Fiscal Year 2023

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

6. Instruction Level Parallelism:
Instruction Fetch and Branch Prediction

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W834, Lecture (Face-to-face) Kenji Kise, Department of Computer Science
Mon 13:30-15:10, Thr 13:30-15:10 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Exploiting Instruction Level Parallelism (ILP) X
\

* A superscalar has to handle some flows efficiently to exploit ILP

« Control flow (control dependence)

« To execute ninstructions per clock cycle, the processor has to

fetch at least ninstructions per cycle.

« The main obstacles are branch instruction (BNE)

 Prediction
e Another obstacle is instruction cache

 Register data flow (data dependence)

« Out-of-order execution (1)

* Register renaming g;

« Dynamic scheduling (4)

* Memory data flow (3)
+ Out-of-order execution (1)

(2)
e Another obstacle is instruction cache 4

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

add
add

add

1w

add
add
add

x5,x1,x2 0
x9,x5,x3

x4, 4(x7) RAW
x8,x9,x4 @
x4, 4(x7)

x5,x1,x2 RAW
x9,x5,x3
x8,x9,x4

Branch predictor %\%
\

« A branch predictor is a digital circuit that tries to guess or predict
which way (taken or untaken) a branch will go before this is known
definitively.

« A random predictor will achieve about a 50% hit rate because the
prediction output is 1 or O.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Sample program: vector add (function v_add) \
\

Bl [i=o |
#define VSIZE 4 +
void v_add(int *A, int *B, int *C){ B2 *C=*C+(*A +*B))
for(i=0; i<VSIZE; i++) i++
C[i] += (A[i] + B[i]); Art
} B++
C++
\ I < 4 j
Basic block contains a sequence of statement. False True
The flow of control enters at the beginning of the l
statement and leave at the end. B3
[return]
Control flow graph
Time
B3 — B3 —» B3 — B2 —»
Instruction sequence /ﬁﬂorTCken(O»AﬂofThken(OyGQoTThken(O»fThken(n
B1 B2 B2 B2 B2 B3

Taken (1) Taken (1) Taken(1) Not Taken (0)
Predicting the branch outcome sequence of 1110 1110 1110 1110 1110 ..

A“f_a'
P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Simple branch predictor: 2-bit counter (2BC)

- Tt uses two bit register as a saturating counter. x

* How to update the register
« If the branch outcome is taken and the value is not 3, then increment the register.
« If the branch outcome is untaken and the value is not O, then decrement the register.

* Hot to predict
« It predicts as 1if the MSB of the register is one, otherwise predicts as O.

Taken Taken
Strongly ‘: Weakly
2 bit Taken (3) Untaken Taken (2) ﬁ,;;iBs‘?:rTizeone
—— e Taken
e “ Untaken
o MSB of the

Weakly <a_en Strongly register is zero

Prediction Untaken (1) / = = = *> _Untaken (0) \
Hniaken *< _ 7 Untaken

Predicting the sequence of 1110 1110 1110 1110 1110 ...

State of the counter 2333 2333 2333 2333 2333 ...
Prediction 11171 1111 1111 1117171 1111 ...
ﬁ’ Hit/Miss or the pred. HHHM HHHM HHHM HHHM HHHM
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Sample program: vector add with two branches

TS
#define VSIZE 4
void v_add(int *A, int *B, int *C){

for.‘(i=@,: i<VSIZE; i++) { B4 Error check
if(A[i]<@) error_routine();
C[i] += (A[i] + B[i]); B2 v _
, } [*C=*C+(*A + *B) 1
False True
Basic block contains a sequence of statement. B3
The flow of control enters at the beginning of the

statement and leave at the end.
Control flow graph

B3| — B3| — B3| — B2| —

Executed instruction sequence / / / /
B1 B4| (B2 B4| |B2 B4| |B2 B4| |B2 B3

0o 1 0o 1 0o 1 0 O
Predicting the sequence of 01010100 01010100 01010100 ...

,

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Sample program: vector add with two branches

\

B3 — B3| — B3| — B2| —»
Executed instruction sequence / /‘ /‘ /‘
B1 B4 |s2 B4 |s2 g4l [e2 B4l [e2 B3
o 1 o 1 o 1 0O O

Predicting the branch outcome sequence of
01010100 01010100 01010100 ...

