Fiscal Year 2023

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

2. Instruction Set Architecture
and single-cycle processor

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W834, Lecture (Face-to-face) Kenji Kise, Department of Computer Science
Mon 13:30-15:10, Thr 13:30-15:10 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1



The birth of microprocessors in 1971

Name Year # of transistors

ﬁn Intel 4004 1971 2,250
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH




Discussion: software and hardware

-

#include <stdio.h>
main()

{
printf(“hello, world¥n”);

=4+ 1 \
\ | \ T
7% o !

Hardware to light up some LEDs

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



Two major ISA types: RISC vs CISC

\
« RISC (Reduced Instruction Set Computer) philosophy 2%
 fixed instruction lengths
* load-store instruction sets
* limited addressing modes
* limited operations
« RISC: MIPS, Alpha, ARM, RISC-V, ...
« CISC (Complex Instruction Set Computer) philosophy
« | fixed instruction lengths
| load-store instruction sets
I limited addressing modes
I limited operations
CISC : DEC VAX11, Intel 80x86, ..

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4



MIPS, ARM, and RISC-V

https://en.wikipedia.org/wiki/MIPS_architecture

WIKIPEDIA
The Free Encyclopedia

Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate

Contribute

Help

Community portal
Recent changes
Upload file

Tools

What links here

Article Talk Read

MIPS architecture

From Wikipadia, the free encyclopedia

MIPS (Microprocessor without Interlocked Pipelined Stages)''] is a reduced instruction set computer (RISC)
instruction set architecture (ISA)P14 13119 developed by MIPS Computer Systems, now MIPS Technologies, based in the

United States.

There are multiple versions of MIPS: including MIPS I, 11, IIL, IV, and V; as well as five releases of MIPS32/64 (for 32- and
64-bit implementations, respectively). The early MIPS architectures were 32-bit only; 64-bit versions were developed
later. As of April 2017, the current version of MIPS is MIPS32/64 Release 6.[*115) MIPS32/64 primarily differs from MIPS I-
V by defining the privileged kernel mode System Control Coprocessor in addition to the user mode architecture.

The MIPS architecture has several optional extensions. MIPS-3D which is a simple set of floating-point SIMD instructions
dedicated to common 3D tasks,'®! MDMX (MaDMaX) which is a more extensive integer SIMD instruction set using the 64-
bit floating-point registers, MIPS16e which adds compression to the instruction stream to make programs take up less

room, ! and MIPS MT, which adds multithreading capability.[®]

Computer architecture courses in universities and technical schools often study the MIPS architecture.[®] The architecture

greatly influenced later RISC architectures such as Alpha.

View history

Cambridge, UK
ARM (Advanced RISC Machine)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

P RISC-V°

RISC-V is an open standard Instruction Set
(ISA) enabling a new era of processor i
through open collaboration

RISC-V enables the community to share technical

contribute to the strategic future, create more ra

unprecedented design freedom, and substantially req
innovation

Membership ~ RISC-V Exchange

Technical v~ News&Events v Community v Q

ISC-V Are you ready to break free?

R »C-\

RISC-V International is the global non-profit home of the open standard
RISC-V Instruction Set Architecture (ISA), related specifications, and
stakeholder community

3,950 RISC-V members across 70 countries contribute and collaborate to define RISC-V open
specifications as well as convene and govern related technical, industry, domain, and special
interest groups.

Understanding the RISC-V ISA Open Standard

At the base level, the RISC-V ISA and extensions ratified by RISC-V International are royalty
free and open base building blocks for anyone to build their own solutions and services on.
The RISC-V ISA and ratified extensions are provided under globally accepted open licenses
that are permanently open and remain available for all.

