
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

13. Thread Level Parallelism: Memory Consistency
Model

Ver. 2023-02-02aFiscal Year 2022

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W831, HyFlex
Mon 13:45-15:25, Thr 13:45-15:25

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput
and low latency

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Orchestration

• LOCK and UNLOCK around critical section

• Lock provides exclusive access to the locked data.

• Set of operations we want to execute atomically

• BARRIER ensures all reach here

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable in shared memory */

void solve_pp (int pid, int ncores) {

int i, done = 0; /* private variables */

int mymin = 1 + (pid * N/ncores); /* private variable */

int mymax = mymin + N/ncores – 1; /* private variable */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

LOCK();

diff = diff + mydiff;

UNLOCK();

BARRIER();

if (diff <TOL) done = 1;

BARRIER();

if (pid==1) diff = 0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

BARRIER();

}

}

(1) load diff
(2) add
(3) store diff

These operations must be executed
atomically

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Synchronization

• Basic building blocks (instructions) :
• Atomic exchange

• Swaps register with memory location

• Test-and-set
• Sets under condition

• Fetch-and-increment
• Reads original value from memory and increments it in memory

• These requires memory read and write in uninterruptable
instruction

• load linked/store conditional
• If the contents of the memory location specified by the load linked

are changed before the store conditional to the same address, the
store conditional fails

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Implementing an exchange EXCH

• EXCH R4,0(R1) ; exchange R4 and 0(R1)

• Why isn’t this code atomic?

LW R2,0(R1) ; load word, Tmp <- shared data

SW R4,0(R1) ; store word, R4 -> shared data

ADD R4,R2,R0 ; copy, R4 <- Tmp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Coherence 4 (C4)

• Core B

• Source: Processor

• State: Invalid

• Request: Write miss

• Function: Place write miss on bus

• C4 (Core A, C)

• Source: Bus

• State: Shared

• Request: Write miss

• Function: attempt to write shared block;
invalidate the cache block

Bus

A

I
I

u=7S

Source: Processor
Request: Write miss

B

I
I
I

C

I
I

u=7S

D

I
I
I

write miss

Bus

A

I
I
I

Source: Processor
Request: Write miss

B

I
I

u=9M

C

I
I
I

D

I
I
I

No action

load a block from memory

Source: Bus
Request: Write miss

Source: Bus
Request: Write miss

u=9

u=9

Snoop Snoop Snoop

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Implementing an atomic exchange EXCH

• Load linked/store conditional instructions
• If the contents of the memory location specified by the load

linked are changed before the store conditional to the same
address, the store conditional fails

• Store conditional instruction
• it returns 1 if it was successful and 0 otherwise

• EXCH R4,0(R1) ; exchange R4 and 0(R1) atomically

try: ADD R3,R4,R0 ; move exchange value, R3=R4

LL R2,0(R1) ; load linked

SC R3,0(R1) ; store conditional

BEQ R3,R0,try ; branch if store fails (R3==0)

ADD R4,R2,R0 ; put load value in R4, R4=R2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Datapath of SMT OoO execution processor

Instruction cache

Data cache

Integer

Branch FP ALU

Floating-point Memory

Reorder buffer (ROB)
Store
queue

Adr gen.Adr gen.ALU ALU

Register file

RS

Branch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decode

Dispatch

Renaming

Instruction fetch

Reservation station (RS)

Instruction
window

PCPC

Map table/free tag bufferMap table/free tag buffer

Register file

LL insn

no atomic

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Implementing Locks (simple version)

• Spin lock
• R1 is the address of the lock variable and its initial value is 0 (not

locked).

ADDI R4, R0, 1 ; R2 = 1

lockit: EXCH R4, 0(R1) ; atomic exchange

BNE R4,R0,lockit ; already locked?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Implementing Locks using coherence

• Spin lock
• R1 is the address of the lock variable and its initial value is 0.

• We can cache the lock using the coherence mechanism to maintain
the lock value coherently.

• This code spins by doing read on a local copy of the lock until it
successfully sees that the lock is available (lock variable is 0).

lockit: LD R4, 0(R1) ; load of lock

BNE R4,R0,lockit ; not available-spin if R4==1

ADDI R4,R0,1 ; load locked value, R4<=1

EXCH R4,0(R1) ; swap

BNE R4,R0,lockit ; branch if lock wasn’t 0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Performance Factors

• Performance = f x IPC
• f: frequency (clock rate)

• IPC: retired instructions per cycle

CPU execution time # CPU clock cycles for a program

for a program clock rate
= ---

int flag = 1;

int foo(){
while(flag);

}

Performance = clock rate x 1 / # CPU clock cycles for a program

for a program

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Implementing Unlocks using coherence

• Unlock
• Just resetting the lock variable

unlock: SW R0, 0(R1) ; reset the lock, lock_variable = 0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Implementing Barriers using coherence

• This code counts up the arrived threads using a shared variable counter.

• If all threads increments the variable, the last thread set the shared
variable flag to exit the barrier.

BARRIER(){
int mycount;
LOCK();

if (counter == 0) flag = 0; /* counter and flag are shared data */
counter = counter + 1; /* increment counter */
mycount = counter; /* mycount is a private variable */

UNLOCK();
if (mycount == p) {

counter = 0;
flag = 1;

}
else while (flag == 0); /* wait until all threads reach BARRIER */

}

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Memory consistency: problem in multi-core context

• Assume that A=0 and Flag=0 initially

• Core 1 (C1) writes data into A and sets Flag to tell C2 that data value
can be read (loaded) from A.

