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(1) Machine Language - Add instruction (add)

• Instructions are 32 bits long

• Arithmetic Instruction Format (R-type):

opcode 7-bits opcode that specifies the operation

rs1 5-bits register file address of the first source operand

rs2 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

funct3 and funct7 10-bits select the type of operation (function)

2

R-typefunct7 rs2 rs1 funct3 rd opcode

add x7, x8, x9

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

(2) RISC-V Add immediate instruction (addi)

• Small constants are used often in typical code

• Possible approaches?

• put “typical constants” in memory and load them 

• create hard-wired registers (like x0) for constants like 1

• have special instructions that contain constants !

• Machine format (I format):

• The constant is kept inside the instruction itself

• Immediate format limits values to the range +211–1 to -211

addi x7, x8, -2 # x7 = x8 + (-2)

3
Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

I-typeimm[11:0] rs1 funct3 rd opcode
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3

(3) Machine Language - Load word instruction (lw)

4

• Load Instruction Format (I-type):

lw x5, 8(x7)

Memory

data address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xffffffff

x7 0x12000000

0x12000008x5 

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005

I-typeimm[11:0] rs1 funct3 rd opcode
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(4) Machine Language - Store word instruction (sw)

5

• Load Instruction Format (S-type):

sw x5, 8(x7)

S-typeimm[11:5] rs1 funct3 imm[4:0] opcoders2

Memory

data address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xffffffff

x7 0x12000000

0x12000008x5 
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(5) RISC-V branch if not equal instructions (bne)

6

• RISC-V conditional branch instructions (bne, branch 
if not equal) :
bne x4, x5, Lbl # go to Lbl if x4!=x5

Ex: if (i==j) h = i + j;

bne x4, x5, Lbl1 # if (i!=j) goto Lbl1
add x6, x4, x5     # h = i + j;

Lbl1:  ...

• Instruction Format (B-type):

• How is the branch destination address specified?

Adapted from Computer Organization and Design,  Patterson & Hennessy, © 2005
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Sample assembly code in RISC-V

• sample assembly code in RISC-V with add, addi, lw, sw, bne
instructions

• the leftmost number is the instruction memory address where 
the instruction is stored

• the first register x0 is zero register with hardwiring 0

0x00 L1: addi x5, x0, 2      # x5 = 2

0x04 addi x6, x0, 3      # x6 = 3

0x08 add  x7, x5, x6     # x7 = x5 + x6 = 5

0x0c sw   x7, 32(x0)     # mem[0 + 32] = x7 = 5

0x10 lw   x8, 32(x0)     # x8 = mem[0 + 32]

0x14 add  x9, x8, x5     # x9 = x8 + x5 = 7

0x18 bne  x5, x6, L1 # go to L1 if x5!=x6

0x00200293

0x00300313

0x006283B3

0x02702023

0x02002403

0x005404B3

0xFE6294E3
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Sample circuit 3

• 2-bit counter as a simple sequential circuit

+

1

2

clk

cnt2

module counter

cnt
[1:0]

module top();
reg r_clk=0;
initial #150 forever #50 r_clk = ~r_clk;
initial #810 $finish;
wire [1:0] w_cnt;
counter m1 (r_clk, w_cnt);
initial $dumpvars(0, m1);

endmodule

module counter(clk, cnt);
input wire clk;
output reg [1:0] cnt;
initial cnt = 0;
always@(posedge clk) cnt <= cnt + 1;

endmodule
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Single-cycle implementation of processors

• Single-cycle implementation also called single clock cycle 
implementation is the implementation in which an 
instruction is executed in one clock cycle. 
While easy to understand, it is too slow to be practical.
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Steps in processing an instruction

• IF: Instruction Fetch
fetch an instruction from instruction memory or instruction 
cache

• ID: Instruction Decode
decode an instruction and read input operands from register file

• EX: Execution
perform operation, calculate an address of lw/sw

• MEM: Memory Access
access data memory or data cache for lw/sw

• WB: Write Back
write operation result and loaded data to register file

10
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Multiplexer (MUX)

• The multiplexer, shortened to MUX, is a combinational logic 
circuit designed to switch one of several input lines through to 
a single common output line by a control signal.