Beyond RISC-V International, the community has opportunity to provide their own free or

https://riscv.org/



RISC-V base and extensions
—— —_— .y, — . T

ISA base and extensions (20191213)

Name ‘ Description ‘ Version ‘ Status!®!
Base

RVWMO | Weak Memory Ordering 2.0 Ratified
RWV321 Base Integer Instruction Set, 32-bit 2.1 Ratified

RV32E Base Integer Instruction Set (embedded), 32-bit, 16 registers 1.9 Open
RvV641 Base Integer Instruction Set, 64-bit 2.1 Ratified

RV128I | Base Integer Instruction Set, 128-bit 1.7 Open

Extension

M Standard Extension for Integer Multiplication and Division 2.0 Ratified
Chapter 1 A Standard Extension for Atomic Instructions 2.1 Ratified
L. F Standard Extension for Single-Precision Floating-Point 2.2 Ratified
FE310-G002 Descrlptlon D Standard Extension for Double-Precision Floating-Point 2.2 Ratified

G Shorthand for the base integer set (I) and above extensions (MAFD) N/A N/ A
1.1 Features 1.2 Description Q Standard Extension for Quad-Precision Floating-Point 2.2 Ratified

* SiFive E31 Core Complex up to 320MHz.  The FE310-G002 is the second Freedom E300 - . N .

« Flesible clocking options indluding inter-  S0C- The FE310-G002 is built around the L Standard Extension for Decimal Floating-Point 0.0 Open
nal PLL, free-running ring oscillator and E=1 Gore Complex instantiated in the Freedom . . e
external 16MHz crystal. E300 platform. C Standard Extension for Compressed Instructions 2.0 Ratified

The FE310-G002 Manual should be read to-

* 1.61 DMIPs/MHz, 2.73 Coremark/MHz ge;erwﬂh s catashest, Thie daaeheet prz. B Standard Extension for Bit Manipulation 0.92 Open

« RV32IMAC vides electrical specifications and an overview N N

» BkB OTP Program Memory of the FE310-G002. J Standard Extension for Dynamically Translated Languages 0.0 Open

The FE310-G002 comes in a convenient, in- : -

+ BkB Mask ROM dustry standard 6x6mm 48-lead QFN package T Standard Extension for Transactional Memory 0.0 Open

. i ( 0.4mm pad pitch ).
16K Instruction Gache P Standard Extension for Packed-SIMD Instructions 0.2 Open

+ 16kB Data SRAM

» 3 Independent PWM Controllers A" Standard Extension for Vector Operations 0.9 Open

+ Bxternal RESET pin N Standard Extension for User-Level Interrupts 1.1 Open

« JTAG, SPI 12C, and UART interfaces.

« QSPI Flash interface. H Standard Extension for Hypervisor 0.4 Open

» Requires 1.8V and 3.3V supples. ZiCSR | Control and Status Register (CSR) 2.0 Ratified

« Hardware Multiply and Divide

Zifencei | Instruction-Fetch Fence 2.0 Ratified
Zam Misaligned Atomics 0.1 Open
Ztso Total Store Ordering 0.1 Frozen

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



RISC-V RV32I base and our target instructions

RV 321 Base Instruction Set

imm[31:12 rd 0110111 LUI
imm[31:12 rd 0010111 AUIPC
imm|20[10:1]11[19:12] rd 1101111 JAL
imm][11:0] sl 000 rd 1100111 JALR
imm|12[10:5 82 rsl 000 imm|4:1|11 1100011 BEQ
imm|12(10:5 152 rsl 001 imm|4:1|11 1100011 BNE
imm|12|10:5 182 rsl 100 imm|4:1|11 1100011 BLT
imm|12|10:5 52 rsl 101 imm{4:1|11 1100011 BGE
imm|12|10:5 582 rsl 110 imm{4:1|11 1100011 BLTU
imm[12|10:5 82 rsl 111 imm[4:1|11 1100011 BGEU
imm[11:0 rsl 000 rd 0000011 LB
imm[11:0 rsl 001 rd 0000011 LH
imm|[11:0 rsl 010 rd 0000011 LW
imm|11:0 sl 100 rd 0000011 LBU
imm|11:0 rsl 101 rd 0000011 LHU
imm|[11:5 52 rsl 000 imm|[4:0 0100011 SB
imm|11:5 152 rsl 001 imm|4:0 0100011 SH
imm|11:5 52 rsl 010 imm|4:0 0100011 SW
imm|11:0 rsl 000 rd 0010011 ADDI
imm|11:0 rsl 010 rd 0010011 SLTI
imm|11:0 rsl 011 rd 0010011 SLTIU
imm[11:0 rsl 100 rd 0010011 XORI
imm|[11:0 rsl 110 rd 0010011 ORI
imm[11:0 sl 111 rd 0010011 ANDI
0000000 shamt rsl 001 rd 0010011 SLLI
0000000 shamt rsl 101 rd 0010011 SRLI
0100000 shamt rsl 101 rd 0010011 SRAT
0000000 52 rsl 000 rd 0110011 ADD
0100000 52 rsl 000 rd 0110011 SUB
0000000 82 rsl 001 rd 0110011 SLL
0000000 rs2 rsl 010 rd 0110011 SLT
0000000 152 rsl 011 rd 0110011 SLTU
0000000 52 rsl 100 rd 0110011 XOR
0000000 rs2 rsl 101 rd 0110011 SRL
0100000 52 rsl 101 rd 0110011 SRA
0000000 152 rsl 110 rd 0110011 OR
0000000 52 rsl 111 rd 0110011 AND
fm | pred | succ rsl 000 rd 0001111 FENCE
000000000000 00000 000 00000 1110011 ECALL
000000000001 00000 Q00 00000 1110011 EBREAK