The B4’s sequence of 00000 00000 0101010

The B2’s sequence of ©1019190 01010100 ©1010100 ...

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Simple branch predictor: bimodal

\
* Program has many static branch instructions. The behavior may depend on \

each branch. Use plenty of counters (PHT) and assign a counter for a branch
Instruction.

* How to predict

« Select a 2-bit counter using PC, and it predicts 1 for taken if the MSB of
the register is one; otherwise, it predicts O for untaken.

* How to update
« Select a counter using PC, then update the counter in the same way as 2-

bit counter.
. Taken
Pattern History Table (PHT) Taken
Program N ontp Strongly \NT__ Weakly
Counter entry Taken (3) Untaken Taken (2)
] et
aken e Untaken
n Prediction g -
a > — Weakly —_— Strongly
Untaken (1) _/ = = = * _Untaken (0) \
Untaken <

Untaken ~
. nTaken
eﬁ’ 2 bit
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Simple branch predictor: bimodal

01010100 ... \Qi

Predicting the sequence of 01010100 01010100

The B4’s sequence of 00/ 0'0° 0/.0.0°0° 010.0.0
State of the counter 2 1 00 0000 0000
Prediction 1000 0000 0000
Hit/Miss or the pred. MHHH HHHH HHHH
The B2’s sequence of 1010100 01010100 01010100 .
State of the counter 2333 2333 2333.
Prediction 1111 1111 1111.
Hit/Miss or the pred. HHHM HHHM HHHM.
Taken
Pattern History Table (PHT) Taken
Program N ont Strongly N~ Weakly
Counter entry Taken (3) Untaken Taken (2)
L T i
Taken e “ Untaken
Prediction <
n V' o
| @
Untaken (1) 0 rﬁaie:\ Untaken (Oz\ .)
Untaken

Q@S 2 bit
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Accuracy of simple predictors with 8KB HW budget

\

100
%0 8KB hardware budget O Branch Always
O 2bit counter
80 HI _ n
) B Bimodal
= 710 _ 1 _—
£ 60 I
ad
2 50 | 1 s
.0
= | _
'_6 40 1N | |] 1] 7__ | K = | |
e - -
a 30 | I | T
2
20 | | U
. k IE 100 I Gl
0 L] | _L | | | |
—_ ™ O
| | o0
al > ©
s i :
n <

SERV-5 oo

ﬁ, Benchmark for CBP(2004) by Intel MRL and TEEE TC uARCH.
c

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

5-stage pipelining RISC-V processor with data forwarding

\

« The strategy is to separate instruction fetch step (IF), instruction decode \
step (ID), execution step (EX), memory access step (MA), and write back step
(WB).

« Use the pipeline registers P1, P2, P3, P4.

IF stage ID stage EX stage MA stage WB stage
P1 P2 P4
ey ey T ey
IFID_ir - LI
W_npc [19:15], ey w_rl N
32°h4 IDIF_ir rdl —
[24:20]
> ra2 ! ! P3_alu -
P3_rd a
N m2 = >Slwa w_r2 o adr L]
IP4_s & rd2 o "]
<
&' ! !P4_b_> we o rd :)
I b wd >l we =
am_ _3> a RF2 wd] (.
imem m5 2| am_
o
r,i,s,b,u,3,1d /[dmem
a
m3 >(gen_imm) | m9
a w_imm P3_rd P4_rd
. mE s
IFID_ir [11:7] N a — 'EI
Ny P
P1_pc +| =
— P2_tpc mé —_—‘ P3_alu — _—
w_rt

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Why do branch instructions degrade IPC?

« The branch taken / untaken is determined in the execution (EX) stage
of the branch.

\

« The conservative approach is stalling instruction fetch until the branch
direction is determined.

« Tt is too conservative to be practical.

add
add
bne
add
add
add
add

Nooswn e

ccl cc2 «cc3 cc4| cc5 cc6| cc7 cc8 cc9 cclo
| IF | ID | EX |MEM| WB |
| IF | ID | EX |MEM| WB |
| IF | ID | EX |MEM| wB
Control dependency \|_IF_| ID | EX |MEM| WB |
IF | ID | EX |MEM| WB |
| IF | ID | EX |MEM| WB |
| IF | ID | EX |MEM| WB |

2-way superscalar processor executing instruction sequence with a branch

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Why do branch instructions degrade IPC?

