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Single-cycle implementation of processors
A
« Single-cycle implementation also called single clock cycle
implementation is the implementation in which an
instruction is executed in one clock cycle.
While easy to understand, it is too slow to be practical.
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proc05: single cycle proc. supporting add, addi, Iw, sw, bne

1 module m_proc5(w_clk);
2 input wire w_clk;
3 wire [31:0] w_npc, w_ir, w_imm, w_rl, w r2, w_s2, w_rt;
4 wire [31:0] w_alu, w_ldd, w_tpc, w_pcin;
5 wire w_tkn;
6 reg [31:0] r_pc=0;
7 assign w_pcin = (w_b & w_tkn) ? w_tpc : w_npc; # mll
8 assign w_npc = r_pc + 4;
9 m_am_imem m3 (r_pc, w_ir);
10 wire w_r, w i, w.s, w b, wu, w_j, w_1d;
11 m_gen_imm m4 (w_ir, w_imm, w r, w i, w.s, w b, wu, w_j, w 1d);
12 m RF m5 (w_clk, w_ir[19:15], w_ir[24:20], w_rl, w_r2, w_ir[11:7], 'w.s & !'w_b, w_rt);
13 assing w_tpc = r_pc + w_imm; # mé6
14 assign w s2 = (lw.r & 'w b) ? w imm : w_r2;
15 assign w_alu = w_rl + w_s2; # m8 IF ID
16 assign w_tkn = w rl != w_s2; # m8
17 m_am_dmem m9 (w_clk, w_alu, w_s, w_r2, w_ldd); Mﬁﬂlmlﬂ/ral
18 assign w_rt = (w_1d) ? w_1dd : w_alu; w_ir[24:20] rdl
19 always @(posedge w_clk) r_pc <= w_pcin; >| ra2
20 endmodule WJrUlﬂl)wa
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Critical path of proch

« It is too slow to be practical.
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Single-cycle implementation of laundry X
\
e

« (A) Ann, (B) Brian, (C) Cathy, and (D) Don each have dirty clothes to b
washed, dried, folded, and put away, each taking 30 minutes.

« The cycle time (the time from the end of one load to the end of the
next one) is 2 hours.

* For four loads, the sequential laundry takes 8 hours.
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Single-cycle implementation and pipelining

\
« When the washing of load A is finished at 6:30 p.m., another washing of 2%
load B starts.

« Pipelined laundry takes 3.5 hours just using the same hardware
resources. The cycle time is 30 minutes.
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Clock rate is mainly determined by

« Switching speed of gates (transistors)
« The number of levels of gates

<

« The maximum number of gates cascaded in
combinational logics.

\

series in any

* In this example, the number of levels of gates is 3.
* Wiring delay and fanout

I

OR gate _:D_

AND gate

Register B

L OR gate Split a path by placing registers
. Register B
Register A """ 87%¢ I

Register C
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Pipelining example: multiply-add operation (1) 2\%
\

« As an example of pipelining, we will see a multiply-add circuit.
* r_b, r_careinput registers and r_y is output register of the circuit.

 This has two paths named pathl and path2, and pathl is the critical path
to determine the maximum operating frequency.

Critical path

16
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+ —F~ r.y
32
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— |32
(b) Path2
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Pipelining example: multiply-add operation (2)

« By inserting register r_d, the critical path can be divided into Path3
and Path4.

« Asaresult, the new critical path becomes Path3.

« This has the disadvantage that input b and ¢ in the same clock cycle

cannot be processed.
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Pipelining example: multiply-add operation (3)

« To overcome this drawback, we insert register r_e.

\

« This realizes a pipeline with stages 1 and 2. A set of registers between

two adjacent stages are called a pipeline register.

3 stage 1
Critical path
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b —>r_b 32 3
16 | |16 16 X |—~
r_d
b r_b ‘A 32 [l 32
16 16
+ r‘_yﬁ%
¢ —>r_c 32 32
32 | 7|32
C—r_cl+# r e —7%
32 32 - | 32

(a) original multiply-add circuit
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Single cycle processor to 2-stage pipelining proc. %\%
\

« This single cycle processor is oo slow to be practical.

