
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

12. Thread Level Parallelism: Coherence and
Synchronization

Ver. 2023-01-25aFiscal Year 2022

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W831, HyFlex
Mon 13:45-15:25, Thr 13:45-15:25

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

System

Chip

Shared memory many-core architecture

• The single-chip integrates many cores (conventional processors) and an
interconnection network.

• All the processors can access the same address space of the main memory
(shared memory) through an interconnection network.

• The shared memory or shared address space (SAS) is used as a means for
communication between the processors.

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Intel Skylake-X, Core i9-7980XE, 2017

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Datapath of Virtual Channel (VC) NoC router

• To mitigate head-of-line (HOL) blocking, virtual channels are used

N (Y-)

E (X+)

S (Y+)

W (X-)

VC0

VC1

VC2

VC0

VC1

VC2

VC0

VC1

VC2

VC0

VC1

VC2

N (Y-)

E (X+)

S (Y+)

W (X-)

X

VC0

VC1

VC2

PM
(Module)

PM
(Module)

FIFO full

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

N (Y-)

E (X+)

S (Y+)

W (X-)

PM
(Module)

X

FIFO full

HOL blocking

VC NoC routerSimple NoC router

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput
and low latency

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4Proc3

Caches Caches CachesCaches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)

20Tag 10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

What kind of locality are we taking advantage of?

20

Data

32

Hit

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Cache writing policy

• Write-through

• writing is done synchronously both to the cache and to the main
memory. All stores update the main memory.

• Write-back

• initially, writing is done only to the cache. The write to the main
memory is postponed until the modified content is about to be
replaced by another cache block.

• reduces the required network and memory bandwidth.

• Which policy is better for many-core?
System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Cache coherence problem

• Processors (cores) see different values for shared data u after event 3

• With write-back caches, value written back to memory depends on which
cache flushes or writes back value when

• Processes accessing main memory may see stale (out-of-date) value

• Unacceptable for programming, and its frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5

1

u :5

2

u :5

3

u= 7

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Cache coherence problem

• Processors may see different values through their caches

• assuming a write-back cache

• after the value of X has been written by A, A’s cache
contains the new value, but B’s cache and the main memory do
not

11

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Cache coherence and enforcing coherence

• Cache coherence
• All reads by any processor must return the most recently

written value

• Writes to the same location by any two processors are seen
in the same order by all processors

• Cache coherence protocols
• Snooping (write invalidate / write update)

• Each core tracks sharing status of each block

• Directory based
• Sharing status of each block kept in one location

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Snooping coherence protocols using bus network

• Write invalidate
• On write, invalidate all other copies by an invalidate broadcast

• Use bus itself to serialize
• Write cannot complete until bus access is obtained

• Write update

• On write, update all copies

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Snooping coherence protocols using bus network

• A write invalidate, cache coherence protocol for a private write-back cache
showing the states and state transitions for each block in the cache

Modified

MSI (Modified, Shared, Invalid) protocol

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Bus Network

• N cores (), N switch (), 1 link (the bus)

• Only 1 simultaneous transfer at a time

• NB (best case) = link (bus) bandwidth x 1

• BB (worst case) = link (bus) bandwidth x 1

• All processors can snoop the bus

Core or processor node

A B C D E F

A B C D E F

The case where core B sends a packet to someone

Snoop Snoop Snoop Snoop Snoop Snoop

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Snooping coherence protocols using bus network

• The coherence mechanism of a private cache

C1

C2

C3

C4

C5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Coherence 1 (C1) and Coherence3 (C3)

• C1 (Core A)

• Source: Processor

• State: Shared

• Request: Write hit

• Function: Place invalidate on bus

Bus

A

I
I

u=5S

Source: Processor
Request: Write hit

u=7

B

I
I

u=5S

C

I
I
I

D

I
I

u=5S
invalidate

• C3 (Core B, D)

• Source: Bus

• State: Shared

• Request: Invalidate

• Function: attempt to write shared block;
invalidate the block

Bus

A

u=7M

Source: Processor
Request: Write hit

u=7

B

I
I
I

C

I
I
I

D

I
I
I

invalidate

Source: Bus
Request: Inv.

