Fiscal Year 2023

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

3. HDL, single-cycle processor

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W834, Lecture (Face-to-face) Kenji Kise, Department of Computer Science
Mon 13:30-15:10, Thr 13:30-15:10 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

(1) Machine Language - Add instruction (add)

« Instructions are 32 bits long
* Arithmetic Instruction Format (R-type):

\

add x7, x8, x9

funct? rs2 rsi funct3 rd opcode R-Type

opcode 7-bits
rsil 5-bits
rs2 5-bits
rd 5-bits

opcode that specifies
register file address
register file address

register file address

the operation
of the first source operand
of the second source operand

of the result’s destination

funct3 and funct7 10-bits select the type of operation (function)

—
A==
@ Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005 2
P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

(2) RISC-V Add immediate instruction (addi)

\
Small constants are used often in typical code %%

Possible approaches?
 put "typical constants” in memory and load them
 create hard-wired registers (like x0) for constants like 1
* have special instructions that contain constants |

addi x7, x8, -2 # X7 = x8 + (-2)

Machine for@%:\

imm[11:0] rs1 | funct3| rd opcode I-type

The constant is kept inside the instruction itself
* Immediate format limits values to the range +2!!-1 to -2

™

A=
@ Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005 3
P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

(3) Machine Language - Load word instruction (Iw)

\

* Load Instruction Format (I-type):
lw x5, 8(x7)

imm[11:0] rs1 | funct3| rd opcode | TI-type

Memory

OXFFFFEFFf

X5 «—ft— 3 0x12000008

X7 —— 0x12000000

0Xx000000aC
0Xx00000008
0Xx00000004
0Xx00000000

data address (hex)
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
¢

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

(4) Machine Language - Store word instruction (sw)

* Load Instruction Format (S-type):
sw x5, 8(x7)

imm[11:5]

rs2

rsl

funct3

imm[4:0]

opcode

<

Memory

X5 —

X7 —

data

S ARARARR

0x12000008

0x12000000

0Xx0000000C
0Xx00000008
0Xx00000004
0XxX00000000

address (hex)

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

S-type

\

(5) RISC-V branch if not equal instructions (bne)
\
e RISC-V conditional branch instructions (bne, branch X

if not equal) :
bne x4, x5, Lbl # go to Lbl if x4!=x5

Ex: if (i==j) h =1 + j;

bne x4, x5, Lbll # if (i!=j) goto Lbl1l
add x6, x4, x5 # h=1+ j;
Lbll:

* Instruction Format (B-type):

imm|12| | imm|10:5 rs2 rsl funct3 | imm|4:1| | imm|11] | opcode | B-type

« How is the branch destination address specified?

@dap‘red from Computer Organization and Design, Patterson & Hennessy, © 2005 6
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Sample assembly code in RISC-V

« sample assembly code in RISC-V with add, addi, lw, sw, bne

iInstructions

* the leftmost number is the instruction memory address where

the instruction is stored

« the first register x0 is zero register with hardwiring O

\

Ox00
Ox04
Ox08
Ox0c
Ox10
Ox14
Ox18

L1:

addi
addi
add
Sw
1w
add
bne

X5,
X6,
X7,
X7,
X8,
X9,
X5,

X0, 2

X0, 3

X5, X6
32(x0)
32(x0)
X8, X5
X6, L1

H H H H H H H

x5 =2

X6 = 3

X7 = X5 + x6 =5
mem[@ + 32] = x7 =5
X8 = mem[0 + 32]

X9 = x8 + x5 =7

go to L1 if x5!=x6

0x00200293
0x00300313
0x006283B3
0x02702023
0x02002403
0x005404B3
OXFE6294E3

Af_a'

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Sample circuit 3

« 2-bit counter as a simple sequential circuit

module counter

cnt

[1:0]

clk
—_—
2
LN
7
Signals Waves
Time
clk
cnt[1l:0]

module top();
reg r_clk=0;
initial #150 forever #50 r_clk = ~r_clk;
initial #810 $finish;
wire [1:0] w_cnt;
counter ml (r_clk, w cnt);
initial $dumpvars(@, ml);
endmodule

module counter(clk, cnt);

input wire clk;

output reg [1:0] cnt;

initial cnt = ©;

always@(posedge clk) cnt <= cnt + 1;
endmodule

Single-cycle implementation of processors
A
« Single-cycle implementation also called single clock cycle
implementation is the implementation in which an
instruction is executed in one clock cycle.
While easy to understand, it is too slow to be practical.