« The strategy is to separate the instruction fetch step (IF) and other
steps (ID, EX, MA, WB).
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(a) procb: single-cycle processor
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proc6: 2-stage pipelining processor
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(a) pr'oc5: single-cycle processor

(c) a pipeline diagram of procé | 32’hc addi x3e,x10,6
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(b) procé: 2-stage pipelining processor
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Why do branch instructions degrade IPC?

« The branch taken / untaken is determined in the execution stage (EX)

of the branch.

« The conservative approach is stalling instruction fetch until the branch

direction is determined.

add
add
bne
add
add
add
add

NoohswN e

five stages pipelined processor executing instruction sequence with a branch

ccl cc2 «cc3 cc4
| IF | EX |
| IF | EX
| IF | EX

cc5 c¢cc6 cc7 cc8 cc9o

Control dependency

IF | EX |

| IF | EX |

| IF | EX |

| IF | EX |
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Why do branch instructions degrade IPC? X
\

« Another approach is fetching the following instruction (an instruction
at the next address) when a branch (bne) is fetched.

« When a branch (08 bne) is taken, the wrong instruction fetched
(Oc add) is flushed.

ccl cc2 cc3 ccd| cc5 cc6 cc? ccl cc2 cc3 ccd| cc5 cc6 cc?
00 add |_IF | EX | 00 add [ IF | EX |
04 add | IF | EX 04 add [ IF [ EX
08 bne | IF | EX 08 bne | IF | EX | Flush the wrong insn.
Oc add F | ex | Oc add I8 | & |
10 add IF | EX | 30 addi Control depe”de“‘/\ IF | EX |
14 add | IF [ ExX | 34 addi L IF [ EX |
18 add 38 addi
(a) branch untaken case (b) branch taken case
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Verilog HDL code for procb and procé

1 module m_proc5(w_clk); ?§§
2 input wire w_clk;
3 wire [31:0] w_npc, w_ir, w_imm, w_rl, w_r2, w_s2, w_rt;
4 wire [31:0] w_alu, w_1dd, w_tpc, w_pcin;
5 wire w_tkn;
6 reg [31:0] r_pc=0;
7 assign w_pcin = (w_b & w_tkn) ? w_tpc : w_npc; # mll
8 assign w_npc = r_pc + 4;
9 m_am_imem m3 (r_pc, w_ir);
10 wire w_r, w i, w_s, w b, w u, w_j, w_1d;
11 m_gen_imm m4 (w_ir, w_imm, w_r, w_ i, w_s, w b, w u, w_j, w_1d);
12 m RF m5 (w_clk, w ir[19:15], w_ir[24:20],
w_rl, w_r2, w_ir[11:7], 'w_s & !lw_b, w_rt); ; mqu1etm_PP°C6(WiE1k)3
13 assing w_tpc = r_pc + w_imm;  # mé input wire w_clk;
14 assigﬁ w:sg = (!;ﬁr & !ﬁ_b),? w_imm : w_r2; 3 reg [31:0] P1_ir=32"h13, P1_pc=0; reg P1_v=6;
15 assign w_alu = w_rl + w_s2; # m8 4 wire [31:0] w_npc, w_ir, w_imm, w_rl, w_r2, w_s2, w_rt;
16 assign w tkn = w_rl != w s2; # m8 5 wire [31:0] w_alu, w_ldd, w_tpc, w_pcin;
17 m_am_dmem m9 (w_clk, w_alu, w_s, w_r2, w_ldd); 6 wire w_r, w_i, w_s, w_b, w_u, w_j, w_ld, w_tkn;
18 assign w_rt = (w_1d) ? w_1dd : w_alu; U reg [31:?] r_pc=0;
19 always @(posedge w_clk) r_pc <= w_pcin; g gigig:_mlzzi: W_?w&mggztn?&wpigz;' P
— - —_ M — * — )
20 endnodule 10 assign w_npc = r_pc + 4;
TF stage EX stage 11 m_am_imem m3 (r_pc, w_ir);
R~ w_tkn 1d 12 always @(posedge w_clk)
P e o SR ety 13 {r_pc, P1_ir, P1_pc, P1_v} <= {w_pcin, w_ir, r_pc, !w _miss};
22 ra2 14 m_gen_imm m4 (P1_ir, w_imm, w_r, w i, w.s, w b, wu, w_j, w_1d);
b & wtin m2 LN - 15 m_RF m5 (w_clk, P1 ir[19:15], P1_ir[24:20], w_rl, w_r2,
sl |7 e P1_ir[11:7], !w.s & !w b & P1_v, w_rt);
an_ |3 15 hallLi 16 assign w_tpc = P1_pc + w_imm;
m? || (9 " 17 assign w_s2 = (lw.r & !w b) ? w imm : w_r2;
" i Sl [ wrt 18  assign w_alu = w_rl + w_s2;
. _ 19 assign w_tkn = w_ rl != w_s2;
P1_pc + 20 m_am_dmem m9 (w_clk, w alu, w s & P1 v, w r2, w_1ldd);
- e mew 21 assign w_rt = (w_1d) ? w_1ldd : w_alu;

