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Gshare (TR-DEC 1993)
* How Yo predict x

« Using the exclusive OR of the global branch history and PC to access PHT,
then MSB of the selected counter is the prediction.

« How to update

 Shifting BHR one bit left and update LSB by branch outcome in IF stage.
« Update the used counter in the same way as 2BC in WB stage.

Program 1110111011 (shift register)

Counter
\ /Br'anch History
S Register (BHR)
n m Taken _—
8 8 Pattern History Table (PHT) aken
l l Y n Strongly ) Weakly
2% entry A G — — — > QA
XOR @ Untaken
-
feen ~ 7 Untaken
n ' Prediction P
, - Taken
7 g > Weakly — Strongly
Untaken (1) —_—— Untaken (0) \
Untaken < /
&7 2 bit Untaken =~
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Perceptron (HPCA 2001)
. 3
* How to predict

« Select one perceptron by PC - n @

« Compute y using the equation. It ymer ; o WO\ wi\ w2 w
predicts 1 if y>=0, predicts O if y<0 /n: 28

« X is branch history. xi is either -1,

. ) Perceptron Model
meaning not taken or 1, meaning
taken

« How to UPdGTC Program Counter Branch History (x)

* Train the weights of used | |
perceptron when the prediction

miss or |y| < T (Threshold)
- branch outcome > celected Y Computey
1f sign(Yout) Z tOr |Yout| < 0 then | Perceptron
fori:=0tondo
w; = w; + tx; Prediction
end for -
end if 8 bit weight x 29 = 232 bit

ﬁw T=193n+14 Table of Perceptrons (w)
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Branch predictors based on pattern matching

\
« Find the longest matching pattern (green rectangle) \
« Select the proper matching length or long matching pattern (blue rectangle)

« Count the number of O and the number of 1 after the long matting patterns
(red rectangle), then predict by majority vote.

Global branch history Prediction O or 1

?

- —

The IongesT matching pattern

0 ?

The Iong matching pattern

Pr‘ed|c’r|on
ﬁ; 0 Appear'mg O twice and 1 once, so the prediction will be O
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Recommended Reading
\
* Prophet-Critic Hybrid Branch Prediction 2%

« Ayose Falcon, UPC, Jared Stark, Intel, Alex Ramirez, UPC,
Konrad Lai, Intel, Mateo Valero

. ISCA-31 pp. 250-261 (2004)
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A quote from Introduction (1/2)

\

Conventional predictors are analogous to a taxi with just one driver.

He gets the passenger to the destination using knowledge of the
roads acquired from previous trips; i. e., using history information
stored in the predictor's memory structures.

When he reaches an intersection, he uses this knowledge to decide
which way to turn.

The driver accesses this knowledge in the context of his current
location.

Modern branch predictors access it in the context of the current
location (the program counter) plus a history of the most recent
decisions that led to the current location.

~ ==
! 6
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A quote from Introduction (2/2)

\

Prophet/critic hybrids are analogous to a taxi with two drivers: the
front-seat and the back-seat. The front-seat driver has the same role
as the driver in the single-driver taxi. This role is called the prophet.

The back-seat driver has the role of critic. She watches the turns the
prophet makes at intersections. She doesn't say anything unless she
thinks he's made a wrong turn. When she thinks he's made a wrong turn,
she waits until he's made a few more turns to be certain they are lost.
(Sometimes the prophet makes turns that initially look questionable, but,
after he makes a few more turns, in hindsight appear to be correct.)
Only when she's certain does she point out the mistake.

To recover, they backtrack to the intersection where she believes the
wrong-turn was made and try a different direction.
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Prophet-Critic Hybrid Branch Prediction
\

Prophet Critic 100 — —AVG (all benchmarks)
Branch Outcome 4 —+—unzip
Branch history Register (BOR) —%— premiere
3.50 | —&—msvcT
—a—flash
—=—facerec
3.00 —a—fpce
g::g:::‘:nto?\ Critique g- 250
(on branch p) (on branch z, % 500
e anan) a =
I .E
504 T~ N T —— -
P
time 1.00 1 = i —
Prophet Predictions Pr(?driitt;it(i:ons 0.50 A
Fro O.DD T T T T 1
0 1 4 8 12
Prophet Lixlgltlalelrlzlnlcls AA’HH gcsé:ci Number of Future Bits

Ny Figure 5. Effect of varying the number of fu-
sraro b | Grtiaue of ture bits used by the critic on prediction ac-
C,D,E,F c
RS " U curacy for selected benchmarks. (prophet:

| 8KB perceptron; critic: 8KB tagged gshare)
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Prophet-Critic Hybrid Branch Prediction
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prophet/critic sizes

