Fiscal Year 2022

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

10. Multi-Processor: Distributed Memory and
Shared Memory Architecture
&

www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W831, HyFlex Kenji Kise, Department of Computer Science
Mon 13:45-15:25, Thr 13:45-15:25 Kise _at__ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Instruction pipeline of OoO execution processor x
\

* Allocating instructions to instruction window is called dispatch
« Issue or fire wakes up instructions and their executions begin

« Incommit stage, the computed values are written back to ROB
(reorder buffer)

« The last stage is called retire or graduate. The completed consecutive
instructions can be retired.
The result is written back to register file (architectural register file
of 32 registers) using a logical register number from $0 to $31.

Instruction
window
eteh | Decode s:r?;fr:rii; Dl Out-of-order back-end
In-order front-end Issue E&‘Z;‘ffy/ Commit
|
ROB[| [[I [[T [[[[] Retire

ﬁ’ In-order retirement [
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Datapath of OoO execution processor

Instruction cache

—_—

\ 4

Instruction flow

Branch handler It

Instruction fetch I

Instruction decode

Instruction decode |
__Feraning__|
__Dispatch |

FP ALU

ALU I ALU l Branchl
‘T

Renaming
» Register file > Dispatch
RS Integer Floating-point | Memory Memory dataflow
¥ ¥ ¥ ¥ ¥ —
LIt LIttty CIiI1i] [L11T]] LI TTT] [ITTT1]|Inhstructionwindow
v v v v

|||||||||||||¢||||||"|
Reorder buffer (ROB)
= Register dataflow

A

A
L]

y
L [T 1]

Store

v v
Adr gen. I Adr gen. I
A 4

A 4

queue

\ 4

Data cache |

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH Reservation station (RS) 3

Aside: What is a window?

\
« A window is a space in the wall of a building or in the side of a vehicle,
which has glass in it so that light can come in and you can see out. (Collins)

Instruction window
| J[8][6][5]
L L el 7]

(a) Instruction window Instructions to be executed for an application

Large instruction window

I O I O A

Instruction window Instruction window

G0 I A I A A A

|
K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Multiprogramming

« Several independent programs run at the same time.

Instruction window
| J[8][6][5]
L L el 7]

Instruction window

pr'ogr'am A Instruction window

) I O

pr'ogr'am B Instruction window

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Multithreading (1/2)

« During a branch miss recovery and access to the main memory by a cache miss,
ALUs have no jobs to do and have to be idle.

« Executing multiple independent threads (programs) will mitigate the overhead.

« They are called coarse-grained and fine-grained multithreaded processors
having multiple architecture states.

Thread 1 S context switch code Thread 2
Processor
Irtermipt, eecephion, orO8 cali retam from excephion T
Thread 1 Thread 2 Thread 3 Thread 1
Coarse-grmned
Multlthreaded
Cache nuss Cache nuss ? Cache nass ?
Execution T Mlﬂnthreaded
Units Time

@@;SC.T%‘? Advanced Computer Architecture, Department of Computer Science, TOKYO TECH hitp://www.realworldtech.com/alpha-ev8-smt/ 6

Multithreading (2/2)

Simultaneous Multithreading (SMT) can improve hardware resource

usage.
Thread 1 OS5 context switch code Thread 2
Processor
Irtermypt, socepton, or OF r:a.ll reham fromm excephon T

Thread 1 Thread 2 Thread 3 Thread 1
Coarse- granled
Multlthreaded

Cache muss Cache nuss T Cache nuss T

b E@EEIEEEEHEIE!E@H
s [|OEMAgRRE A ARARNRE

(SMT)
Execution T
Units Time

Figure 1. Multithreaded Execution with Increasing Levels of TLP Hardware Support

g CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH http://www.realworldtech.com/alpha-ev8-smt/ 7

Simultaneous multithreading (SMT)

CYC|€ 1 IF ID Renaming Instruction window Issue | Execute | Commit Retire
[N i | O B e | - R B I]
LI D ooty S O _
ROB
ROB
Cycle 2 IF ID Renaming Instruction window Issue | Execute | Commit Retire
N O I -~ R |]
L DIty Cf» O O]
roe| | | [| I [[[| [1|
el:4 N N N A B