Source: Bus
Request: Inv.

No action

Snoop Snoop Snoop

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Snooping coherence protocols using bus network

• The coherence mechanism of a private cache

C1

C2

C3

C4

C5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Coherence 2 (C2)

• Core C

• Source: Processor

• State: Invalid

• Request: Read miss

• Function: Place read miss on bus

• C2 (Core A)

• Source: Bus

• State: Modified

• Request: Read miss

• Function: attempt to shared data; place cache
block on bus and change state to shared

Bus

A

I
I

u=7M

Source: Processor
Request: Read miss

cache miss

B

I
I
I

C

I
I
I

D

I
I
I

read miss

Bus

A

I
I

u=7S

Source: Processor
Request: Read miss

B

I
I
I

C

I
I

u=7S

D

I
I
I

u=7

Source: Bus
Request: Read miss

No action No action

date

Snoop Snoop Snoop

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Snooping coherence protocols using bus network

• The coherence mechanism of a private cache

C1

C2

C3

C4

C5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Coherence 4 (C4)

• Core B

• Source: Processor

• State: Invalid

• Request: Write miss

• Function: Place write miss on bus

• C4 (Core A, C)

• Source: Bus

• State: Shared

• Request: Write miss

• Function: attempt to write shared block;
invalidate the cache block

Bus

A

I
I

u=7S

Source: Processor
Request: Write miss

B

I
I
I

C

I
I

u=7S

D

I
I
I

write miss

Bus

A

I
I
I

Source: Processor
Request: Write miss

B

I
I

u=9M

C

I
I
I

D

I
I
I

No action

load a block from memory

Source: Bus
Request: Write miss

Source: Bus
Request: Write miss

u=9

u=9

Snoop Snoop Snoop

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Snooping coherence protocols using bus network

• The coherence mechanism of a private cache

C1

C2

C3

C4

C5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Snooping coherence protocols using bus network

• A write invalidate, cache coherence protocol for a private write-back cache
showing the states and state transitions for each block in the cache

Modified

MSI (Modified, Shared, Invalid) protocol

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Snooping coherence protocols using bus network

• The basic coherence protocol

• MSI (Modified, Shared, Invalid) protocol

• Extensions

• MESI (Modified, Exclusive, Shared, Invalid) protocol

• MOESI (MESI + Owned) protocol

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Intel Single-Chip Cloud Computer (2009)

• To research multi-core processors and parallel processing.

Intel Single-Chip Cloud Computer (48 Core)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

Directory protocols

• Snooping coherence protocols are based on the use of bus
network.
What are the protocols for mesh topology NoC?

• Directory protocols

• A logically-central directory keeps track of where the copies
of each cache block reside. Caches consult this directory to
ensure coherence.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

Snooping coherence protocol and one with directory

Bus

A

I
I

u=5S

Source: Processor
Request: Write hit

u=7

B

I
I

u=5S

C

I
I
I

D

I
I

u=5S
invalidate Snoop Snoop Snoop

A

I
I

u=5S

Source: Processor
Request: Write hit

u=7

B

I
I

u=5S

C

I
I
I

D

I
I

u=5S

Shared by A, B, Du

Network

Directory

(1) Access directory

(2) send invalidate to proper cores

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

8

Index

Data (4 word)

Index TagValid

0

1

2

.

.

.

253

254

255

Byte
offset

20

20
Tag

Hit Data

32

Block offset

Two caches of different block sizes

20Tag 10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

20

Data

32

Hit

One word/block Four words/block

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

Coherence influences the cache miss rate

• Coherence misses

• True sharing misses

• Write to shared block (transmission of invalidation)

• Read

• False sharing misses

u=5S

u=7M

v=6
u=7

u=5S

I

A B

invalidate u

u=5S

u=7M

u=7

u=5S

I

A B

v=6

v=6

invalidate u and v

cache block of one word cache block of two words

v=6S

v=6S

read v, hit read v, miss

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput
and low latency

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4Proc3

Caches Caches CachesCaches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30

this slide is to be used as a whiteboard

