
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

4. Pipelining

Ver. 2023-12-21aFiscal Year 2023

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W834, Lecture (Face-to-face)
Mon 13:30-15:10, Thr 13:30-15:10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Single-cycle implementation of processors

• Single-cycle implementation also called single clock cycle
implementation is the implementation in which an
instruction is executed in one clock cycle.
While easy to understand, it is too slow to be practical.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

proc05: single cycle proc. supporting add, addi, lw, sw, bne

1 module m_proc5(w_clk);
2 input wire w_clk;
3 wire [31:0] w_npc, w_ir, w_imm, w_r1, w_r2, w_s2, w_rt;
4 wire [31:0] w_alu, w_ldd, w_tpc, w_pcin;
5 wire w_tkn;
6 reg [31:0] r_pc=0;
7 assign w_pcin = (w_b & w_tkn) ? w_tpc : w_npc; # m11
8 assign w_npc = r_pc + 4;
9 m_am_imem m3 (r_pc, w_ir);
10 wire w_r, w_i, w_s, w_b, w_u, w_j, w_ld;
11 m_gen_imm m4 (w_ir, w_imm, w_r, w_i, w_s, w_b, w_u, w_j, w_ld);
12 m_RF m5 (w_clk, w_ir[19:15], w_ir[24:20], w_r1, w_r2, w_ir[11:7], !w_s & !w_b, w_rt);
13 assing w_tpc = r_pc + w_imm; # m6
14 assign w_s2 = (!w_r & !w_b) ? w_imm : w_r2;
15 assign w_alu = w_r1 + w_s2; # m8
16 assign w_tkn = w_r1 != w_s2; # m8
17 m_am_dmem m9 (w_clk, w_alu, w_s, w_r2, w_ldd);
18 assign w_rt = (w_ld) ? w_ldd : w_alu;
19 always @(posedge w_clk) r_pc <= w_pcin;
20 endmodule

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Critical path of proc5

• It is too slow to be practical.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Single-cycle implementation of laundry

• (A) Ann, (B) Brian, (C) Cathy, and (D) Don each have dirty clothes to be
washed, dried, folded, and put away, each taking 30 minutes.

• The cycle time (the time from the end of one load to the end of the
next one) is 2 hours.

• For four loads, the sequential laundry takes 8 hours.

cycle time

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Single-cycle implementation and pipelining

• When the washing of load A is finished at 6:30 p.m., another washing of
load B starts.

• Pipelined laundry takes 3.5 hours just using the same hardware
resources. The cycle time is 30 minutes.

• What is the latency
(execution time) of each load?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Clock rate is mainly determined by

• Switching speed of gates (transistors)

• The number of levels of gates

• The maximum number of gates cascaded in series in any
combinational logics.

• In this example, the number of levels of gates is 3.

• Wiring delay and fanout

7

Register A

Register B

AND gate

OR gate

AND gate

Register A

Register B
AND gate

OR gate

Register C

Split a path by placing registers

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Pipelining example: multiply-add operation (1)

• As an example of pipelining, we will see a multiply-add circuit.

• r_b, r_c are input registers and r_y is output register of the circuit.

• This has two paths named path1 and path2, and path1 is the critical path
to determine the maximum operating frequency.

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c

3 r_b
16

×
32

+ r_y
32

+
r_c

32

r_y
32

(a) Path1

(b) Path2

Critical path

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Pipelining example: multiply-add operation (2)

• By inserting register r_d, the critical path can be divided into Path3
and Path4.

• As a result, the new critical path becomes Path3.

• This has the disadvantage that input b and c in the same clock cycle
cannot be processed.

16

16 16

×
32

+
r_c

32 32

r_y
32 32

b

c
y

3

r_d

16

16

×
32

3

r_d

+ r_y
32

r_d

+
r_c

32

r_y
32

(b) Path4

(c) Path2

(a) Path3

r_b

r_b

Critical path

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Pipelining example: multiply-add operation (3)

• To overcome this drawback, we insert register r_e.

• This realizes a pipeline with stages 1 and 2. A set of registers between
two adjacent stages are called a pipeline register.

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c
y

3

r_e

32

32

stage 1 stage 2

r_d

pipeline register

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c
y

3

r_e

32

32

stage 1 stage 2

r_d

16

r_b
16 16

×
32

+
r_c

32 32

r_y
32 32

b

c

3

(a) original multiply-add circuit
(b) two-stage pipelined circuit

Critical path

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Single cycle processor to 2-stage pipelining proc.

• This single cycle processor is too slow to be practical.