22 endmodule
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Comparison of critical path between procb and procé

ral
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proc8: 4-stage pipelining processor
\
« The strategy is to separate instruction fetch step (IF), instruction

decode step (ID), execution and memory access steps (EX), and write
back step (WB).

« Use the pipeline register P2 between ID and EX, and pipeline register
P3 between EX and WB.

IF stage ID stage EX stage WB stage
P1 P2 — P3
1 IFID_ir
w_npc [19:15] 1 1 =]
2
4 IDIF_ir re rd1ba=" ) P3_1d
[24:20] m
ra2 o
t P3_rd °
r
- m2 — >l wa w_r2 2
1P3_s & rd2 '
S|ie3b
- ——>| we
- T mio
=8 —
o
o

<
.,-|I
z wd RF2
am
. >
imem m5
r,i,s,b,u,j,1d

m3 (gen_imm ) 7

w_imm

ma Ifl P3_rd
TFI0_ir [12:7] g D
P1_pc + % |:
Ny
| P2_tpc me = [ ||

w_rt

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17



proc8: 4-stage pipelining processor

addi x2,x1,4 addi x1,x0,3
IF stage ID stage EX stage WB stage
P1 P2 — P3
| IFID_ir | EI N |
w_npc 19:15 =}
i 4 [IDIF_i]r ral rdl W_rd & "_"’| P3_1d
(22200 3) a2 I'r & Ib m11 g
P2 b & —> e
w_tkn - P3_rd wa w_r2 S 3
s AR L o A T
O [ —| 'P3_b c
Lsfo | 7 - " ol i I 3 mie
g = r_ .am_ i a wd RF2 1 B IO EI
N pc imem m5 m7 o
r,i,s,b,u,j,1d
mo ml m3 gen_imm ||
ma w_imm P3_rd
IFID_ir [11:7] Ls I:I
|: P1_pc + % |:
4-’I
- P2_tpc me = [ -
w_rt
. CCl1 CC2 (CC3  CC4 | cc5 cce cc7 Time
Instructions
32°ho addi x1,x0,3 IF ID EX WB .
ves [ 1F [ 1 | e Data forwarding
) 4 . .
32°h4 addl x2,x1,4 Lz [ o [ex [us] A mechanism for supplying data to
32°h8 addi x10,x1,5 [ 1F [ [ ex | we | the ALU from pipeline registers of
32°hc addi x30,x10,0 | 1r [ o [ ex [ we | the subsequent stages.

iﬁ '
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proc8: 4-stage pipelining processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

addi x10,x1,5 addi x2,x1,4 addi
IF stage ID stage EX stage WB stage
P1 P2 o P3
| IFID_ir — | ¢ _‘l’ |
w_npc [19:15]
4 IDIF_ir ral rdi LA A \g\ 'T':ul P3_1d
b b g (24293 ra2 I'r & Ib g Q
— 1 7]
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g < .hl LRGN VA 2 03
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—>e)3 S . a 2! o wd RE2 7 1§ 3| m1o
—>1§ pc imem| m5 m7 'Y o
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me  mil m3 @‘7—) ‘ -
i w_imm P3_rd
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P1_pc +[C
5
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Instructions >
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32°ha addi x2,x1,4 | 1 | o | ex | wB |
32°h8 addi x10,x1,5 | 1 | o | ex | wB |
32°hc addi x30,x10,0 1F | o | ex | wB |

x1,x0,3
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Exercise 1

3
* Draw a block diagram of the processor procO8 and write the valid
values on wires when the processor is executing the four instructions