1 module m_mux(a, b, c, d);
2   input  wire a, b, c;
3   output wire d;;
5   assign d = (c) ? b : a;   # ternary operator 
6 endmodule
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Instruction and data memory in Verilog HDL

1 module m_am_imem(w_pc, w_insn);
2   input  wire [31:0] w_pc;
3   output wire [31:0] w_insn;
4   reg [31:0] mem [0:63];
5   assign w_insn = mem[w_pc[7:2]];
6   integer i; initial for (i=0; i<64; i=i+1) mem[i] = 0;
7 endmodule

1  module m_am_dmem(w_clk, w_adr, w_we, w_wd, w_rd);
2    input  wire w_clk, w_we;
3    input  wire [31:0] w_adr, w_wd;
4    output wire [31:0] w_rd;
5    reg [31:0] mem [0:63];
6    assign w_rd = mem[w_adr[7:2]];
7    always @(posedge w_clk) if (w_we) mem[w_adr[7:2]] <= w_wd;
8    integer i; initial for (i=0; i<64; i=i+1) mem[i] = 0;
9  endmodule
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Register file (RF) in Verilog HDL (1)

13

1  module m_RF(w_clk, w_ra1, w_ra2, w_rd1, w_rd2, w_wa, w_we, w_wd);
2    input  wire w_clk, w_we;
3    input  wire [4:0] w_ra1, w_ra2, w_wa;
4    output wire [31:0] w_rd1, w_rd2;
5    input  wire [31:0] w_wd;
6    reg [31:0] mem [0:31];
7    assign w_rd1 = (w_ra1==0) ? 0 : mem[w_ra1];
8    assign w_rd2 = (w_ra2==0) ? 0 : mem[w_ra2];
9    always @(posedge w_clk) if (w_we) mem[w_wa] <= w_wd;
10    integer i; initial for (i=0; i<32; i=i+1) mem[i] = 0;
11  endmodule

first read port

1  module m_RF(w_clk, w_ra1, w_ra2, w_rd1, w_rd2, w_wa, w_we, w_wd);
2    input  wire w_clk, w_we;
3    input  wire [4:0] w_ra1, w_ra2, w_wa;
4    output wire [31:0] w_rd1, w_rd2;
5    input  wire [31:0] w_wd;
6    reg [31:0] mem [0:31];
7    assign w_rd1 = (w_ra1==0) ? 0 : mem[w_ra1];
8    assign w_rd2 = (w_ra2==0) ? 0 : mem[w_ra2];
9    always @(posedge w_clk) if (w_we) mem[w_wa] <= w_wd;
10    integer i; initial for (i=0; i<32; i=i+1) mem[i] = 0;
11  endmodule
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Register file (RF) in Verilog HDL (2)
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1  module m_RF(w_clk, w_ra1, w_ra2, w_rd1, w_rd2, w_wa, w_we, w_wd);
2    input  wire w_clk, w_we;
3    input  wire [4:0] w_ra1, w_ra2, w_wa;
4    output wire [31:0] w_rd1, w_rd2;
5    input  wire [31:0] w_wd;
6    reg [31:0] mem [0:31];
7    assign w_rd1 = (w_ra1==0) ? 0 : mem[w_ra1];
8    assign w_rd2 = (w_ra2==0) ? 0 : mem[w_ra2];
9    always @(posedge w_clk) if (w_we) mem[w_wa] <= w_wd;
10    integer i; initial for (i=0; i<32; i=i+1) mem[i] = 0;
11  endmodule

1  module m_RF(w_clk, w_ra1, w_ra2, w_rd1, w_rd2, w_wa, w_we, w_wd);
2    input  wire w_clk, w_we;
3    input  wire [4:0] w_ra1, w_ra2, w_wa;
4    output wire [31:0] w_rd1, w_rd2;
5    input  wire [31:0] w_wd;
6    reg [31:0] mem [0:31];
7    assign w_rd1 = (w_ra1==0) ? 0 : mem[w_ra1];
8    assign w_rd2 = (w_ra2==0) ? 0 : mem[w_ra2];
9    always @(posedge w_clk) if (w_we) mem[w_wa] <= w_wd;
10    integer i; initial for (i=0; i<32; i=i+1) mem[i] = 0;
11  endmodule

second read port

write port
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proc02: single cycle proc. supporting add
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1  module m_proc2(w_clk);
2    input wire w_clk;
3    wire [31:0] w_npc, w_ir, w_r1, w_r2, w_rt;
4    reg [31:0] r_pc = 0;                             // m1
5    assign w_npc = r_pc + 4;                         // m2
6    m_am_imem m3 (r_pc, w_ir);
7    m_RF m4 (w_clk, w_ir[19:15], w_ir[24:20], w_r1, w_r2, w_ir[11:7], 1, w_rt);
8    assign w_rt = w_r1 + w_r2;                       // m5
9    always @(posedge w_clk) r_pc <= w_npc;           // m1
11  endmodule
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immediate generation module (gen_imm) 