• The strategy is to separate the instruction fetch step (IF) and other
steps (ID, EX, MA, WB).

(a) proc5: single-cycle processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

proc6: 2-stage pipelining processor

P
1
_
i
r

IF stage

+

m6w_tpc

P1_pc

P1

r_
pc

+
4

w_npc

am_
imem

m1

m2

m3

m
u
x

1

0

b & w_tkn

m0

w
_
p
c
i
n

w
_
i
r

w_r1

w_r2

w_rt

m8m
u
x

1

0

w_s2

!r

m7

adr

wd

rd

am_
dmem

we

m
u
x

1

0
w_alu

w
_
l
d
d

ld

s

m9

m10

w_imm

IFID_ir
[11:7]

IFID_ir
[19:15]

EX stage

ra1

ra2

wa

wd

rd1

rd2

RF

we

IDIF_ir
[24:20]

!s & !b

m5

m4

gen_imm

r,i,s,b,u,j,ld

7

ALU

w_tkn

CC1 CC2 CC3 CC4 CC5

IF EX

IF EX

IF EX

IF EX

32’h0 addi x1,x0,3

32’h4 addi x2,x1,4

32’h8 addi x10,x2,5

32’hc addi x30,x10,0

Time
Instructions

EXaddi x0,x0,0

(a) proc5: single-cycle processor

(b) proc6: 2-stage pipelining processor

(c) a pipeline diagram of proc6

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Why do branch instructions degrade IPC?

• The branch taken / untaken is determined in the execution stage (EX)
of the branch.

• The conservative approach is stalling instruction fetch until the branch
direction is determined.

IF EX

IF EX

IF EX

IF EX

IF EX

IF EX

IF EX

1. add

2. add

3. bne

4. add

5. add

6. add

7. add

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9

Control dependency

five stages pipelined processor executing instruction sequence with a branch

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Why do branch instructions degrade IPC?

• Another approach is fetching the following instruction (an instruction
at the next address) when a branch (bne) is fetched.

• When a branch (08 bne) is taken, the wrong instruction fetched
(0c add) is flushed.

IF EX

IF EX

IF EX

IF EX

IF EX

IF

IF EX

00 add

04 add

08 bne

0c add

10 add

14 add

18 add

cc1 cc2 cc3 cc4 cc5 cc6 cc7

IF EX

IF EX

IF EX

IF EX

IF EX

IF

IF EX

00 add

04 add

08 bne

0c add

30 addi

34 addi

38 addi

cc1 cc2 cc3 cc4 cc5 cc6 cc7

(a) branch untaken case (b) branch taken case

Control dependency

Flush the wrong insn.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Verilog HDL code for proc5 and proc6
1 module m_proc5(w_clk);
2 input wire w_clk;
3 wire [31:0] w_npc, w_ir, w_imm, w_r1, w_r2, w_s2, w_rt;
4 wire [31:0] w_alu, w_ldd, w_tpc, w_pcin;
5 wire w_tkn;
6 reg [31:0] r_pc=0;
7 assign w_pcin = (w_b & w_tkn) ? w_tpc : w_npc; # m11
8 assign w_npc = r_pc + 4;
9 m_am_imem m3 (r_pc, w_ir);
10 wire w_r, w_i, w_s, w_b, w_u, w_j, w_ld;
11 m_gen_imm m4 (w_ir, w_imm, w_r, w_i, w_s, w_b, w_u, w_j, w_ld);
12 m_RF m5 (w_clk, w_ir[19:15], w_ir[24:20],

w_r1, w_r2, w_ir[11:7], !w_s & !w_b, w_rt);
13 assing w_tpc = r_pc + w_imm; # m6
14 assign w_s2 = (!w_r & !w_b) ? w_imm : w_r2;
15 assign w_alu = w_r1 + w_s2; # m8
16 assign w_tkn = w_r1 != w_s2; # m8
17 m_am_dmem m9 (w_clk, w_alu, w_s, w_r2, w_ldd);
18 assign w_rt = (w_ld) ? w_ldd : w_alu;
19 always @(posedge w_clk) r_pc <= w_pcin;
20 endmodule