IF ID EX MA WB
1d
w_1r[19:15]\ — w_alu

i’ >fo
w_ir[24:20] rdl =
ra2 adr q 1%

w_ir[11:7] r 4

1 21" 4 we S mie
Is & b rd2 N
>[r_pce-—>{am_imem ¢ we wd
>{wd RF am_dmem
m1 m3 m> m9
w_ir r.i,s,b,u,j.1d W_rt
32°h4 7 b & W_tkr'l
—>\| W_npc ma w_1imm
= + >(o
] :
m2 + U} 1)(
j= ¥
+~
w_pcin =" m

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Steps in processing an instruction

« IF: Instruction Fetch
fetch an instruction from instruction memory or instruction
cache

AN
« ID: Instruction Decode

decode an instruction and read input operands from register file

« EX: Execution
perform operation, calculate an address of Iw/sw

« MEM: Memory Access
access data memory or data cache for lw/sw

« WB: Write Back
write operation result and loaded data to register file

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Multiplexer (MUX)

« The multiplexer, shortened to MUX, is a combinational logic
circuit designed to switch one of several input lines through to

a single common output line by a control signal.

\

c a bl d
C 9 9 0|09 1 module m_mux(a, b, c, d);
/l\ 0 E@i 1 i@i 2 input wire a, b, c;
Z ili 0 ili ? g::f;ﬁ gize(g;;? b : a; # ternary operator
a—>e L . d 0 E_l_i 1 i_l_i 6 endmodule
1 0 0| 0
b_’b 1 0 1|1
1 1 0| 0
1 1 101 b— d
c +—>o0
d

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

11

Instruction and data memory in Verilog HDL

—~> am_imem

32

32

—4—>] adr
32 rd
ﬁ% we
1
—4>| wd
32
am_dmem

32

1
2
3
4
5
6
7

module m_am_imem(w_pc, w_insn);

input wire [31:0] w_pc;

output wire [31:0] w_insn;

reg [31:0] mem [0:63];

assign w_insn = mem[w_pc[7:2]];

integer i; initial for (i=0; i<64; i=i+1) mem[i] = ©O;
endmodule

Voo NOUVUPA WNER

module m_am_dmem(w_clk, w_adr, w _we, w wd, w_rd);

input wire w_clk, w_we;

input wire [31:0] w_adr, w_wd;

output wire [31:0] w_rd;

reg [31:0] mem [0:63];

assign w_rd = mem[w_adr[7:2]];

always @(posedge w_clk) if (w_we) mem[w_adr[7:2]] <= w_wd;

integer i; initial for (i=0; i<64; i=i+l1) mem[i] = O;
endmodule

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

12

Register file (RF) in Verilog HDL (1)

—F4>| ral

5 rdl ﬁ%
—4—>| ra2 Se

5

rd2 4>

ﬂ/% wa

5 32
—A—>| we

1
—F—>| wd

32 RF
--14-'J>ra1.

7 A1
—+4—>| ra2 32

5

rd2 4>

ﬁsg wa 3>
—A—>| we

1
—A> wd

32 RF

PO WVOKONOOUIPD WNPER

(I

module m RF(w_clk, w_ral, w_ra2, w_rdl, w_rd2, w_wa, w we, w_wd);

input wire w_clk, w_we;

input wire [4:0] w_ral, w_ra2, w_wa;

output wire [31:0] w_rdl, w_rd2;

input wire [31:0] w_wd;

reg [31:0] mem [0:31];

assign w_rdl = (w_ral==0) ? @ : mem[w_rall;

assign w_rd2 = (w_ra2==0) ? @ : mem[w_ra2];

always @(posedge w_clk) if (w_we) mem[w_wa] <= w_wd;
integer i; initial for (i=@; i<32; i=i+l1l) mem[i] = ©;

endmodule

w_ral w_rdl

reg [31:0] mem [0:31];

assign w_rdl = (w_ral==0) ? @ : mem[w_ral];

first read port

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

13

Register file (RF) in Verilog HDL (2)

—+4—>| ral
5 rdl ﬂ%
e 22 Se
5
—£>{wa rd2 =l
5 32
—A—>| we
1
—F—>| wd
32 RF
—+4>| ral
5 rdl ﬁ%
—+4—>| ra2 32
5
/ . wa rd2 4>
5 32
we
1
wd
32 RF