1  module m_get_type(opcode5, r, i, s, b, u, j);
2    input  wire [4:0] opcode5;
3    output wire r, i, s, b, u, j;
4    assign j = (opcode5==5'b11011);
5    assign b = (opcode5==5'b11000);
6    assign s = (opcode5==5'b01000);
7    assign r = (opcode5==5'b01100);
8    assign u = (opcode5==5'b01101 || opcode5==5'b00101);
9    assign i = ~(j | b | s | r | u);
10  endmodule

1  module m_get_imm(ir, i, s, b, u, j, imm);
2    input wire [31:0] ir;
3    input wire i, s, b, u, j;
4    output wire [31:0] imm;
5    assign imm= (i) ? {{20{ir[31]}},ir[31:20]} :
6                (s) ? {{20{ir[31]}},ir[31:25],ir[11:7]} :
7                (b) ? {{20{ir[31]}},ir[7],ir[30:25],ir[11:8],1'b0} :
8                (u) ? {ir[31:12],12'b0} :
9                (j) ? {{12{ir[31]}},ir[19:12],ir[20],ir[30:21],1'b0} : 0;
10  endmodule

1  module m_gen_imm(w_ir, w_imm, w_r, w_i, w_s, w_b, w_u, w_j, w_ld);
2    input  wire [31:0] w_ir;
3    output wire [31:0] w_imm;
4    output wire w_r, w_i, w_s, w_b, w_u, w_j, w_ld;
5    m_get_type m1 (w_ir[6:2], w_r, w_i, w_s, w_b, w_u, w_j);
6    m_get_imm m2 (w_ir, w_i, w_s, w_b, w_u, w_j, w_imm);
7    assing w_ld = (w_ir[6:2]==0);
8  endmodule
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proc03: single cycle proc. supporting add, addi
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1  module m_proc3(w_clk);
2    input wire w_clk;
3    wire [31:0] w_npc, w_ir, w_imm, w_r1, w_r2, w_s2, w_rt;
4    wire w_r, w_i, w_s, w_b, w_u, w_j, w_ld;
5    reg [31:0] r_pc = 0; // m1
6    assign w_npc = r_pc + 4;                     // m2
7    m_am_imem m3 (r_pc, w_ir);
8    m_gen_imm m4 (w_ir, w_imm, w_r, w_i, w_s, w_b, w_u, w_j, w_ld);
9    m_RF m5 (w_clk, w_ir[19:15], w_ir[24:20], w_r1, w_r2, w_ir[11:7], 1, w_rt);
10 assign w_s2 = (w_i) ? w_imm : w_r2;          // m6
11 assing w_rt = w_r1 + w_s2;                   // m7
12 always @(posedge w_clk) r_pc <= w_npc; // m1
13 endmodule
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w_r1

w_ir[11:7] w_r2

w_ir[19:15]

IF ID

+

w_rt

32

EX   WB

m7

32

32

32

5

5

5

ra1

ra2

wa

wd

rd1

rd2

RF

we

w_ir[24:20]

1’b1

1

m5r_pc
32

+
32

32

32’h4

w_npc

am_imem
32

m1

m2

m3
32

m
u
x

1

0

w_imm

i

m6

m4

gen_imm

r,i,s,b,u,j,ld

7

w_s2

32



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

proc04: single cycle proc. supporting add, addi, lw, sw

1  module m_proc4(w_clk);
2    input wire w_clk;
3    wire [31:0] w_npc, w_ir, w_imm, w_r1, w_r2, w_s2, w_rt;
4    wire [31:0] w_alu, w_ldd;
5    reg [31:0] r_pc = 0;
6    wire w_r, w_i, w_s, w_b, w_u, w_j, w_ld;
7    assign w_npc = r_pc + 4;
8    m_am_imem m3 (r_pc, w_ir);
9    m_gen_imm m4 (w_ir, w_imm, w_r, w_i, w_s, w_b, w_u, w_j, w_ld);
10    m_RF m5 (w_clk, w_ir[19:15], w_ir[24:20], w_r1, w_r2, w_ir[11:7], !w_s, w_rt);
11 assign w_s2 = (!w_r) ? w_imm : w_r2;
12 assign w_alu = w_r1 + w_s2;
13 m_am_dmem m8 (w_clk, w_alu, w_s, w_r2, w_ldd);
14 assign w_rt = (w_ld) ? w_ldd : w_alu;
15 always @(posedge w_clk) r_pc <= w_npc;
16 endmodule
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proc05: single cycle proc. supporting add, addi, lw, sw, bne

