Fiscal Year 2022

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

13. Thread Level Parallelism: Memory Consistency

Model
y
www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W831, HyFlex Kenji Kise, Department of Computer Science
Mon 13:45-15:25, Thr 13:45-15:25 Kise _at__ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Key components of many-core processors

* Main memory and caches

« New issues

memory consistency

* Core
* High-performance superscalar
processor providing a hardware e L e T e L
meChaniSm 1-0 Suppor'T Thr‘ead Caches Caches Caches Caches
sy n C h r‘o n i ZGT io n | ; Infirconnec’rion nef;wor'k . |
Y Y
Main memory (DRAM) I/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Orchestration

« LOCK and UNLOCK around critical section
« Lock provides exclusive access to the locked data.
« Set of operations we want to execute atomically

« BARRIER ensures all reach here

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0; /* variable in shared memory */

void solve pp (int pid, int ncores) {
int i, done = ©;
int mymin = 1 + (pid * N/ncores);
int mymax = mymin + N/ncores - 1;
while (!done) {
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]);
}
LOCK();
diff = diff + mydiff;
UNLOCK() ;

BARRIER();

if (diff <TOL) done = 1;

BARRIER();

if (pid==1) diff = 0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];
BARRIER();

/* private variables */
/* private variable
/* private variable

*/
*/

}
}
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

These operations must be executed
atomically

(1) load diff
(2) add
(3) store diff

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

Synchronization

* Basic building blocks (instructions) :
« Atomic exchange
« Swaps register with memory location
« Test-and-set
« Sets under condition

« Fetch-and-increment
* Reads original value from memory and increments it in memory

« These requires memory read and write in uninterruptable
instruction

* |oad linked/store conditional

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Implementing an exchange EXCH

« EXCHR4,0(R1) :exchange R4 and O(R1)

« Why isn't this code atomic?

LW R2,0(R1) ; load word, Tmp <- shared data
SW R4,0(R1) ; store word, R4 -> shared data
ADD R4,R2,RO ; copy, R4 <- Tmp

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Coherence 4 (C4)

e CoreB

e« Source: Processor
« State: Invalid
* Request: Write miss

« C4 (Core A, Q0 \\

Source: Bus
State: Shared
Request: Write miss

* Function: Place write miss on bus * Function: attempt to write shared block;
invalidate the cache block

A B | Source: Procgssorj C D
| | Request: Write miss I I

I I u=9 I I

I I I I

Slu=7| - I Slu=7| -~ I ~

Bus ‘g#dob write miss ‘grzkdo’p <:60p

A | Source: Bus B | Source: Processor C |Source: Bus D .
I Request: Write miss | Request: Write miss | Request: Write miss | No action

I I U=9 I I

I I I I

I M| u=9 I I

load a block from memory

ﬁv Bus
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Implementing an atomic exchange EXCH

\
* Load linked/store conditional instructions x

« If the contents of the memory location specified by the load
linked are changed before the store conditional o the same
address, the store conditional fails

« Store conditional instruction
* it returns 1if it was successful and O otherwise

« EXCHR4,0(R1) ;exchange R4 and O(R1) atomically

move exchange value, R3=R4

try: ADD R3,R4,R0 ;
LL R2,0(R1) ;
SC R3,0(R1) ;

load linked
store conditional

BEQ R3,R0O,try 5
ADD R4,R2,R0 5

branch if store fails (R3==0)
put load value in R4, R4=R2

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Datapath of SMT Oo0O execution processor

Instruction flow

Instruction cache

e ;

Branch handler It Instruction fetch I

Instruction decode

Renaming I Map table/free tag buffer I |

Register file > Dispatch
RS Integer Floating-point | Memory N‘\emor‘y dataflow
. |] | | |] e
Instructiol T [7'[1] (T[] [ITLL] [TT11] [ILIT] >
window i i i ¥ v v H
ALU_| ALU_| Branch | | FPALU %l %l W LL insn
i i A
v ! no atomic
e [(TITTTT] w
||||||||||||||||||||J Storg | |
Reor'der buffer (ROB) queue » Data cache |
= Register dataflow

Af_a'

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH Reservation station (RS) 8

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Implementing Locks (simple version)

\

« Spin lock
« Rl is the address of the lock variable and its initial value is O (not
locked).
ADDI R4, Re, 1 ; R2 =1
lockit: EXCH R4, 0(R1) ; atomic exchange

BNE R4,R0,1lockit ; already locked?

EXCH R4,0(R1) ; exchange R4 and O(R1) atomically

try: ADD R3,R4,R0O ; move exchange value, R3=R4
LL R2,0(R1) ; load linked
SC R3,0(R1) ; store conditional
BEQ R3,R0,try ; branch if store fails (R3==0)
ADD R4,R2,R0O ; put load value in R4, R4=R2

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Implementing Locks using coherence
A
« Spin lock
« Rl is the address of the lock variable and its initial value is O.