Ox00 addi x1,x0,3
ox04 addi x2,x1,4
Ox08 addi x10,x1,5
Ox0c addi x11,x10,0

addi x11,x10,0 addi Xl@JX:L)S addi x2,x1,4 addi x1,x0,3
>l ral rd1 g\
ra2 —>
—>11 e
P3_rd
—>| wa o A ; adr
—>|
1
-/

N — 5| we — e rd >
)
d 1
r_ am_| o | ¢ Wd RF2 - d

i pc imem am_

e dmem
(gen_imm) Sh

9

: —‘
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RF2 (Register File) with bypassing

ral

— >
32

ﬁ%
32

birf 4

module m_RF2(w_clk, w_radrl, w_radr2, w_rdl, w_rd2, w_wadr, w_we, w_wd);
input wire w_clk, w_we;
input wire [4:0] w_radrl, w_radr2, w_wadr;
output wire [31:0] w_rdl, w_rd2;
input wire [31:0] w_wd;
reg [31:0] mem [0:31];
wire w_bpl = (w_we & w_radrl==w_wadr);
wire w bp2 = (w we & w_radr2==w_wadr);
assign w_rdl = (w_radrl==5'de) ? 32'do : (w _bpl) ? w wd : mem[w_radrl];
assign w_rd2 = (w_radr2==5'de) ? 32'do : (w_bp2) ? w wd : mem[w_radr2];
always @(posedge w_clk) if (w_we) mem[w_wadr] <= w_wd;
integer i; initial for (i=0; i<32; i=i+1) mem[i] = ©;
endmodule
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IF stage
w_npc
4
P2 b &
w_tkn
m2
c
- <
—>|° ; ‘zl
E r_ am_ [
> ’e pc imem
mo ml m3

P1 ir

module m_proc8(w_clk);

input wire w_clk;

reg [31:0] P1_ir=32'h13, P1 pc=0, P2 pc=0, P3 pc=0;

reg [31:0] P2_rl1=0, P2_s2=0, P2 _r2=0, P2 tpc=0;

reg [31:0] P3_alu=0, P3 1dd=0;

reg P2_r=0, P2_s=0, P2 b=0, P2_1d=0, P3_s=0, P3_b=0, P3_1d=0;

reg [4:0] P2 _rd=0@, P2 rsl=0, P2 rs2=0, P3 rd=0;

reg P1_v=0, P2 _v=0, P3 v=0;

wire [31:0] w_npc, w_ir, w_imm, w_rl, w_r2, w_s2, w_rt;

wire [31:0] w_alu, w_1ldd, w_tpc, w_pcin, w_inl, w_in2, w_in3;

wire w_r, w i, w.s, w b, w u, w_j, w_1d, w_tkn;

reg [31:0] r_pc = 0; // ml

wire w_miss = P2_b & w_tkn & P2_v;

assign w_pcin = (w_miss) ? P2_tpc : w_npc; // me@

assign w_npc = r_pc + 4; // m2

m_am_imem m3 (r_pc, w_ir);

m_gen_imm m4 (P1_ir, w_imm, w_r, w_i, w_s, w b, w_u, w_j, w_1d);

m_RF2 m5 (w_clk, P1 _ir[19:15], P1_ir[24:20], w_rl, w_r2,

P3 rd, 'P3 s & !P3 b & P3 v, w rt);

assign w_tpc = P1_pc + w_imm; // mé

assign w_s2 = (!lw_r & 'w_b) ? w_imm : w_r2; // m7

always @(posedge w_clk) begin
{P1 v, P2 v, P3 v} <= {!w_miss, !w miss & P1 v, P2 v};
{r_pc, P1_ir, P1 _pc, P2 pc} <= {w_pcin, w_ir, r_pc, P1 _pc};
{P2_ri, P2 r2, P2 s2, P2 tpc} <= {w_rl, w r2, w _s2, w_tpc};
{P2_r, P2_s, P2 b, P2_1d} <= {w_r, w_s, w b, w_1d};
{P2 rs2, P2 rsl, P2 rd} <= {P1 _ir[24:15], P1 ir[11:7]};
{P3_pc, P3_1d} <= {P2_pc, P2_1d};
{P3_alu, P3 1dd, P3 rd} <= {w_alu, w_ldd, P2 rd};

