MIPS/SPIM Reference Card
CORE INSTRUCTION SET (INCLUDING PSEUDO INSTRUCTIONS)

MNE- | FOR- OPCODE/
MON- | MAT FUNCT
NAME IC OPERATION (in Verilog) (Hex)
Add add R R[rd]=R[rs]+R[rt] (1) 0/20
Add Immediate addi I R[rt]=R[rs]+SignExtImm (D) 8
Add Imm. Unsigned addiu I R[rt]=R[rs]+SignExtImm @] 9
Add Unsigned addu R R[rd]=R[rs]+R][rt] 2) 0/21
Subtract sub R R[rd]=R[rs]-R[rt] (1) 0/22
Subtract Unsigned subu R R[rd]=R[rs]-R[rt] 0/23
And and R R[rd]=R[rs]&R[rt] 0/24
And Immediate andi 1 R[rt]=R[rs]&ZeroExtImm 3) c
Nor nor R R[rd]=~(R[rs]|R[rt]) 0/27
Or or R R[rd]=R[rs]|R[rt] 0/25
Or Immediate ori I R[rt]=R[rs]|ZeroExtImm 3) d
Xor XOor R R[rd]=R[rs] "R]rt] 0/26
Xor Immediate xori I R[rt]=R[rs]"ZeroExtImm e
Shift Left Logical sll R R[rd]=R[rs]<shamt 0/00
Shift Right Logical srl R R[rd]=R[rs]>>shamt 0/02
Shift Right Arithmetic sra R R[rd]=R[rs]>>>shamt 0/03
Shift Left Logical Var. sllv R R[rd]=R[rs]<R[rt] 0/04
Shift Right Logical Var. srlv R R[rd]=R[rs]>R[rt] 0/06
Shift Right Arithmetic Var. srav R R[rd]=R[rs]>>>R]rt] 0/07
Set Less Than slt R R[rd]=(R[rs]<R[rt])?1:0 0/2a
Set Less Than Imm. slti I R[rt]=(R[rs]<SignExtImm)?1:0 2) a
Set Less Than Imm. Unsign. |sltiu I R[rt]=(R[rs]<SignExtImm)?1:0 2)(6) b
Set Less Than Unsigned sltu R R[rd]=(R[rs]<R[rt])?1:0 (6) 0/2b
Branch On Equal beq I if(R[rs]==R[rt]) PC=PC+4+BranchAddr “4) 4
Branch On Not Equal bne I if(R[rs]!=R[rt]) PC=PC+4+BranchAddr (@] 5
Branch Less Than blt P if(R[rs]<R[rt]) PC=PC+4+BranchAddr
Branch Greater Than bgt P if(R[rs]>R[rt]) PC=PC+4+BranchAddr
Branch Less Than Or Equal ble P if(R[rs]<=R[rt]) PC=PC+4+BranchAddr
Branch Greater Than Or Equal [bge P if(R[rs]>=R[rt]) PC=PC+4+BranchAddr
Jump 3 J PC=JumpAddr (5) 2
Jump And Link jal J R[31]=PC+4; 5) 2
PC=JumpAddr
Jump Register jr R PC=R[rs] 0/08
Jump And Link Register jalr R R[31]=PC+4; 0/09
PC=R[rs]
Move move P R[rd]=R[rs]
Load Byte 1b I R[rt]={24’b0, M[R[rs]+ZeroExtImm](7:0)} 3) 20
Load Byte Unsigned lbu 1 R[rt]={24’b0, M[R[rs]+SignExtImm](7:0) } 2) 24
Load Halfword 1h I R[rt]={16’b0, M[R[rs]+ZeroExtImm](15:0)} 3) 25
Load Halfword Unsigned lhu I R[rt]={16’b0, M[R[rs]+SignExtImm](15:0)} 2) 25
Load Upper Imm. lui 1 R[rt]={imm,16’b0} f
Load Word 1w I R[rt]=M[R[rs]+SignExtImm] 2) 23
Load Immediate 1i P R[rd]=immediate
Load Address la P R[rd]=immediate
Store Byte sb I M[R[rs]+SignExtImm] (7:0)=R[rt](7:0) 2) 28
Store Halfword sh 1 MIR[rs]+SignExtImm] (15:0)=R[rt](15:0) 2) 29
Store Word sw I M[R[rs]+SignExtImm]=R[rt] 2) 2b
REGISTERS
NAME [NMBR| USE STORE? (1) May cause overflow exception
$zer0 0 IThe Constant Value O NA. (2) SignExtImm = { l6{1mfne@1ate[15_] },immediate }
Sat 1 |Assembler Temporary No (3) ZeroExtImm ={16{ .lb 0},1.mmed1ate. } . ’
$v0-Svi| 23 |Values for Function Results and No (4) BranchAddr = {14{immediate[15]},immediate,2’b0 }
. . (4) JumpAddr = {PC[31:28], address, 2°b0 }
Expression Evaluation (6) Operands considered unsigned numbers (vs. 2 s comp.)
$a0-$a3| 4-7 |Arguments No AR) R '
$t0-$t7 | 8-15 |Temporaries No BASIC INSTRUCTION FORMATS,
$50-$57| 16-23 |Saved Temporaries Yes | FLOATING POINT INSTRUCTION FORMATS
$t8-$t9 | 24-25 [Temporaries No R [lTopeode *F° rs P it ™% rd " shamt T funct 7|
$k0-$k1| 26-27 [Reserved for OS Kernel No . o S50 T - - 5
$gp 28 |Global Pointer Yes I P opcode [Z IS E It E immediate ‘
$sp 29 |Stack Pointer Yes J [31 opcode 26]?5 immediate 0‘
$fp 30 [Frame Pointer Yes FR opcode fmt ft fs fd funct
$ra 31 [Return Address Yes FI [31 opcode 26[25 fmt 21[20 It 16[15 immediate 0‘
$f0-$31| 0-31 [Floating Point Registers Yes

