2 instead of p1 and p2

Register map table yqlid bit

Cycle 1
0
I0: sub x5,x1,x2 —1 %)
I1: add x9,x5,x4 — 2 2 1
I2: or x5,x5,x2 3
I3: and x2,x9,x1 4
5 . 5->9 | |1} | | » dst = p9
---------------- 6 T T sret = xa
Fr‘ee Tag bUffer G T . spco = pz
13[12|11]10| 9 p== 8
T 9
head 10 I10: sub p9,x1,p2
dst = x5
srcl = x1 —
src2 = X2

iﬁ -
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Case 2: Register dataflow

« Assume that one source operand pl10 of insn I5 is from I2 which is not retired. \
The operand is generated a few clock cycles (tens of cycles sometimes) earlier.

« Because I? is not retired, RF does not have the operand.

Because I2 is committed, the operand is stored in ROB. Ia: add x3,x0,Xx8
I1: sub p9,x1,x2

* Where does the operand of I5 come from? I2: add p1@,p9,x3
I3: or pI\,x4,x5
I4: and pl2,840,pll
I5: nor pl3,pl0,pl2
Cycle 9 IF ID Renaming Instruction window Issue | Execute | Commit Retire
(3] | L J[8[z2][11] B >[4
(4]} | [J[10][9][7] [l 1| [|
RoB[12|11/10[{9[8|7]6|5|4f3]2] |
Instructions to be executed Front-end Instruction window | OoO Core Executed insns

Newer instructions

18[17]16]15][14[13|12]11]10[9[8[7

elslal3[2[1] [[|

-~

S
In-flight instructions

2 \E=20
~@ Data dependence
P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Case 2: Register dataflow from ROB

« Assume that one source operand pl10 of insn I5 is from I2 which is not retired.

The operand is generated a few clock cycles (tens of cycles sometimes) earlier.

Cycle 9

Because I2 is not retired, RF does not have the operand.

Because I2 is committed, the operand is stored in ROB. Ia: add x3,x0,Xx8
I1: sub p9,x1,x2
* Where does the operand of I5 come from? Lo add f,le):pg):x_,,
I3: or pI\,x4,x5
I4: and pl2,840,pll
I5: nor pl3,pl0,pl2
IF ID Renaming Instruction window Issue | Execute | Commit Retire
3] | s][e][u]—1| » [4]
(4] |][]l 9][7] (el 1] [||
ro|12|11]10] 98 |F]6[5|4]3]2] |
Instructions to be executed Front-end Instruction window | OoO Core Executed insns

AEEB'

Newer instructions

18[17]16 15|14 |13

12[11]10]9]8]7

elslal3[2[1] [[|

-~

—

In-flight instructions

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Data dependence

\

10

Case 3: Register dataflow

« Assume that the other source operand pl12 of insn I5 is from I4 which is not

committed. The operand is generated in the previous clock cycle.

« Because I4 is not retired, RF does not have the operand.

Cycle 9

Because T4 is not committed, ROB does nhot have the operand. 1a: add x3,xe,xe
I1: sub p9,x1,x2
* Where does the operand of I5 come from? I2- add E1e,p9,x3
I3: or pl1,x4,x5
I4: and pl12,pl0,pll
I5: nor pl13,pl0,pl2
IF ID Renaming Instruction window Issue | Execute | Commit Retire
L3 | L Jl8][e2][11] B >[4
(4] |][]l 9][7] (el 1] [||
Roe[12[11[10] 98] 7] 6 5] 4[3]2] |
Instructions to be executed Front-end Instruction window 000 Core Executed insns

Af_a'

Newer instructions

18[17]16 15|14 |13

12[11]10]9]8]7

] []]

6|5]4[3]2

S
In-flight instructions

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Data dependence

\

11

Case 3: Register dataflow from ALUs

« Assume that the other source operand pl12 of insn I5 is from I4 which is not

committed. The operand is generated in the previous clock cycle.

« Because I4 is not retired, RF does not have the operand.

Cycle 9

Because T4 is not committed, ROB does nhot have the operand. 1a: add x3,xe,xe
I1: sub p9,x1,x2
* Where does the operand of I5 come from? I2- add El@,p9,x3
I3: or pl1,x4,x5
I4: and pl12,pl0,pll
I5: nor pl13,pl0,pl2
IF ID Renaming Instruction window Issue | Execute | Commit Retire
3] | [l][2][u] | T 4]
(4] |][]l 9][7] [e]] P11 [||
roe[12[11]10] 98] 7] b 5] 4 [3|[2] |
Instructions to be executed Front-end Instruction window 000 Core Executed insns

Af_a'

Newer instructions

18[17]16 15|14 |13

12[11]10]9]8]7

] []]

6|5]4[3]2

—

In-flight instructions

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Data dependence

\

12

Reorder buffer (ROB)

« Each ROB entry has following fields
« entry valid bit, data valid bit, data, target register number, etc.