« The branch taken / untaken is determined in the execution (EX) stage

of the branch.

 Prediction and speculation, then training
 Recovery whan a prediction miss

add
add
bne
add
add
add
add

Noohswn e

ccl cc2 «cc3 cc4| cc5 cc6| cc7 cc8 cc9 «cclo
| IF | ID | EX |MEM| WB |
| IF | ID | EX |MEM| WB |
| IF | ID | EX |MEM| wWB
wIF|ID EX | MEM| WB |
1 IF | ID | EX |MEM| WB |
| IF | ID | EX |MEM| WB |
| IF | ID | EX | MEM| WB |

2-way superscalar processor executing instruction sequence with a branch

Speculative execution performs some task that may not be needed. Work is done
_ before it is known whether it is actually needed, so as to prevent a delay that would
~@9' have to be incurred by doing the work after it is known that it is needed.

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

13

Why do branch instructions degrade IPC?

« The branch taken / untaken is determined in execution stage of the
branch.

 Prediction and speculation, then training

« 'Recovery whan a prediction miss

« If it turns out a prediction miss, some results are ignored and some
changes made by the speculative execution are recovered.

ccl cc2 cc3 cc4d cc5 cc6 cc7 cc8 cc9 cclo

1. add | IF | 1D | EX [MEM| WB |

2. add | IF | 1D | EX | MEM| WB |

3. bne [IF [0 | EX [MEM[WB |

4. add MEM | WB | . .
flush some instructions

5. add MEM [WB |

6 add EX | MEM| WB |

7. add EX [MEM[WB |

IF | ID | EX | MEM| WB |

ﬁ’ IF | ID | EX |MEM| WB |
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

14

Instruction fetch unit of 2-way super-scalar

« High-bandwidth instruction delivery using prediction, and speculation

IF

stage

A

ID, EX, MA, WB
'stage

Next PC generator (mux)

prediction miss

(2) Target address

lPC’ branch history

Taken/
Untaken

(1) Branch Target PC
 for recovery

~ Pipeline registers

(Branch Target Buffer)

P Branch predictor
ﬁi-“;smiss (3) PC+8
Instructions
— & ,
BTB ‘ Instruction memory (cache)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A 4

»
»

15

An innovation in branch predictors in 1993

 Using branch history

* global branch history

 2-level branch predictor and gshare

« Assume predicting the sequence 1110 1110 1110 1110 1110 ...

<

adr | pred
1110111 © 500
11101110 ? 001
111011101 °? gii)
1110111011 °? o0
11101110111 ? 01| 1
111011101110 °? 11| 1

111 (%]

Use the recent branch history as an address of a table.

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

Recommended Reading
\

« Combining Branch Predictors
« Scott McFarling, Digital Western Research Laboratory
« WRL Technical Note TN-36, 1993

* A quote:
"In this paper, we have presented two new methods for improving
branch prediction performance. First, we showed that using the bit-
wise exclusive OR of the global branch history and the branch address
to access predictor counters results in better performance for a given

counter array size."

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Gshare (TR-DEC 1993)
* How Yo predict x

« Using the exclusive OR of the global branch history and PC to access PHT,
then MSB of the selected counter is the prediction.

« How to update

 Shifting BHR one bit left and update LSB by branch outcome in IF stage.
« Update the used counter in the same way as 2BC in WB stage.

Program 1110111011 (shift register)

Counter
\ /Br'anch History
L] Register (BHR)
n m Taken _—
8 8 Pattern History Table (PHT) aken
l l Y n Strongly) Weakly
2% entry A G — — — > QA
XOR @ Untaken
P
feen ~ 7 Untaken
n ' Prediction P
, - Taken
7 > > Weakly — Strongly
Untaken (1) —_—— Untaken (0) \
Untaken < /
&7 2 bit Untaken =~
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Bi-Mode (MICRO 1997)
A\

« A choice predictor (bimodal) is used as a meta-predictor

* How to predict
 Like gshare, both of Taken PHT and Untaken PHT make two
predictions.
« Select one among them by the choice predictor which tracks the
global bias of a branch.

e How tou BHR Program Counter
pdate |
« The used PHT is updated
in the same way as 2BC. 14 ‘
XORP g]

« Choice predictor is updated
in the same way as bimodal.