Copyright (©) 2007 Jan Wiitzig, Staatliche Studienakademie Dresden (www.ba-dresden.de/~jan)
This reference card may be used for educational purposes only.

http://www.ba-dresden.de/~jan
kise
ハイライト

kise
ハイライト

kise
ハイライト

ARITHMETIC CORE INSTRUCTION SET

.kdata [addr]*
.ktext [addr]
.text [addr]”

Subsequent items are stored in the kernel data segment
Subsequent items are stored in the kernel text segment
Subsequent items are stored in the text

* starting at [addr] if specified

MNE- | FOR- OPCODE/
MON- | MAT FMT/FT/

NAME 1C OPERATION (in Verilog) FUNCT

Divide div R Lo=R[rs]/R][rt]; 0/—/-/1a
Hi=R[rs]%R|[rt]
Divide Unsigned divu R Lo=R[rs]/R]rt]; (6) 0/~/-/1b
Hi=R[rs]%R[rt]
Multiply mult R {Hi,Lo}=R[rs]*R[rt] 0/—/-/18
Multiply Unsigned multu R {Hi,Lo}=R[rs]*R[rt] (6) 0/~/-/19
Branch On FP True bclt FI if(FPCond) PC=PC+4+BranchAddr (@] 11/8/1/-
Branch On FP False bclf FR if(!FPCond) PC=PC+4+BranchAddr (@) 11/8/0/—
FP Compare Single c.x.s”l FR FPCond=(F[fs] op F[ft])?1:0 11/10/~/y
FP Compare Double c.x.dl FR FPCond=({F[fs],F[fs+1]} op {F[ft],F[ft+1]})?1:0 11/11/~1y
*(xis eq, 1t or 1le) (op is ==, < or <=) (y is 32, 3c or 3e)
FP Add Single add.s| FR F[fd]=F[fs]+F[ft] 11/10/-/0
FP Divide Single div.s| FR F[fd]=F[fs]/F[ft] 11/10/-/3
FP Multiply Single mul.s| FR F[fd]=F[fs]*F[ft] 11/10/-/2
FP Subtract Single sub.s| FR F[fd]=F[fs]-F[ft] 11/10/-/1
FP Add Double add.d| FR {F[fd],F[fd+1]}={F[fs],F[fs+1]}+{F[ft] F[ft+1]} 11/11/-/0
FP Divide Double div.d| FR {F[fd],F[fd+1]}={F[fs],F[fs+1]}/{F[ft],F[ft+1]} 11/11/-/3
FP Multiply Double mul.d| FR {F[fd],F[fd+1]}={F[fs],F[fs+1]}{F[ft],F[ft+1]} 11/11/-72
FP Subtract Double sub.d| FR {F[fd],F[fd+1]}={F[fs],F[fs+1]}-{ F[ft],F[ft+1]} 11/11/-/1
Move From Hi mfhi R R[rd]=Hi 0/-/-/110
Move From Lo mflo R R[rd]=Lo 0/—1-/12
Move From Control mfcO R R[rd]=CR[rs] 16/0/-/0
Load FP Single lwcl I Flrt]=M[R[rs]+SignExtImm] 2 31/—/—/-
Load FP Double ldcl I Flrt]J=M[R[rs]+SignExtImm]; 2) 35/—/-/-
Flrt+1]=M[R[rs]+SignExtImm-+4]
Store FP Single swcl I MIR[rs]+SignExtImm]=F[rt] 2) 39/—/—/-
Store FP Double sdcl 1 MIR[rs]+SignExtImm]=F[rt]; 2) 3d/—/-/-
M[R[rs]+SignExtImm+4]=F[rt+1]

ASSEMBLER DIRECTIVES