• C2 waits till Flag is set and then reads (loads) data from A.

• What is the printed value by C2?

A = 3; while (Flag==0);
Flag = 1; print A;

C1 (Core 1) C2 (Core 2)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Problem in multi-core context

• If the two writes (stores) of different addresses on C1 can be
reordered, it is possible for C2 to read 0 from variable A.

• This can happen on most modern processors.

• For single-core processor, Code1 and Code2 are equivalent. These
writes may be reordered by compilers statically or by OoO
execution units dynamically.

• The printed value by C2 will be 0 or 3.

A = 3;
Flag = 1;

Code1

Flag = 1;
A = 3;

Code2

A = 3; while (Flag==0);
Flag = 1; print A;

C1 (Core 1) C2 (Core 2)

Assume that A=0 and Flag=0 initially

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Problem in multi-core context

• Assume that A=0 and B=0 initially

• Should be impossible for both outputs to be zero.

• Intuitively, the outputs may be 01, 10, and 11.

A = 1; B = 1;
print B; print A;

C1 (Core 1) C2 (Core 2)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Examples

• Assume that A=0 and B=0 initially

C1 (Core 1) C2 (Core 2)

A = 1;
print B;

B = 1;
print A;

0

1

The outputs are 01.

C1 (Core 1) C2 (Core 2)

A = 1;

print B;

B = 1;

print A;

1

1

The outputs are 11.

time

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Problem in multi-core context

• Assume that A=0 and B=0 initially

• Should be impossible for both outputs to be zero.

• Intuitively, the outputs may be 01, 10, and 11.

• This is true only if reads and writes on the same core to
different locations are not reordered by the compiler or
the hardware.

• The outputs may be 01, 10, 11, and 00.

A = 1; B = 1;
print B; print A;

C1 (Core 1) C2 (Core 2)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Memory Consistency Models

• A single-core processor can reorder instructions subject only to
control and data dependence constraints

• These constraints are not sufficient in shared-memory multi-cores

• simple parallel programs may produce counter-intuitive results

• Question: what constraints must we put on single-core instruction
reordering so that

• shared-memory programming is intuitive

• but we do not lose single-core performance?

• The answers are called memory consistency models supported by
the processor

• Memory consistency models are all about ordering constraints on
independent memory operations in a single-core’s instruction stream

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Simple and Intuitive Model: Sequential Consistency

• Sequential consistency (SC) model

• It constrains all memory operations:

• Write -> Read

• Write -> Write

• Read -> Read

• Read -> Write

• Simple model for reasoning about parallel programs

• You can verify that the examples considered earlier work
correctly under sequential consistency.

• This simplicity comes at the cost of single-core performance.
• How to implement SC?

• How do we modify sequential consistency model with the
demands of performance?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

Relaxed consistency model: Weak Consistency

• Programmer specifies regions within which global memory
operations can be reordered

• Processor has fence or sync instruction:
• all data operations before fence in program order must complete

before fence is executed

• all data operations after fence in program order must wait for
fence to complete

• fences are performed in program order

• Example: MIPS has SYNC instruction

• Implementation of SYNC
• a processor may flush all instructions

when a SYNC instruction is retired
Program
execution

Fence, Sync

Fence, Sync

Region
A

Region
B

Region
C

Memory operations within a region can be reordered

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

Datapath of SMT OoO execution processor

Instruction cache

Data cache

Integer

Branch FP ALU

Floating-point Memory

Reorder buffer (ROB)
Store
queue

Adr gen.Adr gen.ALU ALU

Register file

RS

Branch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decode

Dispatch

Renaming

Instruction fetch

Reservation station (RS)

Instruction
window

PCPC

Map table/free tag bufferMap table/free tag buffer

Register file

LL insn

no atomic

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

Release Consistency Model

• Further relaxation of weak consistency

• A fence instruction is divided into

• Acquire: operation like lock

• Release: operation like unlock

• Semantics of Acquire:

• Acquire must complete before all following
memory accesses

• Memory operations in region B and C must
complete after Acquire B

• Semantics of Release:

• all memory operations before
Release are complete

• Memory operations in region A
and B must complete
before Release B

Acquire B

Release B

Region
A

Region
B

Region
C

Acquire B

Release B

Region
A

Region
B

Region
CProgram

execution

Acquire D

Release D

Region
D

Region
D

Release D

Acquire D

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

Memory Consistency Model

• In the literature, there are a large number of other consistency
models
• Sequential Consistency

• Causal Consistency

• Processor Consistency

• Weak Consistency (Weak Ordering)

• Release Consistency

• Entry Consistency

• …

• It is important to remember that these are concerned with
reordering of independent memory operations within a single
thread.

• Weak or Release Consistency Models are adequate

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput
and low latency

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30

Putting It All Together

• 18 core

• 2D mesh topology

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 31

Syllabus (3/3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 32

Final report of Advanced Computer Architecture

1. Please submit your final report describing your answers to
questions 1 - 7 in a PDF file
via E-mail (kise [at] c.titech.ac.jp) by February 13, 2023
• E-mail title should be “Report of Advanced Computer

Architecture”

2. Please submit the report in 16 pages or less on A4 size
PDF file, including the cover page.

3. Enjoy!