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

w_ra2

reg [31:0] mem [0:31];

assign w_rd2 = (w_ra2==0) ? 0 :

mem[w_ra2];

second read port

w_clk

reg [31:0] mem [0:31];

w_wa, w_we, w_wd

always @(posedge w_clk) if (w_we) mem[w_wa] <= w_wd;

write port

14

proc02: single cycle proc. supporting add

1 module m _proc2(w_clk);

2 input wire w_clk;

3 wire [31:0] w_npc, w_ir, w_rl, w r2, w_rt;

4 reg [31:0] r_pc = 0; // ml
5 assign w_npc = r_pc + 4; // m2
6 m_am_imem m3 (r_pc, w_ir);
7

8

9

1

m RF m4 (w_clk, w ir[19:15], w_ir[24:20], w_rl, w_r2, w_ir[11:7], 1, w_rt);

assign w. rt = w._rl + w_r2; // m5
always @(posedge w_clk) r_pc <= w_npc; // ml
11 endmodule
IF ID EX 'WB
w_ir[19:15]
w_hpc 25| ra1 ")N rl
2 rd
32°h4 ‘w_ir'[24:20]5/ , dhl 1
>| ra
£ 2= . 5 S+
39 .w_lr‘[ll:7] /5] va w_r2 32
m2 1°b1 5 2 -
—#>| we 22 m5
1
A—>| wd
. S| w_1r 32 RF
—>r_pc am_imem [~
32 32 m4 w_rt
ml m3
31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
rd | opcode | R-type

| funct?] rs2 rsl l funct3 \
K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

15

immediate generation module (gen_imm)

module m_get type(opcode5, r, i, s, b, u, j);

wire [4:0] opcode5;

wire r, i, s, b, u, j;

j (opcode5==5"b11011);

(opcode5==5"'b11000) ;

(opcode5==5"b01000) ;

(opcode5==5"'b01100) ;

(opcode5==5'b01101 || opcode5==5'bo0101);
~GIbls|r]u;

H C 5 nw oW
1

get imm(ir, i, s, b, u, j, imm);

input wire [31:0] ir;
input wire i, s, b, u, j;

wire [31:0] imm;

imm= (i) ? {{20{ir[31]}},ir[31:20]} :
(s) ? {{20{ir[31]}},ir[31:25],ir[121:7]} :
(b) ? {{20{ir[31]}},ir[7],ir[30:25],ir[11:8],1'bO} :
(u) ? {ir[31:12],12'bO} :
(3) ? {{12{ir[31]}},ir[19:12],ir[20],ir[30:21],1'bO} :

gen_imm(w_ir, w_imm, w_r, w_i, w_s, w_b, w_u, w_j, w_1d);
wire [31:0] w_ir;

wire [31:0] w_imm;

wire w_r, w_ i, w_s, w_b, w u, w_j, w_1d;

m_get imm m2 (w_ir, w_i, w_s, w b, w u, w_j, w_imm);

w_1ld = (w_ir[6:2]==0);

1
. . 2 input
r,i,s,b,u,j,1d 3 output
4 assign
7> 5 assign
32 32 6 assign
7 assign
8 assign
9 assign
10 endmodule
31 30 2524 21 20 19 15 14 1211 8 7 6 0 1 mOd Ule m_
[funct? | s2 [rs1 [funct3 | rd | opcode | R-type 2
[imm[11:0] [rs1 [funct3 | rd | opcode | I-type 3
[imm[11:5] [rs2 [rs1 [Tunct3 | imm[4:0] | opcode | S-type 4 OUtpUt
[imm[12] | imm[10:5] | 1s2 [rs1 [funct3 [imm[4:1] [imm[11] [opcode | B-type 5 G
6
[imm[31:12] [rd | opcode | U-type 7
[imm([20] | imm[10:1] [imm[11]] imm[19:12] [rd [opeode | J-type 8
: : . . , 9
Figure 2.3: RISC-V base instruction formats showing immediate variants.
10 endmodule
module m_
input
output
output
assing
endmodule