« ROB provides the large physical registers for renaming
 in fact, physical register number is ROB entry number

* The value of a physical register is from a matching ROB entry

] Entry Data
= Index vjalid Valid 32-bit Data target reg number
1 0
< | head —— 1 1 1 Computed data of I1 - 3
o 2 1 0 2 x4 | gF
o | 1 1 Computed data of I3 X5 Retire
~ | 1 0 X6
S |w] tail —> 10 1 2 10
o T .
S
] 49
I10: add plo,p3,p8 (add x10,x5,x6)
Cycle 8 IF ID Renaming Instruction window Issue | Execute | Commit Retire
[fi | [I[8][6][5] > [2] [|
[12]) | [J[10][9][7] (1| »[] [|
Qﬁ"’ RoB| | [10[9]8]7]6[5[4[3]2]1]

13

Datapath of OoO execution processor

Instruction cache

—_—

\ 4

Instruction flow

Branch handler It

Instruction fetch I

Instruction decode

Instruction decode |
__Feraning__|
__Dispatch |

FP ALU

ALU I ALU l Branchl
‘T

Renaming
» Register file > Dispatch
RS Integer Floating-point | Memory Memory dataflow
¥ ¥ ¥ ¥ ¥ —
LIt LIt iityd LI i] [L11T]] LI TTT] [ITTT1]|Instructionwindow
v v v v

|||||||||||||¢||||||"|
Reorder buffer (ROB)
= Register dataflow

A

A
L]

y
L [T 1]

Store

v v
Adr gen. I Adr gen. I
A 4

A 4

queue

\ 4

Data cache |

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH Reservation station (RS) 14

Instruction fetch unit of 2-way super-scalar

« High-bandwidth instruction delivery using prediction, and speculation

IF

stage

A

ID, EX, MA, WB
'stage

Next PC generator (mux)

prediction miss

(2) Target address

lPC’ branch history

Taken/
Untaken

(1) Branch Target PC
 for recovery

~ Pipeline registers

(Branch Target Buffer)

P Branch predictor
ﬁi-“;smiss (3) PC+8
Instructions
— & ,
BTB ‘ Instruction memory (cache)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A 4

»
»

15

Renaming two instructions per cycle for superscalar

« Renaming instruction I0 and Il
Cycle 1 Register map table
I0: sub x5,x1,x2 0 0
I1: add x9,x5,x4 1 1
I2: or x5,x5,x2 .9 5
I3: and x2,x9,x1 3 £ J R R F— » A_dst = p9
Free tag buffer "4 | AT : 2 zﬁg ; : E;
| e ey S
13(12(11(10| 9 :::: 6 6
T T . B_dst = p1o
pead || el L I I
I0 A dst = x5 9 r 2310 B_src2 = p4
A srcl = x1 10 If B_srcl==A_dst, use tag from free tag buffer
A_src2 = x2
I0: sub p9,pl,p2
T1 B_dst = x9 I1: add ple,p9,p4s
B srcl = x5
B src2 = x4 — 31

<

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

16

Datapath of 00O execution processor (partially)

\

Instruction flow

Instruction cache

* A 4

Branch handler It Instruction fetch I
Instruction decode I

Renaming

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH Reservation station (RS) 17

Aside: What is a window?

\
« A window is a space in the wall of a building or in the side of a vehicle,
which has glass in it so that light can come in and you can see out. (Collins)

Instruction window
| J[8][6][5]
L L el 7]

(a) Instruction window Instructions to be executed for an application

Large instruction window

I O I O A

(C) Instruction window Instruction window

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Datapath of 00O execution processor (partially)

Instruction cache

—_—

Branch handler It

A

y

Instruction flow

Instruction fetch I

Instruction decode

Renaming

Instruction decode |
__Feraning__|

» Register file > Dispatch
Integer Floating-point Memory
[| | | | |
(TTT] [TTIT] [TLT0] [TTI0 (TTT1T1 [IT1T] | Instructionwindow
[(TTTT T T I I I I T ITTTTT]
Reorder buffer (ROB)
= Register dataflow

Reservation station (RS)

\

19

Reservation station (RS)

« To simplify the wakeup and select logic at issue stage, each functional
unit (ALU) has own instruction window, an entry for an instruction is
called reservation station (RS).

