Fiscal Year 2023

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

8. Instruction Level Parallelism:
Exploiting IEP Using Multiple Issue and Speculation

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W834, Lecture (Face-to-face) Kenji Kise, Department of Computer Science
Mon 13:30-15:10, Thr 13:30-15:10 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

t‘—\

gy -

Exploiting Instruction Level parallelism (ILP)
2P o x

* A superscalar has to handle some flows efficiently to exploit ILP

« Control flow (control dependence)

« To execute ninstructions per clock cycle, the processor has to

fetch at least ninstructions per cycle.

* The main obstacles are branch instruction (BNE)

 Prediction
e Another obstacle is instruction cache

 Register data flow (data dependence)

« OQOut-of-order execution (1)

* Register renaming g;

« Dynamic scheduling (4)

* Memory data flow (3)
« Out-of-order execution g;

* Another obstacle is data cache (4)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

add
add

add

1w
add
add
add x

x5,x1,x2
x9,x5,x3
x4, 4(x7)
x8,x9,x4

x4, 4(x7)
x5,x1,x2
x9 x5,x3

»X9,Xx4

3

Hardware register renaming (last lecture)

ISA

« x0, x1, .. x31
Physical registers
« Assuming plenty of registers are available, p0O, p1, p2, ...

A processor renames (converts) each logical register to a unique
physical register dynamically in the renaming stage

Typical instruction pipeline of scalar processor

Typical instruction pipeline of high-performance superscalar processor

—

IF

ID

EX

MEM

WB

Logical registers (architectural registers) which are ones defined by

IF

ID

Renaming

Dispatch

Issue

Execute

Commit

Retire

dequeue & allocate

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

collect & enqueue

\

Out-of-order execution (OoO execution)

\

e Inin-order execution model, all instructions are executed 2%
in the order that they appear as (1), (2), (3), (4) ...
This can lead to unnecessary stalls. @
« Instruction (3) stalls waiting for insn (2) to go first,

even though it does not have a data dependence.
« With out-of-order execution, @ @

Using register renaming to eliminate output dependence

and antidependence, just having true data dependence

insn (3) is allowed to be executed before the insn (2)

* A key design philosophy behind OoO execution to extract (1) add x5,x1,x2

ILP by executing instructions as quickly as possible. g; iid iixz(ii)

+ Scoreboarding (CDC6600 in 1964) (4) add x8,x9,x4

« Tomasulo algorithm

Data flow graph
(IBM System/360 Model 91 in 1967)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Instruction pipeline of OoO execution processor x
\

* Allocating instructions to instruction window is called dispatch
« Issue or fire wakes up instructions and their executions begin

« Incommit stage, the computed values are written back to ROB
(reorder buffer)

« The last stage is called retire or graduate. The completed consecutive
instructions can be retired.
The result is written back to register file (architectural register file)
using a logical register number.

Instruction | Instruction| Register Dispatch
Fetch Decode Renaming P Out-of d back-end
urt-or-order bpack-e
In-order front-end Execute/

Issue Commit

Memory

Retire

&’ In-order retirement
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Aside: What is a window?

« A window is a space in the wall of a building or in the side of a vehicle,

A

which has glass in it so that light can come in and you can see out. (Collins)

(c)

Instruction window
| J[8][6][5]
L L el 7]

Instruction window Instructions to be executed for an application

Large instruction window

Instruction window Instruction window

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

The key idea for OoO execution (1/3)

\

« In-order front-end, OoO execution core, in-order retirement using instruction
window and reorder buffer (ROB)

Cycle 1

Cycle 2

Cycle 3

Cycle 4

IF ID Renaming
HSNE
] ||| In-order front-end

IF ID Renaming
]

]

IF ID Renaming
6]

IF ID Renaming Instruction window
El g
Le]| [ad] | LI I[2]

IF ID Renaming Instruction window
[9] El g EE
Lo Jf | LI Jla]l2]

I1:
I12:
I3:
14:

sub p9,pl,p2
add plo,p9,p3
or pll,p4,p5
and pl2,plo,pll

N9

\ p1e
pll ‘IIIID

Data flow graph

assume that instructions cannot
exit the instruction window until cycle 5

The key idea for OoO execution (2/3)

« TIn-order front-end, OoO execution core, in-order retirement using instruction
window and reorder buffer (ROB)

Cycle 5

Cycle 6

Cycle 7

Cycle 8

Af_a'