end
assign w_alu = w_inl + w_in2; // m8
assign w_tkn = w_inl != w_in2; // m8

m_am_dmem m9 (w_clk, w alu, P2 s & P2 v, w_in3, w_1dd);

assign w rt = (P3_1d) ? P3 1dd : P3_alu; // mle

assign w_inl = (|P3_rd & P2_rs1==P3 rd) ? w_rt : P2_ril; // mil

assign w_in3 = (!P3_rd & P2_rs2==P3_rd) ? w_rt : P2_r2; // ml3

assign w_in2 = (|P3_rd & (P2_r|P2_b) & P2_rs2==P3 rd) ? w_rt : P2_s2;//
endmodule

mil2
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ir

IFID_ir
[19:15]
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module m_proc8(w_clk);

input wire w_clk;

reg [31:0] P1_ir=32'h13, P1 pc=0, P2 pc=0, P3 pc=0;

reg [31:0] P2_rl1=0, P2_s2=0, P2_r2=0, P2_tpc=0;

reg [31:0] P3_alu=0, P3 1dd=0;

reg P2_r=0, P2_s=0, P2 b=0, P2_1d=0, P3_s=0, P3_b=0, P3_1d=0;

reg [4:0] P2 _rd=0@, P2 rsl=0, P2 rs2=0, P3 rd=0;

reg P1_v=0, P2 _v=0, P3 v=0;

wire [31:0] w_npc, w_ir, w_imm, w_rl, w_r2, w_s2, w_rt;

wire [31:0] w_alu, w_ldd, w_tpc, w_pcin, w_inl, w_in2, w_in3;

wire w_r, w_i, w_s, w_b, w u, w_j, w_1ld, w_tkn;

reg [31:0] r_pc = 0; // ml

wire w_miss = P2_b & w_tkn & P2_v;

assign w_pcin = (w_miss) ? P2 _tpc : w_npc; // me@

assign w_npc = r_pc + 4; // m2

m_am_imem m3 (r_pc, w_ir);

m_gen_imm m4 (P1_ir, w_imm, w_r, w_i, w_s, w b, w u, w_j, w_1d);

m_RF2 m5 (w_clk, P1 ir[19:15], P1_ir[24:20], w_rl, w_r2,

P3 rd, !P3 s & !P3 b & P3 v, w rt);

assign w_tpc = P1 pc + w_imm; // mé6

assign w_s2 = (!lw_r & 'w b) ? w_imm : w_r2; // m7

always @(posedge w_clk) begin
{P1 v, P2 v, P3 v} <= {!w_miss, !w miss & P1 v, P2 v};
{r_pc, P1_ir, P1 _pc, P2 pc} <= {w_pcin, w_ir, r_pc, P1 pc};
{P2_ri1, P2 r2, P2 s2, P2 tpc} <= {w_rl, w r2, w s2, w_tpc};
{P2_r, P2_s, P2 b, P2 1d} <= {w_r, w_s, w b, w_1d};
{P2_rs2, P2_rsl, P2 _rd} <= {P1_ir[24:15], P1_ir[11:7]};
{P3_pc, P3_1d} <= {P2_pc, P2_1d};
{P3_alu, P3_1dd, P3_rd} <= {w_alu, w_ldd, P2_rd};

end
assign w_alu = w_inl + w_in2; // m8
assign w_tkn = w_inl != w_in2; // m8

m_am_dmem m9 (w_clk, w_alu, P2_s & P2_v, w_in3, w_1ldd);

assign w rt = (P3_1d) ? P3 1dd : P3_alu; // mle

assign w_inl = (|P3_rd & P2_rs1==P3 rd) ? w_rt : P2_ril; // mil

assign w_in3 = (!P3_rd & P2_rs2==P3_rd) ? w_rt : P2_r2; // ml3

assign w_in2 = (|P3_rd & (P2_r|P2_b) & P2_rs2==P3 rd) ? w_rt : P2_s2;//
endmodule