1 module m_proc6(w_clk);
2 input wire w_clk;
3 reg [31:0] P1_ir=32'h13, P1_pc=0; reg P1_v=0;
4 wire [31:0] w_npc, w_ir, w_imm, w_r1, w_r2, w_s2, w_rt;
5 wire [31:0] w_alu, w_ldd, w_tpc, w_pcin;
6 wire w_r, w_i, w_s, w_b, w_u, w_j, w_ld, w_tkn;
7 reg [31:0] r_pc=0;
8 wire w_miss = w_b & w_tkn & P1_v;
9 assign w_pcin = (w_miss) ? w_tpc : w_npc;
10 assign w_npc = r_pc + 4;
11 m_am_imem m3 (r_pc, w_ir);
12 always @(posedge w_clk)
13 {r_pc, P1_ir, P1_pc, P1_v} <= {w_pcin, w_ir, r_pc, !w_miss};
14 m_gen_imm m4 (P1_ir, w_imm, w_r, w_i, w_s, w_b, w_u, w_j, w_ld);
15 m_RF m5 (w_clk, P1_ir[19:15], P1_ir[24:20], w_r1, w_r2,

P1_ir[11:7], !w_s & !w_b & P1_v, w_rt);
16 assign w_tpc = P1_pc + w_imm;
17 assign w_s2 = (!w_r & !w_b) ? w_imm : w_r2;
18 assign w_alu = w_r1 + w_s2;
19 assign w_tkn = w_r1 != w_s2;
20 m_am_dmem m9 (w_clk, w_alu, w_s & P1_v, w_r2, w_ldd);
21 assign w_rt = (w_ld) ? w_ldd : w_alu;
22 endmodule

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Comparison of critical path between proc5 and proc6

+

m6

P1

r_
pc

+

am_
imem

m1

m2

m3

m
u
x

1

0

m0

m8m
u
x

1

0

m7

adr

wd

rd

am_
dmem

we

m
u
x

1

0

m9

m10

ra1

ra2

wa

rd1

rd2

RF

we

m5

m4

gen_imm

ALU

wdP
1
_
i
r

(a) the critical path of proc5

(b) the critical path of proc6

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

proc8: 4-stage pipelining processor

• The strategy is to separate instruction fetch step (IF), instruction
decode step (ID), execution and memory access steps (EX), and write
back step (WB).

• Use the pipeline register P2 between ID and EX, and pipeline register
P3 between EX and WB.

P
1
_
i
r

IF stage

+

m6P2_tpc

P1_pc

P1

r_
pc

+
4

w_npc

am_
imem

m1

m2

m3

m
u
x

1

0

P2_b &
w_tkn

m0

w
_
p
c
i
n

w
_
i
r

w_r1

w_r2

w_rt

MA

m8

m
u
x

1

0

P
2
_
s
2

!r & !b

m7

adr

wd

rd

am_
dmem

we

m
u
x

1

0
w_alu

w
_
l
d
d

P3_ld

P2_s

m9

m10

w_imm

P3_rd

IFID_ir
[19:15]

ID stage

ra1

ra2

wa

wd

rd1

rd2

RF2

we

IDIF_ir
[24:20]

!P3_s &
!P3_b

m5

m4

gen_imm

r,i,s,b,u,j,ld

7

ALU

w_tkn

P2

P
2
_
r
1

w
_
i
n
1

P2_rdIFID_ir [11:7]

w
_
t
p
c

EX stage

32

P3_rd

P3
WB stage

P
3
_
l
d
d

P
3
_
a
l
u

m
u
x

1

0
m
u
x

1

0

m11

m12

w
_
i
n
2

w_m11

w_m12

m
u
x

1

0

m13

w_m13

w
_
i
n
3

P2_r2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

proc8: 4-stage pipelining processor

P
1
_
i
r

IF stage

+

m6P2_tpc

P1_pc

P1

r_
pc

+
4

w_npc

am_
imem

m1

m2

m3

m
u
x

1

0

P2_b &
w_tkn

m0

w
_
p
c
i
n

w
_
i
r

w_r1

w_r2

w_rt

MA

m8

m
u
x

1

0

P
2
_
s
2

!r & !b

m7

adr

wd

rd

am_
dmem

we

m
u
x

1

0
w_alu

w
_
l
d
d

P3_ld

P2_s

m9

m10

w_imm

P3_rd

IFID_ir
[19:15]

ID stage

ra1

ra2

wa

wd

rd1

rd2

RF2

we

IDIF_ir
[24:20]