IF ID Renaming Instruction window I1:
B (5] | (G .
Lo || LIl J4l2] I3:
I14:
IF ID Renaming Instruction window Issue
Lof) Lz) | L dLe][s]
L || LIl Jt4d(2]
We assume that I1 and I3 can be issued at cycle 6 by dependence.
IF ID Renaming Instruction window Issue | Execute
El e E >[1]
o) | OO@E| O >E]
IF ID Renaming Instruction window Issue Execute | Commit
El R e E >[2]
L2 | L_J[of[9][7] (1] »]

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

sub p9,pl,p2
add pl10,p9,p3
or pll,p4,p5
and pl2,pl0,pll

N9

plo

pll ‘IIIID

Data flow graph

The key idea for OoO execution (3/3)

window and reorder buffer (ROB)

In-order front-end, OoO execution core, in-order retirement using instruction

In commit stage, the computed

Cycle 6 IF ID Renaming Instruction window Issue values are written back to ROB
@ [7] 1] 1[e][5] (reorder buffer)
L8)| Ll Jla]l2] Head of the FIFO
__ rosl | L [[| [elsl4lsfzle]
Cycle 7 IF ID Renaming | | Instruction window Issue | Execute The completed consecutive
5 @ G| OEEE| B D] e
(o] | L[J[4][7] (1| » register file.
ROR | | | | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1' Completed consecutive insns
Cycle 8 IF ID Renaming Instruction window Issue | Execute | Commit // Reftire
(| L [8][6][5] >[2] |
(2]} | [J{10][9][7] L1 »] {LAI [|
os T o5 [s]7 e [s4Ialeli]/
Cycle 9 IF ID Renaming Instruction window Issue | Execute /Commi‘r Retire
[13]| | (J[e]02]] > [«)]
1)) | CJo)6]71][]l LA O
~@‘Q' ro[12[11]10] 98|76 [5]43]2] |

9

Architectural register file

Exercise 1

e 000 execution

* Fill out the cycle by cycle processing behavior of these 12
instructions

wakeup
e select

@/ Data flow graph

\

10

— O~ 5 @ o O~ 5
Cycle 1 o Cycle 6 pod
Instruction window | Issue | Execute | Commit Retire Instruction window | Issue | Execute | Commit Retire

[]
[]

[]
[]

||
[

[]
[]

[]
[]

||
||

L

|ROB

Cycle 2

= NN

|ROB

Cycle 7

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

||
||

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

||
||

L

|ROB

Cycle 3

L

|ROB

Cycle 8

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

||
||

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

||
||

L

|ROB

Cycle 4

L

|ROB

Cycle 9

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

||
||

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

||
||

L

|ROB

Cycle 5

L

|ROB

Cycle 10

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

||
||

Instruction window

Issue

Execute

[]
[]

Commit

[]
[]

Retire

||
||

[]
[]
[|

lROB

[]
[]
[|

|ROB

4 4

Prediction miss and recovery

« Assume that instruction 3 is a miss predicted branch and its target insn is 20 \
* When insn 3 is retired, it recovers by flushing all instructions and restart
« Register file (and PC) has the architecture state after insn 3 is executed

Cycle 9 IF ID Renaming Instruction window Issue | Execute | Commit Retire
[3)] [L8 [12][1] > [4]

@ | JeB@| e O .
rRoB{12|11]10/9|8|7|6|5|4]3]2]| |

Cycle 10 IF ID Renaming Instruction window Issue | Execute | Commit Reftire
L L Ly L] L L L
HpEEpEE . I 200 []
roe| | | | [[| | T B[]

Recovery by flushing instructions on the wrong path (may take several cycles)

Cycle 11 IF ID Renaming Instruction window Issue | Execute | Commit Reftire
I Ly I] L] [Il

LI L I] L1 »C] [L
roB| | | | [[| | T B [||

™

) Af_a' Restart by fetching instructions using the correct PC

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Branch prediction miss and aggressive recovery

« Instruction 3 is a miss predicted branch and its target insn is 20

« When insn 3 is executed, it recovers by flushing instructions after insn 3 and restarts

Cycle 7

IF ID Renaming Instruction window Issue | Execute
Lo || LJLeflell5] >[1]

Lol | LIl JL4]l7] (1| >
__ roB| | [| [8]7]e[5]4]3]2]1]

IF ID Renaming Instruction window Issue | Execute | Commit Retire
L L] L] D
LI O L) O] (1] »] |

roe| | | | [| | | | [3]2]1]

Recovery by flushing instructions on the wrong path (may takes several cycles)

IF ID Renaming Instruction window Issue Execute | Commit Reftire
LI O] L] » L]
HiSN g . (1 1] [

roe| | | | [| | | | J3fe] |

Restart by fetching instructions using the correct PC

Aside: What is a window?