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



RISC-V general-purpose registers

XLEN = 32
for 32bit ISA

XLEN-1

x0 / zero

x1

x2

x3

x4

ABI(Application Binary Interface) name

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

%15

%16

%17

x18

x19

%20

x21

x22

%23

x24

%25

%26

x27

%28

%29

x30

x31

Register | ABI Name | Description Saver
x0 zero Hard-wired zero —

x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer —

x4 tp Thread pointer —
x5-7 t0-2 Temporaries Caller
x8 s0/fp Saved register /frame pointer Callee
x9 si Saved register Callee
x10-11 | a0-1 Function arguments/return values | Caller
x12-17 | a2-7 Function arguments Caller
x18-27 | s2-11 Saved registers Callee
x28-31 | t3-6 Temporaries Caller
f0-7 ft0-7 FP temporaries Caller
£8-9 fs0-1 FP saved registers Callee
f10-11 | fa0-1 FP arguments/return values Caller
£12-17 | fa2-7 FP arguments Caller
£18-27 | £fs2-11 FP saved registers Callee
£28-31 | ft8-11 FP temporaries Caller

XLEN-1

XLEN

pc

XLEN

Table 18.2: RISC-V calling convention register usage.

ﬁ Figure 2.1: RISC-V base unprivileged integer register state.
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH




RISC-V instruction length encoding

\ —\‘_—\ e ———

The RISC-V Instruction Set Manual
Volume I: Unprivileged ISA
Document Version 20191214-draft

Editors: Andrew Waterman!, Krste Asanovié!?
ISiFive Inc.,
2CS Division, EECS Department, University of California, Berkeley
andrew@sifive.com, krste@berkeley.edu
November 12, 2021

| xxxxxxxxxxxxxxaa | 16-bit (aa # 11)

| XXXXXXXXXXXXXXXX | XXXXXXXXXXXbbb11 | 32-bit (bbb # 111)

- XXXX | XXXXXXXXXXXXKXXXX | xxxxxxxxxx011111 | 48-bit

- XXXX | XXXXXXXXXXXXXXXX | xxxxxxxxx0111111 | 64-bit

- XXXX | XXXXXXXXXXXXKKXX | xnnnxxxxx1111111 | (80+16*nnn)-bit, nnn#111

- XXXX | XXXXXXXXXXXXXXXX | x11lxxxxx1111111 | Reserved for >192-bits

Byte Address: base+4 base+2 base

Figure 1.1: RISC-V instruction length encoding. Only the 16-bit and 32-bit encodings are consid-
ered frozen at this time.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



RISC-V base instruction format

Figure 2.3: RISC-V base instruction formats showing immediate variants.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
funct7 rs2 rsl funct3 rd opcode | R-type
imm[11:0] rsl funct3 rd opcode | I-type
imm|11:5] rs2 rsl funct3 imm[4:0] opcode | S-type
imm[12] | imm|[10:5] rs2 rsl funct3 | imm|4:1] | imm[11] | opcode | B-type
imm|[31:12] rd opcode | U-type
imm|[20] imm|[10:1] imm|[11] imm[19:12] rd opcode | J-type