 Each reservation station has

« entry valid bit, srcl tag, srcl data, srcl ready, src2 tag, src2 data, src2
ready, destination physical register number (dst), operation, ...

« The computed data (outcome) with its dst as tag is broadcasted to all RSs.

instruction window for ALU1 and ALU2 IW for ALUl IW for ALU1
L] L L] FI\
ISsue ‘1' ISsue v & Reservation station
ALU1 ALU2
(a) Central instruction window (b) instruction window using RS
valid srcl tag srcl data srclready src2 tag src2 data src2 ready dst operation

ﬁ’ For operand srcl For operand src2
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Datapath of 00O execution processor (partially)

Instruction cache

—_—

A

y

Instruction flow

Branch handler It

Instruction fetch I

Instruction decode

Instruction decode |
__Feraning__|
__Dispatch |

Renaming
» Register file > Dispatch
Integer Floating-point |
R [(TTIT] [ILIT] Instruction window
v v v v
ALU I ALU I Branch I FP ALU
T
[(TTTT T T T |||v [TTTT] Broadcast
Reorder buffer (ROB)
= Register dataflow

Reservation station (RS)

\

21

Example behavior of reservation stations

Cycle O dispatch ¥ v I

. I2:
dispatch I1, I2 IW for ALL.” AlB C | D] IW for ALUI 15
issue e

\ 4 T5:

sub p9\kxA1,x2

add p10,p9,x3

nor pl3,plo,pl2

dispatch at most two instructions, one to A or B and the other to C or D

valid srcl tag srcl data srclready src2 tag src2 data src2 ready dst operation

RS_A |
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_B [
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_C |
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_D |
~@ 2 For operand srcl For operand src2

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

22

Example behavior of reservation stations

Cycle 1

dispatch I3, T4
issue Il

IW for ALU1

|I|¢E|

IW for ALU1

EF

\ 4

I1: sub p9,x1,x2
I2: add p?é?pQ,xB
I3:
I14:

\

I5: nor pl3,pl0,pl2
dispatch at most two instructions, one to A or B and the other to C or D
valid srcl tag srcl data srclready src2 tag src2 data src2 ready dst operation
RS_A |1| «xi value of x1 1 I x2 value of x2 1 p9 | Il:sub
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_B [
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
Rs.c [1] o o] x3 valueof x3 | 1 | pl0 | I2:add
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_D [

=

For operand srcl

For operand src2

)

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

23

Example behavior of reservation stations

CYCIZ 2 IW for ALUl IW for ALU1 I1: sub pQ,x1,x2
. I2: add pl19,p9,x3
AlB cC|D I
F:llSpClTCh 15,16 I:‘l:l I%:I I3: or plNx4,x5
issue I2, I3 I4: and p12,p10,p1l
execute Il I1(p9) v I5: nor pl3,pl10,Pp12

dispatch at most two instructions, one to A or B and the other to C or D

\

valid srcl tag srcl data srclready src2 tag src2 data src2 ready dst operation
RS A [0 l T1: sub
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_B 1| x4 value of x4 1 I x5 value of x5 1 pll | I3:or
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS C 1 p9 value of p9 1 I x3 value of x3 1 pl0 | I2:add
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_D [1] pt0 o | pu o| ptz2 |14 and

=

)

For operand srcl

For operand src2

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

24

Example behavior of reservation stations

CYCIZ 3 IW for ALUL IW for ALU1 I1: sub pQ,x1,x2

) AlB c1b I2: add pl19,p9,x3
dISpGTCh I7,1I8 I? I? I3: or pl 4, x5
issue I4 I4: and p12,pl10,p11
execute I2, I3 I3 (pll) W 12 (p10) I5: nor p13,plod,p12

dispatch at most two instructions, one to A or B and the other to C or D

\

=

)

valid srcl tag srcl data srclready src2 tag src2 data src2 ready dst operation
RS_A [1] p10 [valueofpto [1] p12 01 p13 |15 nor
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_B |i/0 I I3: or
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS C 1/O| I I2: add
For operand srcl For operand src2
valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_D |1| pi0 value of p10 1 I pll value of pl1 1 pl2 | I4:and

For operand srcl

For operand src2

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

25

Exercise 1

A
« Example behavior of reservation stations %%

diapatch \1,

AlB
iIssue

v
2

I1:
12:
13:
14:
I5:
16:

sub pgiif,xz
add plgigé,x3
or plil,plo,x4

and

nhor pl3,pll,pl2
add pl4,pl0,x7

26

Instruction Level Parallelism (ILP)

N\
1w t@,&(s?) (1) @
(@)

add t?, s2, 1o (2)
SW t0, 48(s3) (3)

? /da’ra
dependency
1w t1l, 32(s4) (4) @
?