Instructions to be executed of program A

| | | | [18|17|1e6|15|14|13]|12]| 11|10 9|8 |7 |6 |5|4|3|2|1] | |

Newer instructions
Instructions to be executed of program B

_ | | | | [18]17|16|15|14|13]|12]|11]10] 9|8 |7 |6 [5[4[3|2]|1]| |

X = ; B
(7 Newer instructions

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Simultaneous multithreading (SMT)

Cycle 3 IF ID Renaming Instruction window Issue | Execute | Commit Retire
L LT L e L L L
L LI L »L] []
ROB
ROB
Cycle 4 IF ID Renaming Instruction window Issue | Execute | Commit Retire
I PO e - R L
L L L 2] (I »00] [|
RoB| | | | | | | [| J2f1] |
roB| | | | | [[| [| [1|

Instructions to be executed of program A

| | | | [18|17|1e6|15|14|13]|12]| 11|10 9|8 |7 |6 |5|4|3|2|1] | |

Newer instructions
Instructions to be executed of program B

_ | | | | [18]17|16|15|14|13]|12]|11]10] 9|8 |7 |6 [5[4[3|2]|1]| |

X = ; B
(7 Newer instructions

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Simultaneous multithreading (SMT)

Cycle 5 IF ID Renaming Instruction window Issue | Execute | Commit Retire
(L 2]] >L 1 L[L
(6] [4 E (20 []
ROB 2|1
ROB 2] 1
Cycle 6 IF ID Renaming Instruction window Issue | Execute | Commit Retire
HNEE > [L
[6]] [e] [L L[] > [|
RoB| | | | | | | [4]3]2]1] |
RoB| | | | | | | | | J2f1] |

Instructions to be executed of program A

| | | | [18|17|1e6|15|14|13]|12]| 11|10 9|8 |7 |6 |5|4|3|2|1] | |

Newer instructions
Instructions to be executed of program B

_ | | | | [18]17|16|15|14|13]|12]|11]10] 9|8 |7 |6 [5[4[3|2]|1]| |

X = ; B
(7 Newer instructions

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

~

—

Simultaneous multithreading (SMT)

Cycle 7

Cycle 8

IF ID Renaming Instruction window Issue | Execute | Commit Retire
EENE >
[6]] Le] 4 2 []]

ROB 4[3]2]1
ROB 4]3]2]1
IF ID Renaming Instruction window Issue | Execute | Commit Retire
N >
[e]| | L L[_J[e] B
RoB| | | | | Je[5[4]3[2]1] |
roB| | | | | | | J4f3f2f1] |

Instructions to be executed of program A

Newer instructions

|18 [17|16|15]14 13|12 11]10]| 9|8 |7 |6 |54 [3 |2] 1]

Instructions to be executed of program B

™

=1 |

Newer instructions

|18[17|16]15[14]13|12|11]10] 9|8 |7 |6 |54 [3]2]|1]

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

11

Datapath of SMT Oo0O execution processor

Instruction cache

—_—

\ 4

Instruction flow

Branch handler It

Instruction fetch I

Instruction decode

Renaming
Register file > Dispatch
Integer Floating-point | Memory
RS [| I | |

' I IMap table/free tag buffer | |

Memory dataflow

|
v v v v
LIt LIttty CIiI1i] [L11T]]

v
[[1] LITTT1]|Instructionwindow

! y

i

FP ALU

v
ALU I ALU l Branchl
‘T

v v
Adr gen. I Adr gen. I

|||||'|'||||||||||||||J

Reor'der' buffer(ROB)

= Register dataflow

Af_a'

A

A 4
L]

Store
queue

A 4 A 4

\ 4

Data cache |

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH Reservation station (RS)

12

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

13

From multi-core era to many-core era

S

Many-core Era
Massively parallel
applications
] 1004
Increasing HW
Threads
Per Socket Multi-core Era
104 Scalar and
parallel applications
HT
14 g
[l 1 [l 1 [l [l [l 1 [l 1 [l
1 | 1 1 1 1 1 1 1 1 1
2003 2005 2007 2009 201 2013