« We can cache the lock using the coherence mechanism to maintain
the lock value coherently.

« This code spins by doing read on a local copy of the lock until it
successfully sees that the lock is available (lock variable is 0).

lockit: LD R4, O(R1) ; load of lock
BNE R4,R0,1lockit ; not available-spin if R4==1
ADDI R4,R0O,1 ; load locked value, R4<=1
EXCH R4,0(R1) 5 swap

BNE R4,R0,lockit ; branch if lock wasn’t ©

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Performance Factors

CPU execution time _ ___# CPU clock cycles for a program __
for a program clock rate
Performance = clock rate x 1/ # CPU clock cycles for a program

for a program

« Performance = f x IPC

f: frequency (clock rate)
« TIPC: retired instructions per cycle

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

int flag = 1;

int foo(){
while(flag);

}

\

12

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

13

Implementing Unlocks using coherence

* Unlock

« Just resetting the lock variable

unlock: SW RO, 0(R1) ; reset the lock, lock variable = ©

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

14

Implementing Barriers using coherence

« This code counts up the arrived threads using a shared variable counter.

« If all threads increments the variable, the last thread set the shared
variable flag to exit the barrier.

BARRIER(){
int mycount;
LOCK () ;
if (counter == @) flag = @; /* counter and flag are shared data */
counter = counter + 1; /* increment counter */
mycount = counter; /* mycount is a private variable */
UNLOCK () ;
if (mycount == p) {
counter = 0;
flag = 1;
}
else while (flag == 0); /* wait until all threads reach BARRIER */
}

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

15

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

16

Memory consistency: problem in multi-core context X
\

« Assume that A=0 and Flag=0 initially

« Core1(Cl) writes data into A and sets Flag to tell C2 that data value
can be read (loaded) from A.

« C2 waits till Flag is set and then reads (loads) data from A.
« What is the printed value by C2?

Cl (Core 1) C2 (Core 2)
A = 3; while (Flag==0);
Flag = 1; print A;

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Problem in multi-core context x
\

« If the two writes (stores) of different addresses on C1 can be
reordered, it is possible for C2 to read O from variable A.
« This can happen on most modern processors.

« For single-core processor, Codel and Code?2 are equivalent. These
writes may be reordered by compilers statically or by OoO
execution units dynamically.

« The printed value by C2 will be O or 3.

Codel Code?2
A = 3; Flag = 1;
Flag = 1; A = 3;
Cl (Core 1) C2 (Core 2)
A = 3; while (Flag==0);
Flag = 1; print A;

ﬁw Assume that A=0 and Flag=0 initially
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Problem in multi-core context \2\%
\

« Assume that A=0 and B=0 initially
 Should be impossible for both outputs to be zero.
 Intuitively, the outputs may be 01, 10, and 11.

Cl (Core 1) C2 (Core 2)
A=1; B =1;
print B; print A;

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Examples

\
« Assume that A=0 and B=0 initially 2%

time
Cl (Core 1) C2 (Core 2)

A=1;
print B; — 0

B =1;
print A;—/— 1

The outputs are 01.

Cl (Core 1) C2 (Core 2)
A=1;
B =1;

print A;—— 1
print B; — 1

The outputs are 11.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Problem in multi-core context \2\%
\

« Assume that A=0 and B=0 initially
 Should be impossible for both outputs to be zero.
 Intuitively, the outputs may be 01, 10, and 11.

 This is true only if reads and writes on the same core to
different locations are not reordered by the compiler or
the hardware.

« The outputs may be 01, 10, 11, and 00.

Cl (Core 1) C2 (Core 2)
A=1; B =1;
print B; print A;

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Memory Consistency Models

\
« A single-core processor can reorder instructions subject only to X
control and data dependence constraints

* These constraints are not sufficient in shared-memory multi-cores
 simple parallel programs may produce counter-intuitive results

* Question: what constraints must we put on single-core instruction
reordering so that

* shared-memory programming is intuitive
« but we do not lose single-core performance?

» The answers are called memory consistency models supported by
the processor

« Memory consistency models are all about ordering constraints on
independent memory operations in a single-core's instruction stream

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

23

Simple and Intuitive Model: Sequential Consistency X
\

« Sequential consistency (SC) model

Tt constrains all memory operations:
« Worite -> Read
* Write -> Write
« Read -> Read
« Read -> Write
« Simple model for reasoning about parallel programs

* You can verify that the examples considered earlier work
correctly under sequential consistency.

 This simplicity comes at the cost of single-core performance.
« How to implement SC?

« How do we modify sequential consistency model with the
demands of performance?