Choice predittor

> <«
Taken PHT | ‘ Untaken PHT
Prediction

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

To go beyond gshare X
\

 Using branch history
* global branch history

 2-level branch predictor and gshare

« Assume predicting the sequence 1110 1110 1110 1110 1110 ...

11101110 °? 11101110 >?
111011101 ? 111011101 ?
1110111011 ? 1110111011 °?
11101110111 °? 11101110111 °?
111011101110 °? 111011101110 »

E CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Perceptron (HPCA 2001)
\

* How to predict

« Select one perceptron by PC - n @

« Compute y using the equation. It ymer ; o WO\ wi\ w2 wh
predicts 1 if y>=0, predicts O if y<0 /n: 28

« X is branch history. xi is either -1,

.) Perceptron Model
meaning not taken or 1, meaning
taken

« How to UPdGTC Program Counter Branch History (x)

* Train the weights of used | |
perceptron when the prediction

miss or |y| < T (Threshold)
> > Computey
. - Selected Y
1f sign(Yout) # tor |Yout| < @ then Perceptron
fori:=0tondo
w; = w; + tx; Prediction
| end for ,)
end 1f 8 bit weight x 29 = 232 bit

= +
ﬁ? T=193n+14 Table of Perceptrons (w)
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Exercise 1

1 T=21.72: bias(1) -1 -1 -1 -1 : pred=1 outcome=1 : hit
2 T=21.72: bias(2) © -2 -2 -2 : pred=1 outcome=1 : hit
3 T=21.72: bias(3) 1 -1 -3 -3 : pred=1 outcome=1 : hit
> 4 T=21.72: bias(2) @ -2 -4 -2 : pred=1 outcome=0 : miss
[J
HOW 1-0 pred'CT 5 T=21.72: bias(3) -1 -1 -3 -1 : pred=0 outcome=1 : miss
6 T=21.72: bias(4) © -2 -2 0 : pred=0 outcome=1 : miss
« Select one perceptron bY PC 7 T=21.72: bias(5) 1 -1 -3 1 : pred=1 outcome=1 : hit
. . 8 T=21.72: bias(4) © -2 -4 2 : pred=1 outcome=0 : miss
« Compute y using the equation. It 9 T=21.72: bias(5) -1 -1 -3 3 : pred=1 outcome=1 : hit
g g = : g 10 T=21.72: bias(6) © -2 -2 4 : pred=1 outcome=1 : hit
= <
pr‘edlCTS 1 'f y O’ pr‘ed|CTS O lf y O 11 T=21.72: bias(7) 1 -1 -3 5 : pred=1 outcome=1 : hit
¢ c 2 ¢ c 12 T=21.72: bias(6) © -2 -4 6 : pred=0 outcome=0 : hit
([] -
XIS br'ClnCh hlSTOI"Y. XI1s el'l'hef' 1' 13 T=21.72: bias(7) -1 -1 -3 7 : pred=1 outcome=1 : hit
meaning not taken or 1, meaning 14 T=21.72: bias(8) © -2 -2 8 : pred=1 outcome=1 : hit
15 T=21.72: bias(9) 1 -1 -3 9 : pred=1 outcome=1 : hit
16 T=21.72: bias 8 @ -2 -4 10 : pred=0 outcome=0 : hit
taken bias(8) d hi
17 T=21.72: bias(9) -1 -1 -3 11 : pred=1 outcome=1 : hit
e How to updaTe 18 T=21.72: bias(10) @ -2 -2 12 : pred=1 outcome=1 : hit
19 T=21.72: bias(18) © -2 -2 12 : pred=1 outcome=1 : hit
e Train the weighTs of used 20 T=21.72: bias(9) -1 -3 -3 13 : pred=@ outcome=0 : hit
5 ng 21 T=21.72: bias(10) -2 -2 -2 14 : pred=1 outcome=1 : hit
perceptron when the prediction 22 T=21.72: bias(1) -2 -2 -2 14 : pred=1 outcome=1 : hit
g 23 T=21.72: bias(10) -2 -2 -2 14 : pred=1 outcome=1 : hit
<
miss or |y| T (Thr‘eShOId) 24 T=21.72: bias(9) -3 -3 -3 15 : pred=0 outcome=0 : hit
25 T=21.72: bias(10) -4 -2 -2 16 : pred=1 outcome=1 : hit
' » , ' , - - 26 T=21.72: bias(10) -4 -2 -2 16 : pred=1 outcome=1 : hit
if Slgn{y'—"“f} F tor |yﬂuf| < 6 then 27 T=21.72: bias(10) -4 -2 -2 16 : pred=1 outcome=1 : hit
fFori=0tondo 28 T=21.72: bias(9) -5 -3 -3 17 : pred=0 outcome=0 : hit
29 T=21.72: bias(9) -5 -3 -3 17 : pred=1 outcome=1 : hit
wy = wy + tx; 30 T=21.72: bias(10) -4 -4 -2 18 : pred=1 outcome=1 : hit
31 T=21.72: bias(10) -4 -4 -2 18 : pred=1 outcome=1 : hit
end for 32 T=21.72: bias(9) -5 -5 -3 19 : pred=0 outcome=0 : hit
end 1f 33 T=21.72: bias(9) -5 -5 -3 19 : pred=1 outcome=1 : hit
34 T=21.72: bias(9) -5 -5 -3 19 : pred=1 outcome=1 : hit
~ ;‘E_'J‘ = 193n + 14 35 T=21.72: bias(10) -4 -4 -4 20 : pred=1 outcome=1 : hit
P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Perceptron (HPCA 2001)