Figura 1: Currant and expacted eras of Intal® processor architectures

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Intel Sandy Bridge, January 2011
T —— —

* 410 8 core

. Processor
Graphics

i o) 5
assss Memory Controller 1/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

System
Agent &
Memory

Controller

including
DMI, Display
and Misc. 170

Intel Skylake-X, Core i9-7980XE, 2017

« 18 core

S

CORE 19

X-series

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

2021.11 Intel Alder Lake processor

Scalable Client Architecture

Desktop Mobile Ultra Mobile

LGA1700 BGA Type3 BGA Typed4 HDI
Socket 50x25x1.3mm 285x19x 1.1mm

2022.11 AMD EPYC 9654 processor with 96 cores

™ AMDA
A M D E pvc 9 0 0 4 Cores =rPYC Base/Boost* w,uwowm Default TDP (w) cTDP (w)
. 96cores 9654/P 2.40/3.70 360w 320-400w
Series Processor

84 rores

64cores 9554/P 310/375 360w 320-400w
64 cores 2.45/3.70 280w 240-300w

All-in Feature Set support s = R

48cores o
y 200w
« 12 Channels of DDRS-4800 2.75/3.80 240-300w
32 cores 3.85/4.30
Up to 6TB DDRS memory capacity e 9354/P 3.25/380 240-300w

128 lanes PCle® S 32cores 9334 2.70/3.90 200-240w

64 lanes CXL 1.1+ s TR S

24 cores 2.90/415 200-240w
2.50/3.70 200-240w

AVX-512 ISA, SMT & core frequency boost

AMD Infinity Fabric™

AMD Infinity Guard 3.00/3.70 200-240w

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Distributed Memory Multi-Processor Architecture

\
* A PC cluster or parallel computers for higher performance \
« Each memory module is associated with a processor

« Using explicit send and receive functions (message passing) to obtain the data
required.

« Who will send and receive data? How?

PC1 PC2 PC3 PC4
Chip Chip Chip Chip
Procl Proc?2 Proc3 Proc4
A A A A
A4 A 4 A 4 A\ 4
Caches Caches Caches Caches
A A A A
Memory Memory Memory Memory
(DRAM) (DRAM) (DRAM) (DRAM)

Interconnection network
ﬁ’ PC cluster
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Shared Memory Multi-Processor Architecture

« All the processors can access the same address space of the main memory
(shared memory) through an interconnection network.

* The shared memory or shared address space (SAS) is used as a means for
communication between the processors.

« What are the means to obtain the shared data?
* What are the advantages and disadvantages of shared memory?

System
Chip Chip Chip Chip
Procl Proc2 Proc3 Proc4
Caches Caches Caches Caches
Interconnection network
Main memory (DRAM) I/0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

20

Shared memory many-core architecture

3
The single-chip integrates many cores (conventional processors) and an
intferconnection network.

System
Chip
Core Core Core Core
Procl Proc? Proc3 Proc4
Caches Caches Caches Caches
Interconnection network

A 4 A 4

Intel Skylake-X, Core i9-7980XE, 2017 Main memory (DRAM) I/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

21

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

22

The free lunch is over
T — ... —_— .y, ——— ——

* Programmers have to worry much about performance and concurrency
 Parallel programming & multi-processor (multi-core) architecture

Free Lunch

Programmers haven't The traditional approach
really had to worry to application

much about performance was to
performance or simply wait for the next
concurrency because generation of processor;
of Moore's Law most software

developers did not need

to invest in performance
‘ tuning, and enjoyed a
Why we did not see 4GHz “free lunch” from

processors in Market? hardware
. improvements.

@ 'ZD The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005
C

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

Parallel programming

« Several dependent threads run at the same time on a multi-processor
(many-core) system.