(b) Prophet: gshare; Critic: filtered perceptron
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Exploiting Instruction Level parallelism (ILP)

\

* A superscalar has to handle some flows efficiently to exploit ILP

« Control flow (control dependence)

* Register data flow (data dependence)

« OQOut-of-order execution (1)

* Register renaming g;

« Dynamic scheduling (4)

* Memory data flow (3)
« Out-of-order execution g;

* Another obstacle is data cache (4)
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x5,x1,x2 0
x9,x5,x3

x4, 4(x7) RAW
x8,x9,x4 @
x4, 4(x7)

x5,x1,x2 RAW
x9,x5,x3
x8,x9,x4



True data dependence

* Insniwrites aregister that insn j reads, RAW (read after write
* Program order must be preserved to ensure insn j receives the

value of insn i.

<

wrong sequence

R3 = 10
RS = 2
R3 = R3 x RS (1)
R4 = R3 + 1 (2)
‘lat%iiiﬁ-z; (3)
R7 =(R3)+ R4 (4)
20 = 10 x 2 (1)
21 = 20 + 1 (2)
=2 + 3 (3)
26 =(5 )+ 21 (4)

R3 = 10

RS = 2

R3 = R3 X RS (1)
R4 = R3 + 1 (2)
R7 = R3 + R4 (4)
R3 = R5 + 2 (3)

20 = 10 x 2 (1)

21\x\ge 1 (2)

41 = 20 + 21 (4)
5 -2 +3 (3)
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Output dependence

* Insniand j write the same register, WAW (write after write)

\

* Program order must be preserved to ensure that the value finally

written corresponds to instruction j.

wrong sequence

R3 = 10 R3 = 10
RS = 2 RS = 2
= R3 x RS (1) R3 = R5 + 3 (3)
R4 = R3 + 1 (2) R3 = R3 X R5 (1)
(R3)= R5 + 3 (3) R4 = R3 + 1 (2)
R7 = R3 + R4 (4) R7 = R3 + R4 (4)
(20)= 10 x 2 (1) 5 =2 +3 (3)
|21 = 20 + 1 (2) 20 = 10 x 2 (1)
=2 + 3 (3) 21\2@ + 1 (2)
26 5+ 21 (4) 41 = 20 + 21 (4)
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Antidependence

* Insnireads aregister that insn j writes, WAR (write after read

* Program order must be preserved to ensure that i reads the
correct value.

<

wrong sequence

R3 = 10
RS = 2
R3 = R3 x RS (1)
R4 =(R3)+ 1 (2)
RS + 3 (3)
R7 = R3 + R4 (4)
20 = 10 x 2 (1)
21 =20)+ 1 (2)
(GY<2 +3 (3)
26 = 5 + 21 (4)

R3 = 10

RS = 2

R3 = R3 x R5 (1)
R3 = R5 + 3 (3)
R4 = R3 + 1 (2)
R7 = R3 + R4 (4)
20 = 10 X 2 (1)
5 =2 + 3 (3)
6 =5 +1 (2)
11 =5 + 6 (4)
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Data dependence and renaming

* True data dependence (RAW)

« Name (false) dependences
« Output dependence (WAW) "3
 Antidependence (WAR) .

RS
R7

R3 = R3 X R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 3 (3)

R7 = R3 + R4 (4)
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= R3 X R5
= R3 + 1
= R5 + 3
= R8 + R4

(1)
(2)
(3)
(4)
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Hardware register renaming

 Logical registers (architectural registers) which are ones defined by
ISA

x0, x1, ... x31
 Physical registers
Assuming plenty of registers are available, pO, p1, p2, ...

« A processor renames (converts) each logical register to a unique
physical register dynamically in the renaming stage

<

IF

ID

EX

MEM

WB

Typical instruction pipeline of scalar processor

Typical instruction pipeline of high-performance superscalar processor

IF

ID

Renaming

Dispatch

Issue

Execute

Commit

Retire

dequeue & allocate
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collect & enqueue
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Exercise 1

* Register renaming

« Rename the following instruction stream using physical registers

of p9, pl0, pl1, and p12

 assuming that x1 and x2 are renamed to pl and p2, respectileby in

advance
I0: sub
I1: add
I2: or
I3: and

x5, x1,x2
X9, x5,x4
x5, x5,x2
X2,X%X9,x1

\
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6-stage pipelining RISC-V processor and register renaming

