
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

7. Instruction Level Parallelism:
Dynamic Scheduling

Ver. 2023-01-11aFiscal Year 2023

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W834, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Gshare (TR-DEC 1993)

• How to predict
• Using the exclusive OR of the global branch history and PC to access PHT,

then MSB of the selected counter is the prediction.

• How to update

• Shifting BHR one bit left and update LSB by branch outcome in IF stage.

• Update the used counter in the same way as 2BC in WB stage.

Program
Counter

XOR

n

n m

Pattern History Table (PHT)

…

2n entry

Prediction

Weakly
Taken (2)

Weakly
Untaken (1)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (3)

Taken

Strongly
Untaken (0)

Untaken2 bit

1110111011 （shift register）

Branch History
Register (BHR)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Perceptron (HPCA 2001)

• How to predict

• Select one perceptron by PC

• Compute y using the equation. It
predicts 1 if y>=0, predicts 0 if y<0

• x is branch history. xi is either -1,
meaning not taken or 1, meaning
taken

• How to update

• Train the weights of used
perceptron when the prediction
miss or |y| < T (Threshold)

Perceptron Model

w1 w2w0 wn

...

y

1 x1 xnx2

Table of Perceptrons (w)

Program Counter

…

Branch History (x)

Selected
Perceptron

Compute y

Prediction

y

8 bit weight x 29 = 232 bit

n = 28

T = 1.93n + 14

branch outcome

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Branch predictors based on pattern matching

• Find the longest matching pattern (green rectangle)

• Select the proper matching length or long matching pattern (blue rectangle)

• Count the number of 0 and the number of 1 after the long matting patterns
(red rectangle), then predict by majority vote.

?

?010

The long matching pattern

0

1

0

Prediction

Global branch history Prediction 0 or 1

?

The longest matching pattern

Appearing 0 twice and 1 once, so the prediction will be 0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Recommended Reading

• Prophet-Critic Hybrid Branch Prediction

• Ayose Falcon, UPC, Jared Stark, Intel, Alex Ramirez, UPC,
Konrad Lai, Intel, Mateo Valero

• ISCA-31 pp. 250-261 (2004)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

A quote from Introduction (1/2)

Conventional predictors are analogous to a taxi with just one driver.

He gets the passenger to the destination using knowledge of the
roads acquired from previous trips; i. e., using history information
stored in the predictor’s memory structures.

When he reaches an intersection, he uses this knowledge to decide
which way to turn.

The driver accesses this knowledge in the context of his current
location.

Modern branch predictors access it in the context of the current
location (the program counter) plus a history of the most recent
decisions that led to the current location.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

A quote from Introduction (2/2)

Prophet/critic hybrids are analogous to a taxi with two drivers: the
front-seat and the back-seat. The front-seat driver has the same role
as the driver in the single-driver taxi. This role is called the prophet.

The back-seat driver has the role of critic. She watches the turns the
prophet makes at intersections. She doesn’t say anything unless she
thinks he’s made a wrong turn. When she thinks he’s made a wrong turn,
she waits until he’s made a few more turns to be certain they are lost.
(Sometimes the prophet makes turns that initially look questionable, but,
after he makes a few more turns, in hindsight appear to be correct.)
Only when she’s certain does she point out the mistake.

To recover, they backtrack to the intersection where she believes the
wrong-turn was made and try a different direction.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Prophet-Critic Hybrid Branch Prediction

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Prophet-Critic Hybrid Branch Prediction

16KB perceptron

16KB gshare

16KB gshare (prophet) +
8KB perceptron (critic)

16KB perceptron (prophet) +
8KB gshare (critic)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution

• Register renaming

• Dynamic scheduling

• Memory data flow

• Out-of-order execution

• Another obstacle is data cache

(1) add x5,x1,x2
(2) add x9,x5,x3
(3) lw x4, 4(x7)
(4) add x8,x9,x4

(3) lw x4, 4(x7)
(1) add x5,x1,x2
(2) add x9,x5,x3
(4) add x8,x9,x4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the
value of insn i.

R3 = 10

R5 = 2

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 3 (3)

R7 = R3 + R4 (4)

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 2 + 3 (3)

26 = 5 + 21 (4)

20 = 10 x 2 (1)

21 = 20 + 1 (2)

41 = 20 + 21 (4)

55 = 2 + 3 (3)

R3 = 10

R5 = 2

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R7 = R3 + R4 (4)

R3 = R5 + 2 (3)

wrong sequence

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Output dependence

• Insn i and j write the same register, WAW (write after write)

• Program order must be preserved to ensure that the value finally
written corresponds to instruction j.