Instruction window

ENENE

[[4]]7]

Instruction window

Instruction window

thread B

| | |
7

ﬂjata dependency

Ins‘rrﬁion window

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A

24

Growth in clock rate of microprocessors

ey,

. P — e,
10,000
Intel Pentium4 Xeon !ntel Nehalem Xeon
3200 MHz in 2003 3330 MHz in 2010
Intel Pentium Il
1000 MHz in 2000
1000 4 . senennnes
Digital Alpha 21164A
500 MHz in 1996
) - 1%/year
- Digital Alpha 21064
% 150 MHz in 1992
= [+ 1 1) USRI S— o (SSRGS
3 MIPS M2000
O 25 MHz in 1989 .~
40%/year
i e/ SUN4SPARC
........ 16.7 MHz in 1986
Digital VAX-11/780
5 MHz in 1978
15%/year
1 T T -

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

]

From CAQA 5'h edition

25

Sample of a wrong parallel program using pthread

% gcc main.c -lpthread

% ./a.out
main: 20000000

#include <stdio.h>
#include <pthread.h>
t#tdefine N 10000000

int a = 9;

int funcl(){
int i;
for(i=0; i<N; i++){ a++; }

};

int func2(){
int i;
for(i=0; i<N; i++){ a++; }

};

int main(){
funcl();
func2();

printf("main: %d¥n", a);
return 0;

#tinclude <stdio.h>
#include <pthread.h>
#tdefine N 10000000 // ten million
int a = 9;

int funcl(){
int i;
for(i=0; i<N; i++){ a++; }

1

int func2(){
int i;
for(i=0; i<N; i++){ a++; }

b

int main(){
pthread_t t1, t2;
pthread create(&t1l, NULL, (void *)funcl, NULL);
pthread create(&t2, NULL, (void *)func2, NULL);

pthread_join(tl, NULL);
pthread_join(t2, NULL);

printf("main: %d¥n", a);
return 0;

#include <stdio.h>
#include <pthread.h>
#tdefine N 10000000 // ten million
int a = 0;

int funcl(){
int i;
for(i=0; i<N; i++){ a++; }

}s

int main(){
pthread_t ti1, t2;
pthread_create(&t1, NULL, (void *)funcl, NULL);
pthread_create(&t2, NULL, (void *)funcl, NULL);

pthread_join(tl, NULL);
pthread_join(t2, NULL);

printf("main: %d¥n", a);
return 0;

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

27

Fo

Hw = O

<

ur steps in creating a parallel program

Preparing an optimized sequential program (baseline)
Decomposition of computation in tasks
Assignment of tasks to processes
Orchestration of data access, comm, synch.
Mapping processes to processors (cores)
Partitioning
|
| |
D) A Cr) M
c SR ¢ a
o O : :
’ %ﬁs eo i
o} m t
s _>©© e — ™ ; —> ‘ — ° —
; QO t f P — P
; 8@ 0
n n
O
Sequential Tasks Processes Parallel Processors
computation program

Adapted from Parallel Computer Architecture, David E. Culler
SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Simulating ocean currents

00000000 O0O0
0O 0000000 O0O0
0O 0O0OO0O0OO0O0O0OO0O0
00000000 O0O0
00000000 O0O0
OO0 O0OO0O0OO0OO0O0OO0O0
00000000 O0O0
0000000 O0OO0O0
O 0O0OO0O0O0OO0O0OO0O0
00000000 O0O0

\

(a) Cross sections (b) Spatial discretization of a cross section

Model as two-dimensional grids
« Discretize in space and time
 finer spatial and femporal resolution enables greater accuracy

Many different computations per time step
« Concurrency across and within grid computations

« We use one-dimensional grids for simplicity

E CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Sequential version as the baseline

« A sequential program mainOl.c and the execution result
« Computations in blue color are fully parallel