« The strategy is to separate instruction fetch step (IF), instruction decode
step (ID), register renaming (RN), execution step (EX), memory access step
(MA), and write back step (WB).

sub x5,x1,x2 sub x5,x1,x2 renaming  sub p9,pl,p2 sub p9,pl,p2 sub x5,x1,x2
in cyclel in cycle2 in cycle3 in cycle4d in cycle5 in cycle6
IF stage ID stage RN stage EX stage MA stage WB stage
P1 P2 P_RN P3 P4
I I _ w_mll _ -
w_npc ] B
32°ha
L ral L P3_alu |:
- - ra2 . NP
| |s wa 2| e
.;I E| ] rd2 | >| we E
am__>|: we wd 2!
imem ] wd Rp2 ] o am_
r,i,s,b,u,j,1d ms :I dmem

m9

P3_rd
> L=

gen_imm L] ||
W imm
Tl
IFID_ir [11:7]

1
9
P1_pc + _‘

P2_tpc mé —

N

w_tpc

w_rt
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The main hardware for register renaming %\%
\

« Assume that we have 128 physical registers from p0O to p127
« a physical register is identified with a 7-bit register number (physical reg ID)
* Free tag buffer

« 7-bit width and 128-entry FIFO memory Register map table
* having reg IDs of free (not allocated) physical registers 0 )
 Register map table 1
 7-bit width and 32-entry RAM 2
« each logical register has its renamed physical reg ID i
° " 32-
Free tag buffer (FIFO) 6 entry
enqueue 7
7bi‘r{ =) 12|11|10 9P 3
T T dequeue
tail head
\ . 31 )
Y - —

128-entry
7 bit
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Example behavior of register renaming (1/4)

« Renaming the first instruction I0

Cycle 1

10:
I1:
I12:
I3:

sub
add
or

and

x5,x1,x2
X9,x5,x4
x5, x5,x2
X2,X%X9,x1

Free tag buffer

13

12

11

10| 9

ot

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

dst

srcl
src2

X5

x1l —
X2

Register map table

9 (%]
— 2 2

3 3

4 4

5.7, 50 | | | » dst = p9
.................. 6 Bt —> crcl = pl
................. o ww7 [ rer - o2

8 8

9

10 I10: sub p9,pl,p2

31
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Example behavior of register renaming (2/4)

« Renaming the second instruction Il

Cycle 2

10:
I1:
I12:
I13:

sub
add
or

and

x5,x1,x2
X9,x5,x4
x5, x5,x2
X2,X%X9,x1

Free tag buffer

13

12|1110 i
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dst =
srcl =
src2 =

Register map table

X9

x5 —
x4

31

...................... » dst = plo
.......... srcl = po
> src2 = p4

I0: sub p9,pl,p2
I1: add plo,p9,psd

\
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Example behavior of register renaming (3/4)

« Renaming instruction I2

Cycle 3

10:
I1:
12:
I13:

sub
add
or

and

x5,x1,x2
X9, x5,x4
X5, x5,x2
X2,X%X9,x1

Free tag buffer

13

12

11
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I

head

dst

srcl
src2

sy

Register map table

X5

° (%
! 1
— 2 ;
> 3
* 4
»5 p9->11
........................... e
.............................. =
8 8
9 G
10

x5 —
X2

31

....................... » dst = pl1l
.......... srcl = po
> src2 = p2

I0: sub p9,pl,p2
I1: add p10,p9,p4s
I2: or pl1,p9,p2

\
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Example behavior of register renaming (4/4)

* Renaming instruction I3

Cycle 4

10:
I1:
I12:
I3:

sub
add
or

and

X5,x1,Xx2
X9, x5, x4
X5,x5,x2
X2,X%X9,x1

Free tag buffer

13

<

12
Thead
dst
srcl
src2

Register map table

° %)
2 w2->12
fg“ 3
<, ]
5 11
6 | 6.
........................................ o
i 7 :
> 9 =
10
X2
9 |
x1
31
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I1:
12:
I13:

pl2
plo

pl

sub p9,pl,p2
add plo,p9,psd

or

pll,p9,p2

\

and pl2,pl0,pl

22



Renaming two instructions per cycle for superscalar

« Renaming instruction I0 and Il

dst
srcl
src2

dst
srcl
src2

I1: add plo,p5,p4 (Wrong)