!P3_s &
!P3_b

m5

m4

gen_imm

r,i,s,b,u,j,ld

7

ALU

w_tkn

P2

P
2
_
r
1

w
_
i
n
1

P2_rdIFID_ir [11:7]

w
_
t
p
c

EX stage

32

P3_rd

P3
WB stage

P
3
_
l
d
d

P
3
_
a
l
u

m
u
x

1

0

m
u
x

1

0

m11

m12

w
_
i
n
2

w_m11

w_m12

m
u
x

1

0

m13

w_m13

w
_
i
n
3

P2_r2

WB

CC1 CC2 CC3 CC4 CC5

IF ID

IF ID

IF ID

IF ID

32’h0 addi x1,x0,3

32’h4 addi x2,x1,4

32’h8 addi x10,x1,5

32’hc addi x30,x10,0

Time
Instructions

EX

EX

EX

EX

CC6

WB

WB

WB

CC7

Data forwarding
A mechanism for supplying data to
the ALU from pipeline registers of
the subsequent stages.

addi x1,x0,3addi x2,x1,4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

proc8: 4-stage pipelining processor

WB

CC1 CC2 CC3 CC4 CC5

IF ID

IF ID

IF ID

IF ID

32’h0 addi x1,x0,3

32’h4 addi x2,x1,4

32’h8 addi x10,x1,5

32’hc addi x30,x10,0

Time
Instructions

EX

EX

EX

EX

CC6

WB

WB

WB

CC7

P
1
_
i
r

IF stage

+

m6P2_tpc

P1_pc

P1

r_
pc

+
4

w_npc

am_
imem

m1

m2

m3

m
u
x

1

0

P2_b &
w_tkn

m0

w
_
p
c
i
n

w
_
i
r

w_r1

w_r2

w_rt

MA

m8

m
u
x

1

0

P
2
_
s
2

!r & !b

m7

adr

wd

rd

am_
dmem

we

m
u
x

1

0
w_alu

w
_
l
d
d

P3_ld

P2_s

m9

m10

w_imm

P3_rd

IFID_ir
[19:15]

ID stage

ra1

ra2

wa

wd

rd1

rd2

RF2

we

IDIF_ir
[24:20]

!P3_s &
!P3_b

m5

m4

gen_imm

r,i,s,b,u,j,ld

7

ALU

w_tkn

P2

P
2
_
r
1

w
_
i
n
1

P2_rdIFID_ir [11:7]

w
_
t
p
c

EX stage

32

P3_rd

P3
WB stage

P
3
_
l
d
d

P
3
_
a
l
u

m
u
x

1

0

m
u
x

1

0

m11

m12

w
_
i
n
2

w_m11

w_m12

m
u
x

1

0

m13

w_m13

w
_
i
n
3

P2_r2

addi x1,x0,3addi x2,x1,4addi x10,x1,5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Exercise 1

• Draw a block diagram of the processor proc08 and write the valid
values on wires when the processor is executing the four instructions

0x00 addi x1,x0,3

0x04 addi x2,x1,4

0x08 addi x10,x1,5

0x0c addi x11,x10,0

+

r_
pc

+

am_
imem1

0 1

0
adr

wd

rd

am_
dmem

we

1

0

ra1

ra2

wa

wd

rd1

rd2

RF2

we

gen_imm

ALU

32

1

0

1

0

1

0

P3_rd

P3_rd

addi x1,x0,3addi x2,x1,4addi x10,x1,5addi x11,x10,0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

RF2 (Register File) with bypassing

module m_RF2(w_clk, w_radr1, w_radr2, w_rd1, w_rd2, w_wadr, w_we, w_wd);
input wire w_clk, w_we;
input wire [4:0] w_radr1, w_radr2, w_wadr;
output wire [31:0] w_rd1, w_rd2;
input wire [31:0] w_wd;
reg [31:0] mem [0:31];
wire w_bp1 = (w_we & w_radr1==w_wadr);
wire w_bp2 = (w_we & w_radr2==w_wadr);
assign w_rd1 = (w_radr1==5'd0) ? 32'd0 : (w_bp1) ? w_wd : mem[w_radr1];
assign w_rd2 = (w_radr2==5'd0) ? 32'd0 : (w_bp2) ? w_wd : mem[w_radr2];
always @(posedge w_clk) if (w_we) mem[w_wadr] <= w_wd;
integer i; initial for (i=0; i<32; i=i+1) mem[i] = 0;