mil2
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module m_proc8(w_clk);

input wire w_clk;

reg [31:0] P1_ir=32'h13, P1 pc=0, P2 pc=0, P3 pc=0;

reg [31:0] P2_rl1=0, P2_s2=0, P2_r2=0, P2_tpc=0;

reg [31:0] P3_alu=0, P3 1dd=0;

reg P2_r=0, P2_s=0, P2 b=0, P2_1d=0, P3_s=0, P3_b=0, P3_1d=0;

reg [4:0] P2 _rd=0@, P2 rsl=0, P2 rs2=0, P3 rd=0;

reg P1_v=0, P2 _v=0, P3 v=0;

wire [31:0] w_npc, w_ir, w_imm, w_rl, w_r2, w_s2, w_rt;

wire [31:0] w_alu, w_ldd, w_tpc, w_pcin, w_inl, w_in2, w_in3;

wire w_r, w_i, w_s, w_b, w u, w_j, w_1ld, w_tkn;

reg [31:0] r_pc = 0; // ml

wire w_miss = P2_b & w_tkn & P2_v;

assign w_pcin = (w_miss) ? P2 _tpc : w_npc; // me@

assign w_npc = r_pc + 4; // m2

m_am_imem m3 (r_pc, w_ir);

m_gen_imm m4 (P1_ir, w_imm, w_r, w_i, w.s, w b, w_ u, w_j, w_1d);

m_RF2 m5 (w_clk, P1 ir[19:15], P1_ir[24:20], w_rl, w_r2,

P3 rd, 'P3 s & !'P3 b & P3 v, w rt);

assign w_tpc = P1 pc + w_imm; // mé

assign w_s2 = (!lw_r & 'w_ b) ? w_imm : w_r2; // m7

always @(posedge w_clk) begin
{P1 v, P2 v, P3 v} <= {!w_miss, !w miss & P1 v, P2 v};
{r_pc, P1_ir, P1 _pc, P2 pc} <= {w_pcin, w_ir, r_pc, P1 pc};
{P2_ri, P2 r2, P2 s2, P2 tpc} <= {w_rl, w r2, w_s2, w_tpc};
{P2_r, P2_s, P2 b, P2_1d} <= {w_r, w_s, w b, w_1d};
{P2 rs2, P2 rsl, P2 rd} <= {P1 _ir[24:15], P1 ir[11:7]};
{P3_pc, P3_1d} <= {P2_pc, P2_1d};
{P3 _alu, P3 1dd, P3 _rd} <= {w_alu, w_1ldd, P2 rd};

end
assign w_alu = w_inl + w_in2; // m8
assign w_tkn = w_inl != w_in2; // m8

m_am_dmem m9 (w_clk, w alu, P2 s & P2 v, w_in3, w_1ldd);

assign w_rt (P3_1d) ? P3_1dd : P3_alu; // mle

assign w_inl = (|P3_rd & P2_rs1==P3 rd) ? w_rt : P2_ril; // mll

assign w_in3 ('P3_rd & P2_rs2==P3 rd) ? w_rt : P2_r2; // ml3

assign w_in2 = (|P3_rd & (P2_r|P2_b) & P2_rs2==P3 rd) ? w_rt : P2_s2;//
endmodule

mil2
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Why do branch instructions degrade IPC?

« Another approach is fetching the following instructions (Oc add, 10
add) after a branch (bne) is fetched.