RISC-V Arithmetic Instructions

\
« RISC-V assembly language arithmetic statement 2%

add x7, x8, X9

destination <- sourcel op source2

= Operand order is fixed (destination first)

= Those operands are all contained in the datapath’s register
file (x0, ..., x31)

@dap‘red from Computer Organization and Design, Patterson & Hennessy, © 2005 11
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



Exercise 1

« Compiling a C assignment using registers

f=(g+h)-(C1+7);

« The variables f, g, h, i, and j are assigned to the registers
s0, s1, s2, s3, and s4, respectively.

= = O> Register | ABI Name | Description Saver

What is the compiled RISC-V code? " o i .
x1 ra Return address Caller
x2 sp Stack pointer Callee

x3 gp Global pointer —

x4 tp Thread pointer —

S @ = ( S 1 + S 2 ) - ( S 3 + S4 ) ; x5-7 t0-2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
x9 s1 Saved register Callee
x10-11 | a0-1 Function arguments/return values | Caller
x12-17 | a2-7 Function arguments Caller

-t e — S 1 + S 2 . x18-27 | s2-11 Saved registers Callee

J x28-31 | t3-6 Temporaries Caller
£0-7 £t0-7 FP temporaries Caller

't 1 — S 3 + S4 ; £8-9 fs0-1 FP saved registers Callee
f10-11 | fa0-1 FP arguments/return values Caller
£12-17 | fa2-7 FP arguments Caller

S @ - t@ - t 1 ; £18-27 fs2-11 FP saved registers Callee
£28-31 | ft8-11 FP temporaries Caller

Table 18.2: RISC-V calling convention register usage.



(1) Machine Language - Add instruction (add)

« Instructions are 32 bits long
* Arithmetic Instruction Format (R-type):

\

add x7, x8, x9

funct? rs2 rsi funct3 rd opcode R-Type

opcode 7-bits
rsl 5-bits
rs2 5-bits
rd 5-bits

opcode that specifies
register file address
register file address

register file address

the operation
of the first source operand
of the second source operand

of the result’s destination

funct3 and funct7 10-bits select the type of operation (function)

@dapmd from Computer Organization and Design, Patterson & Hennessy, © 2005 13
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



(2) RISC-V Add immediate instruction (addi)

\
Small constants are used often in typical code 2%

Possible approaches?
 put "typical constants” in memory and load them
 create hard-wired registers (like x0) for constants like 1
* have special instructions that contain constants |

addi x7, x8, -2 # X7 = x8 + (-2)

Machine for@%:\

imm[11:0] rs1 | funct3| rd opcode I-type

The constant is kept inside the instruction itself
* Immediate format limits values to the range +2!!-1 to -2

@dapmd from Computer Organization and Design, Patterson & Hennessy, © 2005 14
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



RISC-V Memory Access Instructions X
\

RISC-V has two basic data transfer instructions for
accessing memory

lw x5, 24(x7) # load word from memory

sw X3, 28(x9) # store word to memory

« The data is loaded into (Iw) or stored from (sw) a register
in the register file

* The memory address — a 32 bit address — is formed by
adding the contents of the base address register to the
offset value

&Ldap’red from Computer Organization and Design, Patterson & Hennessy, © 2005 15
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



(3) Machine Language - Load word instruction (Iw)

A

* Load Instruction Format (I-type):
lw x5, 8(x7)

imm[11:0] rs1 | funct3| rd opcode | I-type

Memory

OXFFFFEFFf

X5 «—ft— 3 0x12000008

%7 —l 0x12000000

0x000000aC
0Xx00000008
0x00000004
0Xx00000000

data address (hex)
Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005
C

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16




Exercise 2

« Compiling an assignment when an operand is in memory

g = h + A[2];

* Let's assume that A is an array of 100 words and the compiler has
associated the variable g and h with the registers s1 and s2 as before.
Let's also assume that the starting address, or base address, of the array
is in s3. Compile this C assignment statement.

to
sl

A[2]; # address is s3 + 8

s2 + to;

Memory

s3

t0 <

data

OxFFEFFEfe

0x12000010 A[4]
0x1200000c A[3]
0x12000008 A[2]
0x12000004 A[1]