endmodule

32

32

32

5

5

5

ra1

ra2

wa

wd

rd1

rd2

RF2

1
we

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

module m_proc8(w_clk);
input wire w_clk;
reg [31:0] P1_ir=32'h13, P1_pc=0, P2_pc=0, P3_pc=0;
reg [31:0] P2_r1=0, P2_s2=0, P2_r2=0, P2_tpc=0;
reg [31:0] P3_alu=0, P3_ldd=0;
reg P2_r=0, P2_s=0, P2_b=0, P2_ld=0, P3_s=0, P3_b=0, P3_ld=0;
reg [4:0] P2_rd=0, P2_rs1=0, P2_rs2=0, P3_rd=0;
reg P1_v=0, P2_v=0, P3_v=0;
wire [31:0] w_npc, w_ir, w_imm, w_r1, w_r2, w_s2, w_rt;
wire [31:0] w_alu, w_ldd, w_tpc, w_pcin, w_in1, w_in2, w_in3;
wire w_r, w_i, w_s, w_b, w_u, w_j, w_ld, w_tkn;
reg [31:0] r_pc = 0; // m1
wire w_miss = P2_b & w_tkn & P2_v;
assign w_pcin = (w_miss) ? P2_tpc : w_npc; // m0
assign w_npc = r_pc + 4; // m2
m_am_imem m3 (r_pc, w_ir);
m_gen_imm m4 (P1_ir, w_imm, w_r, w_i, w_s, w_b, w_u, w_j, w_ld);
m_RF2 m5 (w_clk, P1_ir[19:15], P1_ir[24:20], w_r1, w_r2,

P3_rd, !P3_s & !P3_b & P3_v, w_rt);
assign w_tpc = P1_pc + w_imm; // m6
assign w_s2 = (!w_r & !w_b) ? w_imm : w_r2; // m7
always @(posedge w_clk) begin
{P1_v, P2_v, P3_v} <= {!w_miss, !w_miss & P1_v, P2_v};
{r_pc, P1_ir, P1_pc, P2_pc} <= {w_pcin, w_ir, r_pc, P1_pc};
{P2_r1, P2_r2, P2_s2, P2_tpc} <= {w_r1, w_r2, w_s2, w_tpc};
{P2_r, P2_s, P2_b, P2_ld} <= {w_r, w_s, w_b, w_ld};
{P2_rs2, P2_rs1, P2_rd} <= {P1_ir[24:15], P1_ir[11:7]};
{P3_pc, P3_ld} <= {P2_pc, P2_ld};
{P3_alu, P3_ldd, P3_rd} <= {w_alu, w_ldd, P2_rd};

end
assign w_alu = w_in1 + w_in2; // m8
assign w_tkn = w_in1 != w_in2; // m8
m_am_dmem m9 (w_clk, w_alu, P2_s & P2_v, w_in3, w_ldd);
assign w_rt = (P3_ld) ? P3_ldd : P3_alu; // m10
assign w_in1 = (|P3_rd & P2_rs1==P3_rd) ? w_rt : P2_r1; // m11
assign w_in3 = (!P3_rd & P2_rs2==P3_rd) ? w_rt : P2_r2; // m13
assign w_in2 = (|P3_rd & (P2_r|P2_b) & P2_rs2==P3_rd) ? w_rt : P2_s2;// m12

endmodule

P
1
_
i
r

IF stage
P1

r_
pc

+
4

w_npc

am_
imem

m1

m2

m3

m
u
x

1

0

P2_b &
w_tkn

m0

w
_
p
c
i
n

w
_
i
r

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

module m_proc8(w_clk);
input wire w_clk;
reg [31:0] P1_ir=32'h13, P1_pc=0, P2_pc=0, P3_pc=0;
reg [31:0] P2_r1=0, P2_s2=0, P2_r2=0, P2_tpc=0;
reg [31:0] P3_alu=0, P3_ldd=0;
reg P2_r=0, P2_s=0, P2_b=0, P2_ld=0, P3_s=0, P3_b=0, P3_ld=0;
reg [4:0] P2_rd=0, P2_rs1=0, P2_rs2=0, P3_rd=0;
reg P1_v=0, P2_v=0, P3_v=0;
wire [31:0] w_npc, w_ir, w_imm, w_r1, w_r2, w_s2, w_rt;
wire [31:0] w_alu, w_ldd, w_tpc, w_pcin, w_in1, w_in2, w_in3;
wire w_r, w_i, w_s, w_b, w_u, w_j, w_ld, w_tkn;
reg [31:0] r_pc = 0; // m1
wire w_miss = P2_b & w_tkn & P2_v;
assign w_pcin = (w_miss) ? P2_tpc : w_npc; // m0
assign w_npc = r_pc + 4; // m2
m_am_imem m3 (r_pc, w_ir);
m_gen_imm m4 (P1_ir, w_imm, w_r, w_i, w_s, w_b, w_u, w_j, w_ld);
m_RF2 m5 (w_clk, P1_ir[19:15], P1_ir[24:20], w_r1, w_r2,