« When a branch (08 bne) is taken, the wrong instructions fetched
(Oc add, 10 add) are flushed.

ccl cc2 «cc3 cc4| cc5| cc6 cc7 cc8 cc9 cclo
OOadd [ IF | 1> | EX | W
04 add | IF | ID | EX | wWB
08 bne [ IF | 1 EX WB |
Oc add L IF Id\ EXEIEWEH ¢ ., e wrong insn.
10 add IF\| I | EX | w8 |
30 addi Control dependency IF | o | Ex | WE |
34 addi [ IF [ D [ EX | wB |

five stages pipelined processor executing instruction sequence with a branch
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module m_proc8(w_clk);

input wire w_clk;

reg [31:0] P1_ir=32"h13, P1 pc=0, P2 pc=0, P3 pc=0;

reg [31:0] P2_rl1=0, P2_s2=0, P2_r2=0, P2 tpc=0;

reg [31:0] P3_alu=0, P3 1dd=0;

reg P2_r=0, P2_s=0, P2 b=0, P2_1d=0, P3_s=0, P3 b=0, P3_1d=0;

reg [4:0] P2 _rd=0, P2 rsl1=0, P2 rs2=0, P3 rd=0;

reg P1_v=0, P2 v=0, P3 v=0;

wire [31:0] w_npc, w_ir, w_imm, w_ril, w_r2, w_s2, w_rt;

wire [31:0] w_alu, w_ldd, w_tpc, w_pcin, w_inl, w_in2, w_in3;

wire w_r, w i, w_s, w b, w u, w_j, w_1d, w_tkn;

reg [31:0] r_pc = 0; // ml

wire w_miss = P2_ b & w_tkn & P2_v;

assign w_pcin = (w_miss) ? P2 _tpc : w_npc; // mo

assign w_npc = r_pc + 4; // m2

m_am_imem m3 (r_pc, w_ir);

m_gen_imm m4 (P1_ir, w_imm, w_r, w_ i, w_s, w_ b, w u, w_j, w_1d);

m_RF2 m5 (w_clk, P1 ir[19:15], P1_ir[24:20], w_rl, w_r2,

P3 rd, 'P3 s & !P3 b & P3 v, w rt);

assign w_tpc = P1 pc + w_imm; // mé6

assign w_s2 = (lw.r & lw b) ? w imm : w_r2; // m7

always @(posedge w_clk) begin
{P1 v, P2 v, P3 v} <= {!w_miss, !w miss & P1 v, P2 v};
{r_pc, P1_ir, P1 pc, P2 pc} <= {w_pcin, w_ir, r_pc, P1 pc};
{P2_rl1, P2 r2, P2 s2, P2 tpc} <= {w_rl, w r2, w s2, w _tpc};
{P2_r, P2_s, P2 b, P2_1d} <= {w_r, w_s, w b, w_1d};
{P2_rs2, P2 rsl, P2 rd} <= {P1 _ir[24:15], P1 ir[11:7]};
{P3_pc, P3_1d} <= {P2_pc, P2_1d};
{P3_alu, P3 1dd, P3 rd} <= {w_alu, w_1ldd, P2 rd};

end
assign w_alu = w_inl + w_in2; // m8
assign w_tkn = w_inl != w_in2; // m8

m_am_dmem m9 (w_clk, w alu, P2 s & P2 v, w_in3, w _1dd);

assign w_rt = (P3_1d) ? P3_1dd : P3 alu; // mlo

assign w_inl = (|P3_rd & P2_rs1==P3 rd) ? w_rt : P2_rl1; // mil

assign w_in3 = (!P3_rd & P2_rs2==P3 _rd) ? w_rt : P2_r2; // ml3

assign w_in2 = (|P3_rd & (P2_r|P2_b) & P2_rs2==P3 rd) ? w_rt : P2_s2;//
endmodule

ml2
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proc8: critical path of 4-stage pipelining processor
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proc9: 5-stage pipelining processor

\

« The strategy is to separate instruction fetch step (IF), instruction decode \
step (ID), execution step (EX), memory access step (EX), and write back step
(WB).

« Use the pipeline register P3 between EX and MA, and pipeline register P4
between EX and WB.

IF stage ID stage EX stage MA stage WB stage
P1 P2 P3 P4
I I w_mll _ _
IFID_ir - LI ‘1’
H-npe [19:15], ral w_rl a mllf_\;
32°h4 IDIF_ir rd1 [ —
24:20 3
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proc9: critical path of b-stage pipelining processor

* The path from P4 pipeline register to PC is the critical path.

« This 5-stage organization is commonly explained in typical
computer architecture textbooks.

IF stage ID stage EX stage MA stage WB stage
P1 P2 P3 P4
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