« A window is a space in the wall of a building or in the side of a vehicle,

A

which has glass in it so that light can come in and you can see out. (Collins)

(c)

Instruction window

Instructions to be executed for an application

Instruction window
| J[8][6][5]
L L el 7]

Large instruction window

Instruction window

Instruction window

|
K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

14

Instruction pipeline of OoO execution processor x
\

* Allocating instructions to instruction window is called dispatch
« Issue or fire wakes up instructions and their executions begin

« Incommit stage, the computed values are written back to ROB
(reorder buffer)

« The last stage is called retire or graduate. The completed consecutive
instructions can be retired.
The result is written back to register file (architectural register file)
using a logical register number.

Instruction | Instruction| Register Dispatch
Fetch Decode Renaming P Out-of d back-end
urt-or-order bpack-e
In-order front-end Execute/

Issue Commit

Memory

Retire

&’ In-order retirement
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Recommended Reading

Clockhands: Rename-free Instruction Set Architecture for Out-of-order Processors

« Toru Koizumi (NITech), Ryota Shioya, Shu Sugita, Taichi Amano, Yuya Degawa, Junichiro
Kadomoto, Hidetsugu Irie, Shuichi Sakai (U.Tokyo)

« 56th IEEE/ACM International Symposium on Microarchitecture (MICRO'23)

A quote:

"Out-of-order superscalar processors are currently the only architecture that speeds up irregular
programs, but they suffer from poor power efficiency. To tackle this issue, we focused on how to
specify register operands. Specifying operands by register names, as conventional RISC does, requires
register renaming, resulting in poor power efficiency and preventing an increase in the front-end
width. In confrast, a recently proposed architecture called STRAIGHT specifies operands by inter-
instruction distance, thereby eliminating register renaming. However, STRAIGHT has strong
constraints on instruction placement, which generally results in a large increase in the number of
instructions.

We propose Clockhands, a novel instruction set architecture that has multiple register groups and
specifies a value as "the value written in this register group k times before.” Clockhands does not
require register renaming as in STRAIGHT. In contrast, Clockhands has much looser constraints on
instruction placement than STRAIGHT, allowing programs to be written with almost the same number
of instructions as Conventional RISC. We implemented a cycle-accurate simulator, FPGA
implementation, and first-step compiler for Clockhands and evaluated benchmarks including SPEC CPU.
On a machine with an eight-fetch width, the evaluation results showed that Clockhands consumes 7.4%
less energy than RISC while having performance comparable o RISC. This energy reduction increases
significantly to 24.4% when simulating a futuristic up-scaled processor with a 16-fetch width, which
shows that Clockhands enables a wider front-end.”

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

17

Cycle 1 Cycle 6
Instruction window | Issue | Execute | Commit Retire Instruction window | Issue | Execute | Commit Retire
L LI e L] »] [] [] L[|[10][11] L6]
L LI 2] L] »[] [] [] L L J[12][9] []
L[[| [2]1]roB [12]11]10[{9[8[7][6|5[4[3] [|rOB
Cycle 2 Cycle 7
Instruction window | Issue | Execute | Commit Retire Instruction window | Issue | Execute | Commit Retire
L L J[4][3] [] [] [] L [[10][| [9] [6]
L LIl 2] L] »[] [] [] N [] [6]
L [[[[[[4]3[2]1]roB [12]11]10/9[8|7[6|5] | | | |rOB
Cycle 3 Cycle 8
Instruction window | Issue | Execute | Commit Retire Instruction window | Issue | Execute | Commit Retire
L L Jl6e][3] [] [] L] [9]
L L 1L 5] [] [] [] L L 2]] [] []
L L [[[| [6[5[4[3]2]1]|rOB [12j1j0{9(8f7] | [[| [|rOB
Cycle 4 Cycle 9
Instruction window | Issue | Execute | Commit Retire Instruction window | Issue | Execute | Commit Retire
L L 1Le][7] L] [9] [9]
L L L 18] [] [] . [] [] []
L [[[[8[7]6[5[4]3[2]1|roOB [12f11f10l9| | [| [| | | |rOB
Cycle 5 Cycle 10
Instruction window | Issue | Execute | Commit Retire Instruction window | Issue | Execute | Commit Retire
L J[J[10][7] L6] . []
L LI 9] [] L] [] [] []
[10]9[8|7[6|5[4]3][2] |rOB (t2f11j1of | [[| [[| [|rOB

s

18