0x12000000 A[O]

0x000000v0C
0Xx000000038
0x00000004
0Xx00000000

address (hex)

\

17



(4) Machine Language - Store word instruction (sw) \
\
« Load Instruction Format (S-type): 2%

sw x5, 8(x7)

imm[11:5] rs2 rsl | funct3|imm[4:0]| opcode | S-type

Memory

S ARARARR

X5 —— 0x12000008

%7 —l 0x12000000

0Xx000000aC
0Xx00000008
0Xx00000004
0X00000000

ﬁ: data address (hex)
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18




Exercise 3
N

« Compiling using load and store

A[1] = h + A[2];

« Assume variable h is associated with register s2 and base
address of the array A is in s3. What is the RISC-V
assembly code for the C assignment statement?

t0 = A[2]; # address is s3 + 8
tl = s2 + t0;
A[1l] = t1; # address is s3 + 4

~ "‘ ="
9



(5) RISC-V branch if not equal instructions (bne)
\
« RISC-V conditional branch instructions (bne, branch x

if not equal) :
bne x4, x5, Lbl # go to Lbl if x4!=x5

Ex: if (i==j) h =1 + j;

bne x4, x5, Lbll # if (i!=7) goto Lbll
add x6, x4, x5 #h=1+ j;
Lbll:

* Instruction Format (B-type):

imm(12| | imm|10:5 rs2 rsl funct3 | imm|4:1| | imm|11] | opcode | B-type

« How is the branch destination address specified?

@%dapf@d from Computer Organization and Design, Patterson & Hennessy, © 2005 20
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



Venus RISC-V editor and simulator will help us

* https://github.com/kvakil/venus

@ Features

e RV32IM
¢ Single-step debugging with undo feature
* Breakpoint debugging

* View machine code and original instructions side-by-side

e Several ecall s:including print and sbrk | o

* Memory visualization

Max
HHHHHH y 1
Save on Close
Aligned F Aligned Addressin g
Addressi
¢ htt S’//VCHUS cs6blc.or /
Mutable T
[ ] ° ° u
Only Ecall Exit?
Es Exit
Set Registers on Init?
R Allow Access Between Stack
Allow Access and Heap?
Enable Memcheck?
Memchec k

Dose
on mumer of step
prtrrm
‘ Dark Mode
Xal—= }
S .

P (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



Exercise 4

« Compiling using add, addi, and bne

void main(){
int 1, sum=0;
for(i=1; i<11; i++) sum = sum + i;

¥

* What is the RISC-V assembly code for the C assignment
statement?

void main(){
int s2, s3=11, s4=0;
for(s2=1; s2<s3; s2++) s4 = s4 + s2;




Single-cycle implementation of processors

« Single-cycle implementation also called single clock cycle
implementation is the implementation in which an
instruction is executed in one clock cycle.

While easy to understand, it is too slow to be practical.

IF ID EX MA WB
1d
w_1r[19:15]\ — w_alu

i’ >fo
w_ir[24:20] rdl =
ra2 adr q 1%

w_ir[11:7] r 4

1 21" 4 we S mie
Is & b rd2 N
>[r_pce-—>{am_imem ¢ we wd
>{wd RF am_dmem
m1 m3 m> m9
w_ir r.i,s,b,u,j.1d W_rt
32°h4 7 b & W_tkr'l
—>\| W_npc ma w_1imm
= + >(o
] :
m2 + U} 1)(
j= ¥
+~
w_pcin =" m

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A

23



Sample circuit 3

« 2-bit counter as a simple sequential circuit

module counter

cnt

[1:0]

clk
—_—
2
LN
7
Signals Waves
Time
clk
cnt[1l:0]

module top();
reg r_clk=0;
initial #150 forever #50 r clk = ~r clk
initial #810 $finish;
wire [1:0] w_cnt;
counter ml (r_clk, w _cnt);
initial $dumpvars(e, ml);
endmodule

module counter(clk, cnt);

input wire clk;

output reg [1:0] cnt;

initial cnt = ©;

always@(posedge clk) cnt <= cnt + 1;
endmodule

J




