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Final report of Advanced Computer Architecture

1. Please submit your final report describing your answers to 
questions 1 - 7 in a PDF file 
via E-mail (kise [at] c.titech.ac.jp ) by February 13, 2023
• E-mail title should be “Report of Advanced Computer 

Architecture”

2. Please submit the report in 16 pages or less on A4 size 
PDF file, including the cover page.

3. Enjoy!
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1. Academic paper reading

• Select an academic paper from the list below and

• In your own word, describe the problem that the authors try to solve,

• Describe the key idea of the proposal,

• Describe your opinion why the authors could solve the problem 
although there may be many researchers try to solve  similar 
problems.

• List
• Prophet/critic hybrid branch prediction, ISCA’04, 2004

• The V-Way Cache: Demand Based Associativity via Global Replacement, ISCA’05, 2005

• Emulating Optimal Replacement with a Shepherd Cache, MICRO-40, 2008

• A new case for the TAGE branch predictor, MICRO-44, 2011

• Skewed Compressed Caches, MICRO-47, 2014

• Focused Value Prediction, ISCA, 2020
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2. MIPS assembly programming

• Write MIPS assembly code asm1.s for code1.c in C.

• Write MIPS assembly code asm2.s for code2.c in C.

int sum = 0;
int i, j;
for (i=0; i=<100; i++)

for (j=0; j=<100; j++) sum += (j+i);

int A[200];
int sum = 0;
int i;
for (i=0; i<200; i++) A[i] = i;             /* initialize the array */
for (i=1; i<200; i++) A[i] = A[i-1] + A[i]; /* compute              */
for (i=0; i<200; i++) sum += A[i];          /* obtain the sum       */

code1.c

code2.c



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

3. Pipelined processor

• Design a three stage pipelined scalar processor supporting MIPS 
add, addi, lw, sw, and bne instructions in Verilog HDL. 
Configure the critical paths of the three stages to have smaller 
delay assuming each module delay of the next slide.
Please download proc08.v from the support page and refer it. 
Note that you do not need to implement data forwarding.

• Verify the behavior of designed processor using asm1.s and 
asm2.s. 
You may insert NOP instructions if necessary.

• The report should include a block diagram, a source code in 
Verilog HDL, the description of the changes of the code, and 
obtained waveforms of your design.
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Pipelined MIPS processor and delay of each module
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4. OoO execution and dynamic scheduling

• Draw the cycle by cycle processing behavior of these 10 
instructions

• Modify this dataflow graph and draw another cycle by cycle 
processing behavior of the graph having 10 instructions
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5. Parallel programming

• Describe an efficient parallel program for the following sequential 
program using LOCK(), UNLOCK() and BARRIER() assuming a shared 
memory architecture

• Explain why your code runs correctly
and why your code is efficient.

#define N 8      /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

void solve () {

int i, done = 0;

while (!done) {

float diff = 0;

for (i=1; i<=N; i++) { /* use A as input */

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

}

for (i=1; i<=N; i++) { /* use B as input */

A[i] = 0.333 * (B[i-1] + B[i] + B[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("| diff=%6.2f¥n", diff); /* for debug */

}

}

int main() {

int i;

for (i=1; i<N-1; i++) A[i] = B[i] = 100+i*i;

solve();

}main02.c
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6. Building blocks for synchronization 

• Fetch-and-increment reads an original value from memory and 
increments (adds one to) it in memory atomically

• Implement fetch-and-increment (FAI) using the load-linked/store-
conditional instruction pair

• Refer the discussion of implementing an atomic exchange EXCH

• Implement BARRIER() using FAI
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7. Cache coherence protocols

• Select your favorite commercial multi-core processor

• Describe the memory organization including caches and 
main memory

• cache line size, write policy, write allocate/no-allocate, 
direct-mapped/set-associative, the number of caches (L1, L2, 
and L3?)

• Describe the cache coherence protocol used there