1
2
3
4
5 m_get _type ml (w_ir[6:2], w.r, w i, w.s, w b, w u, w_j);
6
7
8

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

procO3: single cycle proc. supporting add, addi

1 module m_proc3(w_clk);
2 input wire w_clk;
3 wire [31:0] w_npc, w_ir, w_imm, w_rl, w_r2, w_s2, w_rt;
4
5 reg [31:0] r_pc = 0; // ml
6 assign w_npc = r_pc + 4; // m2
7 m_am_imem m3 (r_pc, w_ir);
8 m_gen_imm m4 (w_ir, w_imm,)
9 m_RF m5 (w_clk, w ir[19:15], w_ir[24:20], w_rl, w r2, w_ir[11:7], 1, w_rt);
10 assign w_s2 = (w_i) ? w_imm : w_r2; // mé
11 assing w_rt = w_rl + w_s2; // m7
12 always @(posedge w_clk) r_pc <= w_npc; // ml
13 endmodule
IF ID EX WB
w_ir[19:15]
w_npc —> |ral 0
r
32’h4 w_ir[24:20] >
® /; ra2
32 —~ + 5
ir[11:7
32 ‘w_lr‘[] A
rd2
m2 b1 2 |
w_ir i’
#4—>|Wd RF
S pc am_imem (9 32 m5
32 32 r,i,s,b,u,j,1d
L gen_imm i
7 - 7 w_imm
mil m3 A \ .
ma 32 w_rt

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

17

proc04: single cycle proc. supporting add, addi, Iw, sw

1 module m_proc4(w_clk);

2 input wire w_clk;

3 wire [31:0] w_npc, w_ir, w_imm, w_rl, w_r2, w_s2, w_rt;

4 wire [31:0] w_alu, w_ldd;

5 reg [31:0] r_pc = 0;

6 wire w r, w i, w.s, w b, wu, w_j, w_1d;

7 assign w npc = r_pc + 4;

8 m_am_imem m3 (r_pc, w_ir);

9 m_gen_imm m4 (w_ir, w_imm, w r, w i, w s, w b, w u, w_j, w_1d);
10 m RF m5 (w clk, w ir[19:15], w_ir[24:20], w_rl, w r2, w_ir[11:7], !w_s, w_rt);
11 assign w s2 = (!w.r) ? w imm : w_r2;

12 assign w_alu = w rl + w_s2;
13 m_am_dmem m8 (w_clk, w_alu, w s, w _r2, w_1dd);

14 assign w rt = (w_1d) ? w 1dd : w_alu;
15 always @(posedge w_clk) r_pc <= w_npc;
16 endmodule

IF ID EX MA WB
1d
w_ir[19:15]
Ww_npc >| ral w_ril w_alu N
- w_ir[24:20] rdl ’63
32h ¢———>ra2 r + adr =
rd>1
~ 4+ w_ir[11:7] W r2 < S
o———>S|wa - °
rd2 >0 m7 —>{ we = m9
3 =
m2 Is —>| we g w_s2 wd
>| wd RF Al am_dmem
—>Ir_pc am_imem[9 m5 mé m8
r,i,s,b,u,j,1d
ml m3 \< i E
vinrl gen_imm) 77 w_imm
- m4 w_rt

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

18

proc05: single cycle proc. supporting add, addi, Iw, sw, bne

1 module m_proc5(w_clk);
2 input wire w_clk;
3 wire [31:0] w_npc, w_ir, w_imm, w_rl, w r2, w_s2, w_rt;
4 wire [31:0] w_alu, w_ldd, w_tpc, w_pcin;
5 wire w_tkn;
6 reg [31:0] r_pc=0;
7 assign w_pcin = (w_b & w_tkn) ? w_tpc : w_npc; # mll
8 assign w_npc = r_pc + 4;
9 m_am_imem m3 (r_pc, w_ir);
10 wire w_r, w i, w.s, w b, wu, w_j, w_1d;
11 m_gen_imm m4 (w_ir, w_imm, w r, w i, w.s, w b, wu, w_j, w 1d);
12 m RF m5 (w_clk, w_ir[19:15], w_ir[24:20], w_rl, w_r2, w_ir[11:7], 'w.s & !'w_b, w_rt);
13 assing w_tpc = r_pc + w_imm; # mé6
14 assign w s2 = (lw.r & 'w b) ? w imm : w_r2;
15 assign w_alu = w_rl + w_s2; # m8 IF ID
16 assign w_tkn = w rl != w_s2; # m8
17 m_am_dmem m9 (w_clk, w_alu, w_s, w_r2, w_ldd); Mﬁﬂlmlﬂ/ral
18 assign w_rt = (w_1d) ? w_1dd : w_alu; w_ir[24:20] rdl
19 always @(posedge w_clk) r_pc <= w_pcin; >| ra2
20 endmodule WJrUlﬂl)wa
Is & Ib rd2
r>|r_pce—>{am_imem ¢ e
wd RF
ml m3 m5
w_ir r,i,s,b,u,j,1d
12 H@ﬁ b & w_tkn
_>\‘ W_npc m4 W_imm v
= + >[e
[| 2
m2 9; -> 1><
w_pcin Lﬁg Tomil