.data [addr]” Subsequent items are stored in the data segment

.ascii str
.asciiz str
.byte b1,...,bn
.double di,...,dn
.float fi,...,f1

Store string str in memory, but do not null-terminate it

Store string str in memory and null-terminate it

Store the n values in successive bytes of memory

Store the n floating-point double precision numbers in successive memory locations
Store the n floating-point single precision numbers in successive memory locations

.half hi,...,h, [Storethe n 16-bit quantities in successive memory halfwords
.word wi,...,w, [Storethe n 32-bit quantities in successive memory words
.space n Allocate n bytes of space in the current segment
.extern symsize |Declare that the datum stored at sym is size bytes large and is a global label
.globl sym Declare that label sym is global and can be referenced from other files
.align n Align the next datum on a 2" byte boundary, until the next . data or . kdata directive
.set at Tells SPIM to complain if subsequent instructions use $at
.set noat prevents SPIM from complaining if subsequent instructions use $at
SYSCALLS EXCEPTION CODES
SERVICE S$vo0 ARGS RESULT Number | Name Cause of Exception
print_int 1 |integer $a0 0 Int Interrupt (hardware)
print_float | 2 [|float $£12 4 AdEL | Address Error Exception (load or instruction
print_double| 3 |double $£12/$£f13 fetch)
print_string] 4 [string $a0 5 AdES | Address Error Exception (store)
read_int 5 integer (in $vO0) 6 IBE Bus Error on Instruction Fetch
read_float 6 float (in $£0) 7 DBE | Bus Error on Load or Store
read_double | 7 double (in $£0) 8 Sys Syscall Exception
read_string | 8 |buf $a0, buflen $al 9 Bp Breakpoint Exception
sbrk 9 |amount $a address (in Sv0), 10 RI Reserved Instruction Exception
exit 10 11 CpU | Coprocessor Unimplemented
12 Ov Arithmetic Overflow Exception
13 Tr Trap
15 FPE | Floating Point Exception

[1] Patterson, David A; Hennessy, John J.: Computer Organization and Design, 3rd Edition. Morgan Kaufmann Publishers. San Francisco, 2005.

Copyright (©) 2007 Jan Wiitzig, Staatliche Studienakademie Dresden (www.ba-dresden.de/~jan)
This reference card may be used for educational purposes only.

http://www.ba-dresden.de/~jan