1  module m_proc5(w_clk);
2    input wire w_clk;
3    wire [31:0] w_npc, w_ir, w_imm, w_r1, w_r2, w_s2, w_rt;
4    wire [31:0] w_alu, w_ldd, w_tpc, w_pcin;
5    wire w_tkn;
6    reg [31:0] r_pc=0;
7    assign w_pcin = (w_b & w_tkn) ? w_tpc : w_npc;    # m11
8    assign w_npc = r_pc + 4;
9    m_am_imem m3 (r_pc, w_ir);
10    wire w_r, w_i, w_s, w_b, w_u, w_j, w_ld;
11    m_gen_imm m4 (w_ir, w_imm, w_r, w_i, w_s, w_b, w_u, w_j, w_ld);
12    m_RF m5 (w_clk, w_ir[19:15], w_ir[24:20], w_r1, w_r2, w_ir[11:7], !w_s & !w_b, w_rt);
13 assing w_tpc = r_pc + w_imm; # m6
14 assign w_s2 = (!w_r & !w_b) ? w_imm : w_r2;
15 assign w_alu = w_r1 + w_s2;    # m8
16    assign w_tkn = w_r1 != w_s2;   # m8
17 m_am_dmem m9 (w_clk, w_alu, w_s, w_r2, w_ldd);
18 assign w_rt = (w_ld) ? w_ldd : w_alu;
19 always @(posedge w_clk) r_pc <= w_pcin;
20 endmodule
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proc05: single cycle proc. supporting add, addi, lw, sw, bne

0x00 L1: addi x5, x0, 2      # x5 = 2

0x04 addi x6, x0, 3      # x6 = 3

0x08 add  x7, x5, x6     # x7 = x5 + x6 = 5

0x0c sw   x7, 32(x0)     # mem[0 + 32] = x7 = 5

0x10 lw   x8, 32(x0)     # x8 = mem[0 + 32]

0x14 add  x9, x8, x5     # x9 = x8 + x5 = 7

0x18 bne  x5, x6, L1 # go to L1 if x5!=x6
R-type for add, I-type for addi and lw, S-type for sw, and B-type for bne
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Processing behabior of proc4

• executing  addi x1, x0, 7 of address 0x00
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Exercise 1

• Draw a block diagram of the processor proc05 and write the valid 
values on wires when the processor is executing the lw instruction

0x00 L1: addi x5, x0, 2      # x5 = 2

0x04 addi x6, x0, 3      # x6 = 3

0x08 add  x7, x5, x6     # x7 = x5 + x6 = 5

0x0c sw   x7, 32(x0)     # mem[0 + 32] = x7 = 5

0x10 lw   x8, 32(x0)     # x8 = mem[0 + 32]

0x14 add  x9, x8, x5     # x9 = x8 + x5 = 7

0x18 bne  x5, x6, L1 # go to L1 if x5!=x6
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4
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Critical path of proc5

• It is too slow to be practical.

1  module m_RF(w_clk, w_ra1, w_ra2, w_rd1, w_rd2, w_wa, w_we, w_wd);
2    input  wire w_clk, w_we;
3    input  wire [4:0] w_ra1, w_ra2, w_wa;
4    output wire [31:0] w_rd1, w_rd2;
5    input  wire [31:0] w_wd;
6    reg [31:0] mem [0:31];
7    assign w_rd1 = (w_ra1==0) ? 0 : mem[w_ra1];
8    assign w_rd2 = (w_ra2==0) ? 0 : mem[w_ra2];
9    always @(posedge w_clk) if (w_we) mem[w_wa] <= w_wd;
10    integer i; initial for (i=0; i<32; i=i+1) mem[i] = 0;
11  endmodule

write port
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Clock rate is mainly determined by

• Switching speed of gates (transistors)

• The number of levels of gates 

• The maximum number of gates cascaded in series in any 
combinational logics.

• In this example, the number of levels of gates is 3.

• Wiring delay and fanout

24
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AND gate

OR gate

AND gate

Register A

Register B
AND gate

OR gate

Register C


