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System

Chip

Shared memory many-core architecture

• The single-chip integrates many cores (conventional processors) and an 
interconnection network.

• All the processors can access the same address space of the main memory 
(shared memory) through an interconnection network.

• The shared memory or shared address space (SAS) is used as a means for 
communication between the processors.
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Intel Skylake-X, Core i9-7980XE, 2017



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Datapath of Virtual Channel (VC) NoC router

• To mitigate head-of-line (HOL) blocking, virtual channels are used
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Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput 
and low latency 

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware 
mechanism to support thread 
synchronization
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MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)
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Cache writing policy

• Write-through

• writing is done synchronously both to the cache and to the main 
memory. All stores update the main memory.

• Write-back

• initially, writing is done only to the cache. The write to the main 
memory is postponed until the modified content is about to be 
replaced by another cache block.

• reduces the required network and memory bandwidth.

• Which policy is better for many-core?
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Cache coherence problem

• Processors (cores) see different values for shared data u after event 3

• With write-back caches, value written back to memory depends on which 
cache flushes or writes back value when

• Processes accessing main memory may see stale (out-of-date) value

• Unacceptable for programming, and its frequent!
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Cache coherence problem

• Processors may see different values through their caches

• assuming a write-back cache

• after the value of X has been written by A, A’s cache 
contains the new value, but B’s cache and the main memory do 
not

11
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this slide is to be used as a whiteboard
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Cache coherence and enforcing coherence

• Cache coherence 
• All reads by any processor must return the most recently 

written value

• Writes to the same location by any two processors are seen 
in the same order by all processors

• Cache coherence protocols
• Snooping (write invalidate / write update)

• Each core tracks sharing status of each block

• Directory based
• Sharing status of each block kept in one location
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Snooping coherence protocols using bus network

• Write invalidate
• On write, invalidate all other copies by an invalidate broadcast

• Use bus itself to serialize
• Write cannot complete until bus access is obtained

• Write update

• On write, update all copies
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this slide is to be used as a whiteboard
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Snooping coherence protocols using bus network

• A write invalidate, cache coherence protocol for a private write-back cache 
showing the states and state transitions for each block in the cache

Modified

MSI (Modified, Shared, Invalid) protocol
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Bus Network

• N cores (    ),  N switch  (    ),  1 link (the bus)

• Only 1 simultaneous transfer at a time

• NB (best case) = link (bus) bandwidth x 1

• BB (worst case)  = link (bus) bandwidth x 1

• All processors can snoop the bus

Core or processor node

A B C D E F

A B C D E F

The case where core B sends a packet to someone

Snoop Snoop Snoop Snoop Snoop Snoop



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Snooping coherence protocols using bus network

• The coherence mechanism of a private cache
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Coherence 1 (C1) and Coherence3 (C3)

• C1 (Core A)

• Source: Processor

• State: Shared

• Request: Write hit

• Function: Place invalidate on bus
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• C3 (Core B, D)

• Source: Bus

• State: Shared

• Request: Invalidate

• Function: attempt to write shared block; 
invalidate the block
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Snooping coherence protocols using bus network

• The coherence mechanism of a private cache
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Coherence 2 (C2)

• Core C

• Source: Processor

• State: Invalid

• Request: Read miss

• Function: Place read miss on bus

• C2 (Core A)

• Source: Bus

• State: Modified

• Request: Read miss

• Function: attempt to shared data; place cache 
block on bus and change state to shared
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Snooping coherence protocols using bus network

• The coherence mechanism of a private cache
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Coherence 4 (C4)

• Core B

• Source: Processor

• State: Invalid

• Request: Write miss

• Function: Place write miss on bus

• C4 (Core A, C)

• Source: Bus

• State: Shared

• Request: Write miss

• Function: attempt to write shared block; 
invalidate the cache block
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Snooping coherence protocols using bus network

• The coherence mechanism of a private cache
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Snooping coherence protocols using bus network

• A write invalidate, cache coherence protocol for a private write-back cache 
showing the states and state transitions for each block in the cache

Modified

MSI (Modified, Shared, Invalid) protocol
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Snooping coherence protocols using bus network

• The basic coherence protocol

• MSI (Modified, Shared, Invalid) protocol

• Extensions

• MESI (Modified, Exclusive, Shared, Invalid) protocol

• MOESI (MESI + Owned) protocol
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Intel Single-Chip Cloud Computer (2009)

• To research multi-core processors and parallel processing.

Intel Single-Chip Cloud Computer (48 Core)
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Directory protocols

• Snooping coherence protocols are based on the use of bus 
network. 
What are the protocols for mesh topology NoC? 

• Directory protocols

• A logically-central directory keeps track of where the copies 
of each cache block reside. Caches consult this directory to 
ensure coherence.
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Snooping coherence protocol and one with directory
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Coherence influences the cache miss rate

• Coherence misses

• True sharing misses

• Write to shared block (transmission of invalidation)

• Read

• False sharing misses
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Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput 
and low latency 

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware 
mechanism to support thread 
synchronization
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