Cycle 1 Register map table
I0: sub x5,x1,x2 0 0
I1: add x9,x5,x4 > 1 1
I2: or x5,x5,x2 .9 2
I3: and x2,x9,x1 3 3 | e >
Free tag buffer > 4 R :
O e o SN
13112]11]10| g fesp . c
T R 7 7 >
head | el 8 8 i
dst = x5 gr ->10 ]
srcl = x1 10
src2 = x2
I0: sub p9,pl,p2
dst = x9
srcl = x5
src2 = x4 — 31

—
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Renaming two instructions per cycle for n-way superscalar

If B_srcl==A_dst, use tag from free tag buffer

« Renaming instruction I0 and I1 (n = 2)
Cycle 1 Register map table (4R, 2W)
I0: sub x5,x1,x2 0 0
I1: add x9,x5,x4 1 1
I2: or x5,x5,x2 .2 )
I3: and X2,X9,X1 3 3 ...................... »
Fr.ee 1-09 bufferi > 4 4 .............................................. :
e "5 5=59
13|12|11(10@] 9 =) 6 6
ol L] Pl /. S
nead | .| 8 P B
............................... N -
I0 A dst = x5 9™t ->10 ~
A srcl = x1 10
A_src2 = x2
I0: sub p9,pl1,p2
I1 B_dst = x9 I1: add plo,p9,psd
B srcl = x5
B_SI"CZ = X4 — 31

<
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Exercise 2

« Renaming instruction IO, I1, and I2 (n = 3)

Cycle 1

I0: sub
I1: add
I2: or
I3: and

x5,x1,x2
xX9,x5,x4
x5,x5,x2
X2,X9,x1

Free tag buffer

13

12|11/10| 9

head

draw the hardware organization
and the example behabior of cycle 1
renaming three instructions.

25



Pollack's Rule

\

* Pollack’s Rule states that microprocessor "performance 2%
increase due to microarchitecture advances is roughly
proportional to the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

? WIKIPEDIA
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Hardware register renaming

 Logical registers (architectural registers) which are ones defined by
ISA

x0, x1, ... x31
 Physical registers
Assuming plenty of registers are available, pO, p1, p2, ...

« A processor renames (converts) each logical register to a unique
physical register dynamically in the renaming stage

<

IF

ID

EX

MEM

WB

Typical instruction pipeline of scalar processor

Typical instruction pipeline of high-performance superscalar processor

IF

ID

Renaming

Dispatch

Issue

Execute

Commit

Retire

dequeue & allocate
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collect & enqueue

\
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Example behavior of register renaming and valid bit

« Renaming the first instruction I0

Cycle 1

10:
I1:
I12:
I3:

sub
add
or

and

x5,x1,x2
X9,x5,x4
x5, x5,x2
X2,X%X9,x1

Free tag buffer

13

12

11

10| 9

ot
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dst

srcl
src2

X5

x1l —
X2

Register map table
valid bit

31

3
aQ
"
+
I
<
O

n
)
N
=
]
X
=

v
wn
)
(@]
N

Il
©
N

I0: sub p9,x1,p2

\
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True data dependence

* Insniwrites aregister that insn j reads, RAW (read after write
* Program order must be preserved to ensure insn j receives the

value of insn i.

<

wrong sequence

R3 = 10
RS = 2
R3 = R3 x RS (1)
R4 = R3 + 1 (2)
‘lat%iiiﬁ-z; (3)
R7 =(R3)+ R4 (4)
20 = 10 x 2 (1)
21 = 20 + 1 (2)
=2 + 3 (3)
26 =(5 )+ 21 (4)

R3 = 10

RS = 2

R3 = R3 X RS (1)
R4 = R3 + 1 (2)
R7 = R3 + R4 (4)
R3 = R5 + 2 (3)

20 = 10 x 2 (1)

21\x\ge 1 (2)

41 = 20 + 21 (4)
5 -2 +3 (3)
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Recommended Reading
A
* Focused Value Prediction

«  Sumeet Bandishte, Jayesh Gaur, Zeev Sperber, Lihu Rappoport, Adi Yoaz, and Sreenivas
Subramoney, Intel

«  ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pp. 79-91,
2020

* A quote:
"Value Prediction was proposed to speculatively break true data dependencies, thereby allowing Out of
Order (OOOQ) processors to achieve higher instruction level parallelism (ILP) and gain performance.

In this paper we motivate towards lower coverage, but focused, value prediction. Instead of
aggressively increasing the coverage of value prediction, at the cost of higher area and power, we
motivate refocusing value prediction as a mechanism to achieve an early execution of instructions that
frequently create performance bottlenecks in the OOO processor.

Simulation results on 60
diverse workloads show that we deliver 3.3% performance gain over a baseline similar to the Intel
Skylake processor.

~ =
! 30
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