R3 = 10

R5 = 2

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 3 (3)

R7 = R3 + R4 (4)

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 2 + 3 (3)

26 = 5 + 21 (4)

5 = 2 + 3 (3)

20 = 10 x 2 (1)

21 = 20 + 1 (2)

41 = 20 + 21 (4)

R3 = 10

R5 = 2

R3 = R5 + 3 (3)

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R7 = R3 + R4 (4)

wrong sequence

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Antidependence

• Insn i reads a register that insn j writes, WAR (write after read)

• Program order must be preserved to ensure that i reads the
correct value.

R3 = 10

R5 = 2

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 3 (3)

R7 = R3 + R4 (4)

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 2 + 3 (3)

26 = 5 + 21 (4)

R3 = 10

R5 = 2

R3 = R3 x R5 (1)

R3 = R5 + 3 (3)

R4 = R3 + 1 (2)

R7 = R3 + R4 (4)

wrong sequence

20 = 10 x 2 (1)

5 = 2 + 3 (3)

6 = 5 + 1 (2)

11 = 5 + 6 (4)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Data dependence and renaming

• True data dependence (RAW)

• Name (false) dependences

• Output dependence (WAW)

• Antidependence (WAR)

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 3 (3)

R7 = R3 + R4 (4) (3)

(4)

(3)

(4)

(1)

(1)

(2)

(2)

RAW

RAW

RAW

WAW

WAR

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R8 = R5 + 3 (3)

R7 = R8 + R4 (4)

RAW

RAW
RAW

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Hardware register renaming

• Logical registers (architectural registers) which are ones defined by
ISA

• x0, x1, … x31

• Physical registers

• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a unique
physical register dynamically in the renaming stage

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Commit Retire

Typical instruction pipeline of high-performance superscalar processor

dequeue & allocate collect & enqueue

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Exercise 1

• Register renaming

• Rename the following instruction stream using physical registers
of p9, p10, p11, and p12

• assuming that x1 and x2 are renamed to p1 and p2, respectileby in
advance

I0: sub x5,x1,x2

I1: add x9,x5,x4

I2: or x5,x5,x2

I3: and x2,x9,x1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

6-stage pipelining RISC-V processor and register renaming

17

P
1
_
i
r

IF stage

+

m6P2_tpc

P1_pc

P1

r_
pc

+
32’h4

w_npc

am_
imem

m1

m2

m3

m
u
x

1

0

P2_b &
w_tkn

m0

w
_
p
c
i
n

w
_
i
r

w_rt

m8

adr

wd

rd

am_
dmem

we

m
u
x

1

0
P3_alu

w
_
l
d
d

P4_ld

P
3
_
s

m9

m10

w_imm

ID stage

ra1

ra2

wa

wd

rd2

RF2

we

m5

m4

gen_imm

r,i,s,b,u,j,ld

ALU

w_tkn

P2

w
_
i
n
1

P3_rd

IFID_ir [11:7]

w
_
t
p
c

EX stage

32

P4_rd

P4
WB stage

P
4
_
l
d
d

P
4
_
a
l
u

m
u
x1

0

m11

m12

w
_
i
n
2

w_m11

w_m12

32

P3
MA stage

w
_
a
l
u

P2_r2

P
3
_
i
n
3

P3_alu

2

m
u
x1

0

2

m13

w_m13

m
u
x1

0

2

w
_
i
n
3

• The strategy is to separate instruction fetch step (IF), instruction decode
step (ID), register renaming (RN), execution step (EX), memory access step
(MA), and write back step (WB).

sub x5,x1,x2

in cycle1

sub x5,x1,x2

in cycle2

sub p9,p1,p2

in cycle4

sub p9,p1,p2

in cycle5

sub x5,x1,x2

in cycle6

P_RN
RN stage

renaming

in cycle3

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

The main hardware for register renaming

• Assume that we have 128 physical registers from p0 to p127

• a physical register is identified with a 7-bit register number (physical reg ID)

• Free tag buffer

• 7-bit width and 128-entry FIFO memory

• having reg IDs of free (not allocated) physical registers

• Register map table

• 7-bit width and 32-entry RAM

• each logical register has its renamed physical reg ID

9101112

Free tag buffer (FIFO)

head

Register map table

0

1

2

3

4

5

6

7

8

31

tail

7 bit

7 bit
128-entry

32-
entry

dequeue

enqueue

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Example behavior of register renaming (1/4)

• Renaming the first instruction I0

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

0

1

2

3

4

5

6

7

8

9

10

31

dst = x5
src1 = x1
src2 = x2

dst = p9
src1 = p1
src2 = p2

I0: sub p9,p1,p2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Example behavior of register renaming (2/4)

• Renaming the second instruction I1

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

Cycle 2

101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

dst = x9
src1 = x5
src2 = x4

dst = p10
src1 = p9
src2 = p4

I0: sub p9,p1,p2
I1: add p10,p9,p4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Example behavior of register renaming (3/4)