P3_rd, !P3_s & !P3_b & P3_v, w_rt);
assign w_tpc = P1_pc + w_imm; // m6
assign w_s2 = (!w_r & !w_b) ? w_imm : w_r2; // m7
always @(posedge w_clk) begin
{P1_v, P2_v, P3_v} <= {!w_miss, !w_miss & P1_v, P2_v};
{r_pc, P1_ir, P1_pc, P2_pc} <= {w_pcin, w_ir, r_pc, P1_pc};
{P2_r1, P2_r2, P2_s2, P2_tpc} <= {w_r1, w_r2, w_s2, w_tpc};
{P2_r, P2_s, P2_b, P2_ld} <= {w_r, w_s, w_b, w_ld};
{P2_rs2, P2_rs1, P2_rd} <= {P1_ir[24:15], P1_ir[11:7]};
{P3_pc, P3_ld} <= {P2_pc, P2_ld};
{P3_alu, P3_ldd, P3_rd} <= {w_alu, w_ldd, P2_rd};

end
assign w_alu = w_in1 + w_in2; // m8
assign w_tkn = w_in1 != w_in2; // m8
m_am_dmem m9 (w_clk, w_alu, P2_s & P2_v, w_in3, w_ldd);
assign w_rt = (P3_ld) ? P3_ldd : P3_alu; // m10
assign w_in1 = (|P3_rd & P2_rs1==P3_rd) ? w_rt : P2_r1; // m11
assign w_in3 = (!P3_rd & P2_rs2==P3_rd) ? w_rt : P2_r2; // m13
assign w_in2 = (|P3_rd & (P2_r|P2_b) & P2_rs2==P3_rd) ? w_rt : P2_s2;// m12

endmodule

P
1
_
i
r

+

m6P2_tpc

P1_pc

P1

w
_
i
r

w_r1

w_r2

m
u
x

1

0

P
2
_
s
2

!r & !b

m7

w_imm

P3_rd

IFID_ir
[19:15]

ID stage

ra1

ra2

wa

wd

rd1

rd2

RF2

we

IDIF_ir
[24:20]

!P3_s &
!P3_b

m5

m4

gen_imm

r,i,s,b,u,j,ld

7

P2

P
2
_
r
1

IFID_ir [11:7]

w
_
t
p
c

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

module m_proc8(w_clk);
input wire w_clk;
reg [31:0] P1_ir=32'h13, P1_pc=0, P2_pc=0, P3_pc=0;
reg [31:0] P2_r1=0, P2_s2=0, P2_r2=0, P2_tpc=0;
reg [31:0] P3_alu=0, P3_ldd=0;
reg P2_r=0, P2_s=0, P2_b=0, P2_ld=0, P3_s=0, P3_b=0, P3_ld=0;
reg [4:0] P2_rd=0, P2_rs1=0, P2_rs2=0, P3_rd=0;
reg P1_v=0, P2_v=0, P3_v=0;
wire [31:0] w_npc, w_ir, w_imm, w_r1, w_r2, w_s2, w_rt;
wire [31:0] w_alu, w_ldd, w_tpc, w_pcin, w_in1, w_in2, w_in3;
wire w_r, w_i, w_s, w_b, w_u, w_j, w_ld, w_tkn;
reg [31:0] r_pc = 0; // m1
wire w_miss = P2_b & w_tkn & P2_v;
assign w_pcin = (w_miss) ? P2_tpc : w_npc; // m0
assign w_npc = r_pc + 4; // m2
m_am_imem m3 (r_pc, w_ir);
m_gen_imm m4 (P1_ir, w_imm, w_r, w_i, w_s, w_b, w_u, w_j, w_ld);
m_RF2 m5 (w_clk, P1_ir[19:15], P1_ir[24:20], w_r1, w_r2,

P3_rd, !P3_s & !P3_b & P3_v, w_rt);
assign w_tpc = P1_pc + w_imm; // m6
assign w_s2 = (!w_r & !w_b) ? w_imm : w_r2; // m7
always @(posedge w_clk) begin
{P1_v, P2_v, P3_v} <= {!w_miss, !w_miss & P1_v, P2_v};
{r_pc, P1_ir, P1_pc, P2_pc} <= {w_pcin, w_ir, r_pc, P1_pc};
{P2_r1, P2_r2, P2_s2, P2_tpc} <= {w_r1, w_r2, w_s2, w_tpc};
{P2_r, P2_s, P2_b, P2_ld} <= {w_r, w_s, w_b, w_ld};
{P2_rs2, P2_rs1, P2_rd} <= {P1_ir[24:15], P1_ir[11:7]};
{P3_pc, P3_ld} <= {P2_pc, P2_ld};
{P3_alu, P3_ldd, P3_rd} <= {w_alu, w_ldd, P2_rd};