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

19

proc05: single cycle proc. supporting add, addi, Iw, sw, bne

l opcode] I-type

[opcode] S-type

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

ox00 L1: addi x5, x@, 2 # x5 = 2
. 31 30 25 24 21 19 15 14 12 11 8 7 6 0
ox04 addi X6, X@, 3 # x6 = 3 | funct7 | rs2 rsl [funct3 | rd [opcode | R-type
0x08 add X7, XS, X6 # X7 = x5 + x6 =5 | imm[11:0] rsl | funct3 | rd
ox0c SW X7, 32(X0) # mem[@ + 32] = X7 =5 | imm([11:5] | rs2 rsl [funct3 | imm[4:0]
0x10 1w X8) 32(X0) # x8 = mem[@ + 32] [imm[12] | imm[10:5] | rs2 rsl [funct3 [imm[4:1] [imm[11] [opcode | B-type
ox14 add x9, x8, x5 # x9 = x8 + x5 =7)
. R-type for add, I-type for addi and Iw, S-type for sw, and B-type for bne
0x18 bne x5, x6, L1 # go to L1 if x5!=x6 YP YP P P
J) 6=
IF ID EX MA WB
1d
w_ir‘[19:15]\ — w_alu
- >0
w_ir[24:20] rd1 g
ra2 adr . %
w_ir[11:7] rd 5
—————>wa do we EI mle
Is & Ib =
~>|r_pcle—>lam_imem{—9 I wd
>| wd RF am_dmem
ml m3 m> m9
w_ ir r,i,s,b,u,j,1d Ww rt
; b & w_tkn B
—>\| W_Npe) w_imm v
>'+ rd 1%
) g
o
w_pcin m6 = mll

20

Processing behabior of proc4

« executing addi x1, x0, 7 of address Ox00

IF ID EX MA WB
32°h4 57do ’g -
w_npc > ral 32°do wialu 327d7 3
- rdl W rg
g * > ra2 T 1’bu 4+ adr
-+ | 5’d1 S| wa w_r2 1°bo 3
l’bll rd2 —e> m7 %€ '_3'| mS
m2 —>| we 32°d7 > wd
’ ~
el >| wd RF = W_s2 am_dmem
—>{r _pc am_imem|-9 m> mé m8
n;l;s;0,057;1d
J
ml 32°he m3 >(gen_imm) 77~ \-:’:zirSr:
w_ir — ot
- m4 w_rt 32°d7

32°he0700093 addi x1,x0,7

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Exercise 1

3
* Draw a block diagram of the processor proc05 and write the valid
values on wires when the processor is executing the lw instruction

Ox00 L1: addi x5, x@, 2 # x5 =2
ox04 addi x6, x0, 3 # x6 = 3
0x08 add x7, x5, x6 # X7 = x5+ x6 =5
Ox0c sw X7, 32(x0) # mem[@ + 32] = x7 =5
o0x10 lw x8, 32(x0) # x8 = mem[0 + 32]
ox14 add x9, x8, x5 # x9 = x8 + x5 =7
ox18 bne x5, x6, L1 # go to L1 if x5!=x6
ALU 0
,
f o
>|r_pc am_imem—9 —>
RF T |_>am_dmem
4 w
] e
L 9?
+ 1
= L—

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Critical path of proch

« It is too slow to be practical.

ral 9
rdl ALU ?
ra2 adr X
rd>{1
wa rd2 A mg —>{we ml1lo
=
~>{r_pc am_imem[® —| e S wd
wd RF T\ am_dmem
ml m3 m> m7 m9
. —>
—>(gen_imm)
>\l m4
B 9

=

[

m2 9; 1
T—
meé
w clk

w_wa. w_we. w_wd

7_:‘% ral rdl —~£—>
—+4—>| ra2 32

5
—4""’3 rdz?? reg [31:0] mem [©:31];

write port 5 |

Zﬁwd always @(posedge w_clk) if (w_we) mem[w_wa] <= w_wd;

32 RF

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Clock rate is mainly determined by X
\

« Switching speed of gates (transistors)
« The number of levels of gates

» The maximum number of gates cascaded in series in any
combinational logics.

* In this example, the number of levels of gates is 3.
* Wiring delay and fanout

— |
:D\i>—_ Register B
Register A AND gate

OR gate _:>_

AND gate

—|_:>_\—‘D_‘Regis’rer C ,
. Register B
Register A A'° 82t¢ I

-

@’J OR gate
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