The Neural Network in Your CPU

Sun, Aug 6, 2017

Machine learning and artificial intelligence are the current hype (again). In their new
Ryzen processors, AMD advertises the Neural Net Prediction. It turns out this is was
already used in their older (2012) Piledriver architecture used for example in the
AMD A10-4600M. It is also present in recent Samsung processors such as the one
powering the Galaxy S7.What is it really?

The basic idea can be traced to a paper from Daniel Jimenez and Calvin Lin
“Dynamic Branch Prediction with Perceptrons”, more precisely described in the
subsequent paper “Neural methods for dynamic branch prediction”. Branches
typically occur in if-then-else statements. Branch prediction consists in
guessing which code branch,the then orthe =1se ,the code will execute, thus
allowing to precompute the branch in parallel for faster evaluation.

Jimenez and Lin rely on a simple single-layer perceptron neural network whose
input are the branch outcome (global or hybrid local and global) histories and the
output predicts which branch will be taken. In realitv. because there is a sinale laver.

ANMD Ryzen 2016-12-13 Slide Deck Back to Post

Scary Smart Prediction

A true artificial network inside every “Zen”
processor

Builds a model of the decisions driven by
software code execution

Anticipates future decisions, pre-load
instructions, choose the best path
through the CPU

AMDDU | ZEN

https://www.anandtech.com/Gallery/Album/5197#18

https://chasethedevil.github.io/post/the_neural network_ _in_your cpu/

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

23

Branch predictors based on pattern matching

\
« Find the longest matching pattern (green rectangle) \
« Select the proper matching length or long matching pattern (blue rectangle)

« Count the number of O and the number of 1 after the long matting patterns
(red rectangle), then predict by majority vote.

Global branch history Prediction O or 1

?

- g

The longest matching pattern

0] 1 0 ?
H_J

The long matching pattern

0 Prediction
l|l———

ﬁ; 0l Appearing O twice and 1 once, so the prediction will be O
c

24

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Partial Pattern Matching, PPM or TAGE (CBP 2004)

Table 4 Table 3 Table 2 Table 1 Table O \
pc pc h[0:9] pc h[0:19] pc h[0:39] pc h[0:79]
ilz zlzﬁ N ilzﬁ N ilzﬁ N ilzﬁ N
. hash) (hash hashj (hash hashj (hash hash) (hash
1o;|; 8 A 1oi 8f 1oi 84 1o;|; 81
| [sbisnit || [3b:sbit ! || [30:8bit || [30! 8bit !
5’3 m| for! tag || fcri tag | [eri tag Y| |otr! tag i
i 8 8 8 8
A1 A1 A1 A1 A1 A1 A1 A1
1 N4

7
1 %\/
Z

“1
prediction 0/1
G From CBP2004 presentation slide

Af_a'

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

Partial Pattern Matching, PPM or TAGE (CBP 2004)

\

The original launch of the Zen' architecture in the Ryzen 1000 series desktop
processors featured clock speeds up to 4 GHz, and were manufactured on the 14nm
manufacturing node. This was followed the next year with the Ryzen 2000 series
featuring updated ‘Zen+' architecture, which was die-shrunk to the 12nm node and
delivered higher clock speeds with about 3% higher IPC (instructions per clock)
compared to its predecessor. Despite this modest increase, it delivered up to 15%
higher gaming performance due to updates like Precision Boost 2 and XFR 2, thanks in
part to a clock speed increase up to 4.3 GHz.