end
assign w_alu = w_in1 + w_in2; // m8
assign w_tkn = w_in1 != w_in2; // m8
m_am_dmem m9 (w_clk, w_alu, P2_s & P2_v, w_in3, w_ldd);
assign w_rt = (P3_ld) ? P3_ldd : P3_alu; // m10
assign w_in1 = (|P3_rd & P2_rs1==P3_rd) ? w_rt : P2_r1; // m11
assign w_in3 = (!P3_rd & P2_rs2==P3_rd) ? w_rt : P2_r2; // m13
assign w_in2 = (|P3_rd & (P2_r|P2_b) & P2_rs2==P3_rd) ? w_rt : P2_s2;// m12

endmodule

w_rt

MA

m8

P
2
_
s
2 adr

wd

rd

am_
dmem

we

m
u
x

1

0
w_alu

w
_
l
d
d

P3_ld

P2_s

m9

m10

ALU

w_tkn

P2

P
2
_
r
1

w
_
i
n
1

P2_rd

EX stage

32

P3_rd

P3
WB stage

P
3
_
l
d
d

P
3
_
a
l
u

m
u
x

1

0

m
u
x

1

0

m11

m12

w
_
i
n
2

w_m11

w_m12

m
u
x

1

0

m13

w_m13

w
_
i
n
3

P2_r2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

Why do branch instructions degrade IPC?

• Another approach is fetching the following instructions (0c add, 10
add) after a branch (bne) is fetched.

• When a branch (08 bne) is taken, the wrong instructions fetched
(0c add, 10 add) are flushed.

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

00 add

04 add

08 bne

0c add

10 add

30 addi

34 addi

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9 cc10

Control dependency

five stages pipelined processor executing instruction sequence with a branch

Flush the wrong insn.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

module m_proc8(w_clk);
input wire w_clk;
reg [31:0] P1_ir=32'h13, P1_pc=0, P2_pc=0, P3_pc=0;
reg [31:0] P2_r1=0, P2_s2=0, P2_r2=0, P2_tpc=0;
reg [31:0] P3_alu=0, P3_ldd=0;
reg P2_r=0, P2_s=0, P2_b=0, P2_ld=0, P3_s=0, P3_b=0, P3_ld=0;
reg [4:0] P2_rd=0, P2_rs1=0, P2_rs2=0, P3_rd=0;
reg P1_v=0, P2_v=0, P3_v=0;
wire [31:0] w_npc, w_ir, w_imm, w_r1, w_r2, w_s2, w_rt;
wire [31:0] w_alu, w_ldd, w_tpc, w_pcin, w_in1, w_in2, w_in3;
wire w_r, w_i, w_s, w_b, w_u, w_j, w_ld, w_tkn;
reg [31:0] r_pc = 0; // m1
wire w_miss = P2_b & w_tkn & P2_v;
assign w_pcin = (w_miss) ? P2_tpc : w_npc; // m0
assign w_npc = r_pc + 4; // m2
m_am_imem m3 (r_pc, w_ir);
m_gen_imm m4 (P1_ir, w_imm, w_r, w_i, w_s, w_b, w_u, w_j, w_ld);
m_RF2 m5 (w_clk, P1_ir[19:15], P1_ir[24:20], w_r1, w_r2,

P3_rd, !P3_s & !P3_b & P3_v, w_rt);
assign w_tpc = P1_pc + w_imm; // m6
assign w_s2 = (!w_r & !w_b) ? w_imm : w_r2; // m7
always @(posedge w_clk) begin
{P1_v, P2_v, P3_v} <= {!w_miss, !w_miss & P1_v, P2_v};
{r_pc, P1_ir, P1_pc, P2_pc} <= {w_pcin, w_ir, r_pc, P1_pc};
{P2_r1, P2_r2, P2_s2, P2_tpc} <= {w_r1, w_r2, w_s2, w_tpc};
{P2_r, P2_s, P2_b, P2_ld} <= {w_r, w_s, w_b, w_ld};
{P2_rs2, P2_rs1, P2_rd} <= {P1_ir[24:15], P1_ir[11:7]};
{P3_pc, P3_ld} <= {P2_pc, P2_ld};
{P3_alu, P3_ldd, P3_rd} <= {w_alu, w_ldd, P2_rd};