• Renaming instruction I2

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

Cycle 3

1112

Free tag buffer

head

13

0

Register map table

1

2

3

4

9->11

6

7

8

10

0

1

2

3

4

5

6

7

8

9

10

31

dst = x5
src1 = x5
src2 = x2

dst = p11
src1 = p9
src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4
I2: or p11,p9,p2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Example behavior of register renaming (4/4)

• Renaming instruction I3

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

Cycle 4

12

Free tag buffer

head

13

0

Register map table

1

2->12

3

4

11

6

7

8

10

0

1

2

3

4

5

6

7

8

9

10

31

dst = x2
src1 = x9
src2 = x1

dst = p12
src1 = p10
src2 = p1

I0: sub p9,p1,p2
I1: add p10,p9,p4
I2: or p11,p9,p2
I3: and p12,p10,p1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Renaming two instructions per cycle for superscalar

• Renaming instruction I0 and I1

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

dst = x5
src1 = x1
src2 = x2

dst = p9
src1 = p1
src2 = p2

I0: sub p9,p1,p2
I1: add p10,p5,p4 (Wrong) dst = x9

src1 = x5
src2 = x4

dst = p10
src1 = p5
src2 = p4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Renaming two instructions per cycle for n-way superscalar

• Renaming instruction I0 and I1 (n = 2)

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table (4R, 2W)

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

A_dst = x5
A_src1 = x1
A_src2 = x2

A_dst = p9
A_src1 = p1
A_src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4 B_dst = x9

B_src1 = x5
B_src2 = x4

B_dst = p10
B_src1 = p9
B_src2 = p4

M
u
x

If B_src1==A_dst, use tag from free tag buffer
I0

I1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

Exercise 2

• Renaming instruction I0, I1, and I2 (n = 3)

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

draw the hardware organization
and the example behabior of cycle 1
renaming three instructions.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

Pollack’s Rule

• Pollack's Rule states that microprocessor "performance
increase due to microarchitecture advances is roughly
proportional to the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

WIKIPEDIA

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

Hardware register renaming

• Logical registers (architectural registers) which are ones defined by
ISA

• x0, x1, … x31

• Physical registers

• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a unique
physical register dynamically in the renaming stage

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Commit Retire

Typical instruction pipeline of high-performance superscalar processor

dequeue & allocate collect & enqueue

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

Example behavior of register renaming and valid bit

• Renaming the first instruction I0

I0: sub x5,x1,x2
I1: add x9,x5,x4
I2: or x5,x5,x2
I3: and x2,x9,x1

Cycle 1

9101112

Free tag buffer

head

13

Register map table

2

5->9

0

1

2

3

4

5

6

7

8

9

10

31

dst = x5
src1 = x1
src2 = x2

dst = p9
src1 = x1
src2 = p2

I0: sub p9,x1,p2

0

1

1

valid bit

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the
value of insn i.

R3 = 10

R5 = 2

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 3 (3)

R7 = R3 + R4 (4)

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 2 + 3 (3)

26 = 5 + 21 (4)

20 = 10 x 2 (1)

21 = 20 + 1 (2)

41 = 20 + 21 (4)

55 = 2 + 3 (3)

R3 = 10

R5 = 2

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R7 = R3 + R4 (4)

R3 = R5 + 2 (3)

wrong sequence

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30

Recommended Reading

• Focused Value Prediction

• Sumeet Bandishte, Jayesh Gaur, Zeev Sperber, Lihu Rappoport, Adi Yoaz, and Sreenivas
Subramoney, Intel

• ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pp. 79-91,
2020

• A quote:
“Value Prediction was proposed to speculatively break true data dependencies, thereby allowing Out of
Order (OOO) processors to achieve higher instruction level parallelism (ILP) and gain performance.
State-of-the-art value predictors try to maximize the number of instructions that can be value
predicted, with the belief that a higher coverage will unlock more ILP and increase performance.
Unfortunately, this comes at increased complexity with implementations that require multiple
different types of value predictors working in tandem, incurring substantial area and power cost.
In this paper we motivate towards lower coverage, but focused, value prediction. Instead of
aggressively increasing the coverage of value prediction, at the cost of higher area and power, we
motivate refocusing value prediction as a mechanism to achieve an early execution of instructions that
frequently create performance bottlenecks in the OOO processor. Since we do not aim for high
coverage, our implementation is light-weight, needing just 1.2 KB of storage. Simulation results on 60
diverse workloads show that we deliver 3.3% performance gain over a baseline similar to the Intel
Skylake processor. This performance gain increases substantially to 8.6% when we simulate a
futuristic up-scaled version of Skylake. In contrast, for the same storage, state-of-the-art value
predictors deliver a much lower speedup of 1.7% and 4.7% respectively. Notably, our proposal is
similar to these predictors in performance, even when they are given nearly eight times the storage
and have 60% more prediction coverage than our solution.