‘/ambiguous
data dependency

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

Memory dataflow and branches x
\

« The update of a data cache cannot be recovered easily. So,
cache update is done at the retire stage in-order manner by
using store queue.

Because of the ambiguous memory dependency, load and store
instructions can be executed in-order manner.

« About 30% (or less) of executed instructions are load and stores.
« Even if they are executed in-order, IPC of 3 can be achieved.
* Branch instructions can be executed in-order manner.

« About 20% (or less) of executed instructions are jump and branch
instructions.

« Out-or-order branch execution and aggressive miss recovery may
cause false recovery (recovery by a branch on the false control
path).

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

Datapath of OoO execution processor

Instruction cache

—_—

\ 4

Instruction flow

Branch handler It

Instruction fetch I

Instruction decode

Instruction decode |
__Feraning__|
__Dispatch |

FP ALU

ALU I ALU l Branchl
‘T

Renaming
» Register file > Dispatch
RS Integer Floating-point | Memory Memory dataflow
¥ ¥ ¥ ¥ ¥ —
LIt LIt iityd LI i] [L11T]] LI TTT] [ITTT1]|Instructionwindow
v v v v

|||||||||||||¢||||||"|
Reorder buffer (ROB)
= Register dataflow

A

A
L]

y
L [T 1]

Store

v v
Adr gen. I Adr gen. I
A 4

A 4

queue

\ 4

Data cache |

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH Reservation station (RS) 29

Pollack's Rule

\

* Pollack’s Rule states that microprocessor "performance 2%
increase due to microarchitecture advances is roughly
proportional to the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

? WIKIPEDIA
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30

From multi-core era to many-core era

EV6 EV6 EV6
Ev4
EVE- EV6 EV6 EV6
EVS
EVE EV6 EV6 EV6

Figure 1. Relative sizes of the cores used in
the study

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36

E CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

From multi-core era to many-core era

S

Many-core Era
Massively parallel
applications
] 1004
Increasing HW
Threads
Per Socket Multi-core Era
104 Scalar and
parallel applications
HT
14 g
[l 1 [l 1 [l [l [l 1 [l 1 [l
1 | 1 1 1 1 1 1 1 1 1
2003 2005 2007 2009 201 2013

Figura 1: Currant and expacted eras of Intal® processor architectures

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Multithreading (1/2)
\

« During a branch miss recovery and access to the main memory by a cache miss,
ALUs have no jobs to do and have to be idle.

« Executing multiple independent threads (programs) will mitigate the overhead.

« They are called coarse- and fine-grained multithreaded processors having
multiple architecture states.

Thread 1 S context switch code Thread 2
Processor
Irdermapt, escception, or 06 q:a.ll retam from exception 1

Thread 1 Thread 2 Thread 3 Thread 1
Coarse-gramed
Multlthreaded

Cache muss Cache mass ? Cache russ T

Fine- grmned
Mull:lthreaded

@@;SC.T{B Advanced Computer Architecture, Department of Computer Science, TOKYO TECH http://www.realworldtech.com/alpha-ev8-smt/ 33

Multithreading (2/2)

« Simultaneous Multithreading (SMT) can improve hardware resource

usage.
Thread 1 OF context switch code Thread 2
MO M FLEEEEE:
Processor
Imterm pt, exception, or O6 a]l mh:mf'memcepan
Thread 1 Thread 2 Thread 3 Thread 1
B)
Coarse-grained
Multithreaded
(Cache muss Cache nass T Cache nass ?
)
Fine-grained
(FMT)
D)
Simultaneous
Multithreaded
(SMT)
Execution T
Units Time

ﬁ Figure 1. Multithreaded Execution with Increasing Levels of TLP Hardware Support
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH http://www.realworldtech.com/alpha-ev8-smt/ 34

Exercise 1

<

Cycle O dispatch I1,I2

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_A
RS_B |

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_C |
RS_D |

valid_srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_A
RS_B |

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_C |
RS_D |

valid_srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_A
RS_B |

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_C |
RS_D |

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Exercise 1

<

Cycle O dispatch I1,I2

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_A
RS_B |

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_C |
RS_D |

valid_srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_A
RS_B |

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_C |
RS_D |

valid_srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_A
RS_B |

valid srcl tag srcl data srcl ready src2 tag src2 data src2 ready dst operation
RS_C |
RS_D |

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