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Relaxed consistency model: Weak Consistency X
\

* Programmer specifies regions within which global memory

operations can be reordered
 Processor has fence or sync instruction:

* all data operations before fence in program order must complete

before fence is executed

* all data operations after fence in program order must wait for

fence to complete
 fences are performed in program order

« Example: MIPS has SYNC instruction

* Implementation of SYNC

* a processor may flush all instructions

when a SYNC instruction is retired
Program

execution \

ﬁw Memory operations within a region can be reordered
c

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

y

- - Fence, Sync

- - Fence, Sync

25

Datapath of SMT Oo0O execution processor

Instruction flow

Instruction cache

e ;

Branch handler It Instruction fetch I

Instruction decode

Renaming I Map table/free tag buffer I |

Register file > Dispatch
RS Integer Floating-point | Memory N‘\emor‘y dataflow
. |] | | |] e
Instructiol T [7'[1] (T[] [ITLL] [TT11] [ILIT] >
window i i i ¥ v v H
ALU_| ALU_| Branch | | FPALU %l %l W LL insn
i i A .I
v ! no atomic
e [(TITTTT] w
||||||||||||||||||||J Storg | |
Reor'der buffer (ROB) queue » Data cache |
= Register dataflow

Af_a'

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH Reservation station (RS) 26

Release Consistency Model

A

<

Semantics of Release: A

Further relaxation of weak consistency

fence instruction is divided into
Acquire: operation like lock
Release: operation like unlock

SemGnTICS Of Achir'e: Program

execution

Acquire must complete before all following
memory accesses

Memory operations in region B and C must
complete after Acquire B

— — = Acquire B

— = = Release B

— = = Acquire D

all memory operations before Region
Release are complete B

Memory operations in region A - _____________
and B must complete Release B
before Release B

Release D -—c——=—=--——————_

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

- = = Release D

\

Memory Consistency Model

\
* Inthe literature, there are a large number of other consistency 2%
models

« Sequential Consistency

« Causal Consistency

* Processor Consistency

« Weak Consistency (Weak Ordering)
« Release Consistency

« Entry Consistency

« It is important tfo remember that these are concerned with
reordering of independent memory operations within a single
thread.

» Weak or Release Consistency Models are adequate

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

Key components of many-core processors
A
« Interconnection network

* connecting many modules on a chip achieving high throughput
and low latency

* Main memory and caches
« Caches are used to reduce latency and to lower network traffic
A parallel program has private data and shared data
« New issues are cache coherence and memory consistency

* Core

System
* High-performance superscalar
processor providing a hardware e L e T e L
mZChGnism 1-0 SUPPOPT Thr.ead Caches Caches Caches Caches
Sy n C h r'o n i ZGT io n | ; In’zrconnec’rion nef;work . |
v v
Main memory (DRAM) I/0

~ =
! 29

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Putting It All Together

+ 18 core
+ 2D mesh topology

]

CORE 19

X-series

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Syllabus (3/3)

Course schedule/Required learning

Class 1

Class 2

Class 3

Class 4

Course schedule

Design and Analysis of Computer Systems

Instruction Set Architecture

Memory Hierarchy Design

Pipelining

Required learning

Understand the basic of design and analysis of
computer systems.

Understand the examples of instruction set
architectures

Understand the organization of memary hierarchy
designs

Understand the idea and organization of pipelining

Class 5

Class 6

Class 7

Class 8

Class 2

Class 10

Instruction Level Parzllelism: Concepts and Chellenges

Instruction Level Parzllelism: Instruction Fetch and Branch Preadiction

Instruction Level Parzllelism: Advanced Techniques for Branch Prediction

Instruction Level Parallelism: Dynamic Scheduling

Instruction Level Parzllelism: Expleiting ILP Using Multiple Issue and
Speculation

Instruction Level Parzllelism: Out-of-order Execution and Multithreading

Understand the idea and requirements for exploiting
instruction level parallelism

Understand the organization of instruction fetch and
branch predictions to exploit instruction lavel
parallelism

Understand the advanced techniques for branch
prediction to exploit instruction level parallelism

Understand the dynamic scheduling to exploit
instruction level parallelism

Understand the multiple issue mechanism and
speculation to exploit instruction level parallelism

Understand the out-of-order execution and
multithreading to exploit instruction level parzllelism

Class 11

Class 12

Class 13

Class 14

Multi-Processor: Distributed Memory and Shared Memory Architecture

Thread Level Parzllelism: Coherence and Synchronization

Thread Level Parallelism: Memory Consistency Model

Thread Level Parallelism: Interconnection Network and Man-core
Processors

Understand the distributed memeory and shared
memory architecture for multi-processors

Understand the coherence and synchronization for
thread level parallelism

Understand the memory consistency medel for thread
level parallelism

Understand the interconnection network and many-
core processors for thread level parallelism

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Final report of Advanced Computer Architecture

\
1. Please submit your final report describing your answers Tox
questions 1 - 7 in a PDF file
via E-mail (kise [at] c.titech.ac.jp) by February 13, 2023

E-mail title should be "Report of Advanced Computer
Architecture”

2. Please submit the report in 16 pages or less on A4 size
PDF file, including the cover page.

3. Enjoy!

K CSC.T433 Advance d Computer Architecture, Department of Computer Science, TOKYO TECH 32