The Ryzen 3000 series desktop processors benefited from a major core redesign,
doubling up the L3 cache capacity (up to 32MB), floating point throughput (to 256-bit),
OpCache capacity (to 4K), and Infinity Fabric bandwidth (to 512-bit). It also featured a
new branch predictor. All of these improvements contributed to a very
substantial 15% IPC increase, and with these processors benefitting from the new 7nm
manufacturing node, maximum clock speeds climbed to 4.7 GHz."

The next major Zen' revision was Zen3', which debuted in AMD Ryzen 5000 series
desktop processors. This comprehensive design overhaul delivered a further 19% IPC
increase thanks to over 20 major changes, which included: wider and more flexible
execution resources; significantly more load/store bandwidth to feed execution; and a
streamlined front-end to get more threads in flight—and do it faster. It also
transitioned to a new "unified complex" design that brought 8 cores and 32MB of L3
o-core and

https://www.amd.com/en/technologies/zen-core
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Prediction accuracy

The accuracy of 4KB Gshare is about 93%.
The accuracy of 4KB PPM is about 97%.

|
8KB hardware budget

O 0O ©W < N O 0o ©o < o o
AN -

—

(%) 932y SuoRoIpeIdsIN

o8eJany
S o 9 G-AY3S
(@) © (@] s
E & E Q. v-AY3S
m & m A
B E OM@ €-Ad3S
¢-N\d3S
I-Ad3S

G-NIN
r-NIN
E-NIN
¢-ANIN
I-NIN
G—1NI
v—LNI
€—1NI
¢—1NI
I—1LNI
G-dd
v—d4d
€-dd
¢—d4d
I-dd

27

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Recommended Reading
\
* Prophet-Critic Hybrid Branch Prediction 2%

« Ayose Falcon, UPC, Jared Stark, Intel, Alex Ramirez, UPC,
Konrad Lai, Intel, Mateo Valero

. ISCA-31 pp. 250-261 (2004)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

A quote from Introduction (1/2)

\

Conventional predictors are analogous to a taxi with just one driver.

He gets the passenger to the destination using knowledge of the
roads acquired from previous trips; i. e., using history information
stored in the predictor's memory structures.

When he reaches an intersection, he uses this knowledge to decide
which way to turn.

The driver accesses this knowledge in the context of his current
location.

Modern branch predictors access it in the context of the current
location (the program counter) plus a history of the most recent
decisions that led to the current location.

~ =
! 29

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A quote from Introduction (2/2)

\

Prophet/critic hybrids are analogous to a taxi with two drivers: the
front-seat and the back-seat. The front-seat driver has the same role
as the driver in the single-driver taxi. This role is called the prophet.

The back-seat driver has the role of critic. She watches the turns the
prophet makes at intersections. She doesn't say anything unless she
thinks he's made a wrong turn. When she thinks he's made a wrong turn,
she waits until he's made a few more turns to be certain they are lost.
(Sometimes the prophet makes turns that initially look questionable, but,
after he makes a few more turns, in hindsight appear to be correct.)
Only when she's certain does she point out the mistake.

To recover, they backtrack to the intersection where she believes the
wrong-turn was made and try a different direction.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30

Prophet-Critic Hybrid Branch Prediction

b Critic
PropheiirhedmtlonS Predictions
FTQ
Prophet LKJIHGFEDCBA—»HH

4 future bits
{(C,D,E,F)

Critique of
branch C

I-cache
& Fetch

4.00

3.50

3.00 A

1.00

0.50 1

0.00

\

— —AVG (all benchmarks)
—+—unzip

—%— premiere

—&—msvcy

—a—flash

—=—facerec

—8—1ipcc

e e o

m

Number of Future Bits

Figure 5. Effect of varying the number of fu-
ture bits used by the critic on prediction ac-

curacy for selected benchmarks. (prophet:
8KB perceptron; critic: 8KB tagged gshare)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 31