end
assign w_alu = w_in1 + w_in2; // m8
assign w_tkn = w_in1 != w_in2; // m8
m_am_dmem m9 (w_clk, w_alu, P2_s & P2_v, w_in3, w_ldd);
assign w_rt = (P3_ld) ? P3_ldd : P3_alu; // m10
assign w_in1 = (|P3_rd & P2_rs1==P3_rd) ? w_rt : P2_r1; // m11
assign w_in3 = (!P3_rd & P2_rs2==P3_rd) ? w_rt : P2_r2; // m13
assign w_in2 = (|P3_rd & (P2_r|P2_b) & P2_rs2==P3_rd) ? w_rt : P2_s2;// m12

endmodule

MA

m8

P
2
_
s
2 adr

wd

rd

am_
dmem

we

w_alu

w
_
l
d
d

P2_s

m9

ALU

w_tkn

P2

P
2
_
r
1

w
_
i
n
1

P2_rd

EX stage

32

P3

m
u
x

1

0

m
u
x

1

0

m11

m12

w
_
i
n
2

w_m11

w_m12

m
u
x

1

0

m13

w_m13

w
_
i
n
3

P2_r2

P
1
_
i
r

IF stage P1

r_
pc

+
4

w_npc

am_
imem

m1

m2

m3

m
u
x

1

0

P2_b &
w_tkn

m0

w
_
p
c
i
n

w
_
i
r

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

proc8: critical path of 4-stage pipelining processor

P
1
_
i
r

+

m6

P1

r_
pc

+

am_
imem

m1

m2

m3

m
u
x

1

0

m0

m8

m
u
x

1

0

m7

adr

wd

rd

am_
dmem

we

m
u
x

1

0

m9

m10

ra1

ra2

wa

wd

rd1

rd2

RF2

we

m5

m4

gen_imm

ALU

P2

32

P3

P
3
_
l
d
d

P
3
_
a
l
u

m
u
x

1

0

m
u
x

1

0

m11

m12

m
u
x

1

0

m13

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

proc9: 5-stage pipelining processor

• The strategy is to separate instruction fetch step (IF), instruction decode
step (ID), execution step (EX), memory access step (EX), and write back step
(WB).

• Use the pipeline register P3 between EX and MA, and pipeline register P4
between EX and WB.

P
1
_
i
r

IF stage

+

m6P2_tpc

P1_pc

P1

r_
pc

+
32’h4

w_npc

am_
imem

m1

m2

m3

m
u
x

1

0

P2_b &
w_tkn

m0

w
_
p
c
i
n

w
_
i
r

w_r1

w_r2

w_rt

m8

m
u
x

1

0 P
2
_
s
2

!r & !b

m7

adr

wd

rd

am_
dmem

we

m
u
x

1

0
P3_alu

w
_
l
d
d

P4_ld

P
3
_
s

m9

m10

w_imm

P3_rd

IFID_ir
[19:15]

ID stage

ra1

ra2

wa

wd

rd1

rd2

RF2

we

IDIF_ir
[24:20]

!P4_s &
!P4_b

m5

m4

gen_imm

r,i,s,b,u,j,ld

ALU

w_tkn

P2

P
2
_
r
1

w
_
i
n
1

P3_rd

IFID_ir [11:7]

w
_
t
p
c

EX stage

32

P4_rd

P4
WB stage

P
4
_
l
d
d

P
4
_
a
l
u

m
u
x1

0

m11

m12

w
_
i
n
2

w_m11

w_m12

32

P3
MA stage

w
_
a
l
u

P2_r2
P
2
_
r
d

P
3
_
i
n
3

P3_alu

2

m
u
x1

0

2

m13

w_m13

m
u
x1

0

2

w
_
i
n
3

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

proc9: critical path of 5-stage pipelining processor

• The path from P4 pipeline register to PC is the critical path.

• This 5-stage organization is commonly explained in typical
computer architecture textbooks.

+

m6

P1

r_
pc

+

am_
imem

m1

m2

m3

m
u
x

1

0

P2_b &
w_tkn

m0

m8

m
u
x

1

0

m7

adr

wd

rd

am_
dmem

we

m
u
x

1

0

m9

m10

ra1

ra2

wa

wd

rd1

rd2

RF2

we

m5

m4

gen_imm

ALU

w_tkn

P2

IFID_ir [11:7]

32

P4

m
u
x1

0

m11

m12

32

P3

2

m
u
x1

0

2

m13

m
u
x1

0

2

IF stage ID stage EX stage WB stageMA stage

