
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

Final Report

Ver. 2022-01-26aFiscal Year 2022

Course number: CSC.T433
School of Computing, 
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp 

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W831, HyFlex
Mon 13:45-15:25, Thr 13:45-15:25



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Final report of Advanced Computer Architecture

1. Please submit your final report describing your answers to 
questions 1 - 7 in a PDF file 
via E-mail (kise [at] c.titech.ac.jp ) by February 13, 2023
• E-mail title should be “Report of Advanced Computer 

Architecture”

2. Please submit the report in 16 pages or less on A4 size 
PDF file, including the cover page.

3. Enjoy!



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

1. Academic paper reading

• Select an academic paper from the list below and

• In your own word, describe the problem that the authors try to solve,

• Describe the key idea of the proposal,

• Describe your opinion why the authors could solve the problem 
although there may be many researchers try to solve  similar 
problems.

• List
• Prophet/critic hybrid branch prediction, ISCA’04, 2004

• The V-Way Cache: Demand Based Associativity via Global Replacement, ISCA’05, 2005

• Emulating Optimal Replacement with a Shepherd Cache, MICRO-40, 2008

• A new case for the TAGE branch predictor, MICRO-44, 2011

• Skewed Compressed Caches, MICRO-47, 2014

• Focused Value Prediction, ISCA, 2020



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

2. MIPS assembly programming

• Write MIPS assembly code asm1.s for code1.c in C.

• Write MIPS assembly code asm2.s for code2.c in C.

int sum = 0;
int i, j;
for (i=0; i=<100; i++)

for (j=0; j=<100; j++) sum += (j+i);

int A[200];
int sum = 0;
int i;
for (i=0; i<200; i++) A[i] = i;             /* initialize the array */
for (i=1; i<200; i++) A[i] = A[i-1] + A[i]; /* compute              */
for (i=0; i<200; i++) sum += A[i];          /* obtain the sum       */

code1.c

code2.c



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

3. Pipelined processor

• Design a three stage pipelined scalar processor supporting MIPS 
add, addi, lw, sw, and bne instructions in Verilog HDL. 
Configure the critical paths of the three stages to have smaller 
delay assuming each module delay of the next slide.
Please download proc08.v from the support page and refer it. 
Note that you do not need to implement data forwarding.

• Verify the behavior of designed processor using asm1.s and 
asm2.s. 
You may insert NOP instructions if necessary.

• The report should include a block diagram, a source code in 
Verilog HDL, the description of the changes of the code, and 
obtained waveforms of your design.



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Pipelined MIPS processor and delay of each module

6

m_regfile

m_regs

(32bit x 32)

+m_memory

m_imem

(32bit x 2048)

32

32

5

5

5

ID EX MEM

16

Sign
ExtIm

m

M
u

x

M
u

x m_memory

m_dmem

(32bit x 2048)

WB

M
u

x

32

32

11

32

32

+

r_pc

4 32

32

11

IF

5

w_pc4

+

Sh
ift

left 2

32

32

M
u

x

32

!
=

1

M
u

x
M

u
x

8nsec
1nsec

5nsec

5nsec

5nsec

5nsec

3nsec

1nsec

1nsec

1nsec
2nsec1nsec

8nsec4nsec

1nsec

1nsec 1nsec 1nsec

1nsec



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

4. OoO execution and dynamic scheduling

• Draw the cycle by cycle processing behavior of these 10 
instructions

• Modify this dataflow graph and draw another cycle by cycle 
processing behavior of the graph having 10 instructions

75

6

8 10

9

3

4

1 2



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Instruction window Issue Execute Commit

ROB

Retire

Cycle 1

Instruction window Issue Execute Commit

ROB

Retire

Cycle 2

Instruction window Issue Execute Commit

ROB

Retire

Cycle 3

Instruction window Issue Execute Commit

ROB

Retire

Cycle 4

Instruction window Issue Execute Commit

ROB

Retire

Cycle 5

Instruction window Issue Execute Commit

ROB

Retire

Cycle 6

Instruction window Issue Execute Commit

ROB

Retire

Cycle 7

Instruction window Issue Execute Commit

ROB

Retire

Cycle 8

Instruction window Issue Execute Commit

ROB

Retire

Cycle 9

Instruction window Issue Execute Commit

ROB

Retire

Cycle 10



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

5. Parallel programming

• Describe an efficient parallel program for the following sequential 
program using LOCK(), UNLOCK() and BARRIER() assuming a shared 
memory architecture

• Explain why your code runs correctly
and why your code is efficient.

#define N 8      /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

void solve () {

int i, done = 0;

while (!done) {

float diff = 0;

for (i=1; i<=N; i++) { /* use A as input */

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

}

for (i=1; i<=N; i++) { /* use B as input */

A[i] = 0.333 * (B[i-1] + B[i] + B[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("| diff=%6.2f¥n", diff); /* for debug */

}

}

int main() {

int i;

for (i=1; i<N-1; i++) A[i] = B[i] = 100+i*i;

solve();

}main02.c



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

6. Building blocks for synchronization 

• Fetch-and-increment reads an original value from memory and 
increments (adds one to) it in memory atomically

• Implement fetch-and-increment (FAI) using the load-linked/store-
conditional instruction pair

• Refer the discussion of implementing an atomic exchange EXCH

• Implement BARRIER() using FAI



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

7. Cache coherence protocols

• Select your favorite commercial multi-core processor

• Describe the memory organization including caches and 
main memory

• cache line size, write policy, write allocate/no-allocate, 
direct-mapped/set-associative, the number of caches (L1, L2, 
and L3?)

• Describe the cache coherence protocol used there