#define N 8 /* the number of grids */ 0.00 68.26 104.56 109.56 116.55 125.54 86.91 45.29 0.00 0.00 | diff=129.32
#define TOL 15.8 /* tolerance parameter */ 0.00 57.55 94.03 110.11 117.10 109.56 85.83 44.02 15.08 0.00 | diff= 55.76
1 :) 0.00 50.48 87.15 106.97 112.14 104.06 79.72 48.26 19.68 0.00 | diff= 42.58
oat A[N+2], B[N+2]; 0.00 45.83 81.45 101.99 107.62 98.54 77.27 49.17 22.63 0.00 | diff= 31.68
0.00 42.38 76.35 96.92 162.61 94.38 74.92 49.64 23.91 0.00 | diff= 26.88
void solve () { 0.00 39.54 71.81 91.87 97.87 90.55 72.91 49.44 24.49 0.00 | diff= 23.80
int i, done = ©; 0.00 37.88 67.67 87.18 93.34 87.02 70.89 48.99 24.62 0.00 | diff= 22.12
igila (e 4 ©.00 34.88 63.89 82.62 89.86 83.67 68.87 48.89 24.48 0.00 | diff= 21.06
: - 0.00 32.89 66.40 78.44 85.83 86.45 66.81 47.10 24.17 0.00 | diff= 20.26
float diff = @; 0.00 31.07 57.19 74.55 81.23 77.35 64.72 45.98 23.73 0.00 | diff= 19.47
for (i=1; i<=N; i++) { 0.00 29.39 54.21 70.92 77.63 74.36 62.62 44.77 23.21 0.00 | diff= 18.70
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]); ©.00 27.84 51.46 67.52 74.23 71.47 60.52 43.49 22.64 0.00 | diff= 17.95
diff = diff + fabsf(B[i] - A[i]); 0.00 26.41 48.89 64.34 71.80 68.67 58.43 42.17 22.02 0.00 | diff= 17.23
©.00 25.87 46.50 61.35 67.94 65.97 56.37 40.84 21.38 0.00 | diff= 16.53
} 0.00 23.83 44.26 58.54 65.02 63.36 54.34 39.49 20.72 0.00 | diff= 15.85
if (diff <TOL) done = 1; 0.00 22.68 42.17 55.88 62.24 60.85 52.34 38.14 20.05 0.00 | diff= 15.20
for (i=1; i<=N; i++) A[i] = B[i]; 0.00 21.59 40.20 53.38 59.60 58.42 50.39 36.81 19.38 0.00 | diff= 14.58
for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);
printf("| diff=%6.2f¥n", diff); /* for debug */ 1=4 1=8
5 L L
} A | A[01| | Al11|| A[2]| | AL31| | AL41| | ALB] | | Al6]| | AL71] | AL8]| | ALS]
int main() { \l / \l /
for (i=1; i<N-1; i++) A[i] = 100+i*i; Il 1
solve();
} B B[1] || B[2]|| B[3]1|| B[4]]||B[B]||B[6]||B[7]]| | B[8]

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

31

Decomposition and assignment

 Single Program Multiple Data (SPMD)
« Decomposition: there are eight tasks to compute B[i]
« Assignment: the first four tasks for core 1, and the last four tasks for core 2

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0; /* variable in shared memory */

void solve pp (int pid, int ncores) { Computation

int i, done = 0; /* private variables */
int mymin = 1 + (pid * N/ncores); /* private variable */
int mymax = mymin + N/ncores - 1; /* private variable */
while (!done) { Decomposition
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]); B[1] || B[2]| |B[31||B[4]||B[5]||B[6]]||B[7]]||BI8]

}
diff = diff + mydiff;

if (diff <TOL) done = 1; .
if (pid==1) diff = o; Assignment

for (i=mymin; i<=mymax; i++) A[i] = B[i];

} Core 1 Core 2

int main() { /* solve this using two cores */
initialize shared data A and B;
create threadl and call solve pp(1, 2);
create thread2 and call solve pp(2, 2);

B[1]||B[2] || B[3]] | B[4] B[5] || B[6]| | B[7]|| BI8]

A }

32

Orchestration

« LOCK and UNLOCK around critical section

« Lock provides exclusive access to the locked data. ﬁ

« Set of operations we want to execute atomically

« BARRIER ensures all reach here

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0; /* variable in shared memory */

void solve pp (int pid, int ncores) {
int i, done = 0;
int mymin = 1 + (pid * N/ncores);
int mymax = mymin + N/ncores - 1;
while (!done) {
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]);
}
LOCK();
diff = diff + mydiff;
UNLOCK() ;

BARRIER();

if (diff <TOL) done = 1;

BARRIER();

if (pid==1) diff = 0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];
BARRIER();

/* private variables */
/* private variable
/* private variable

*/
*/

el

These operations must be executed
atomically

(1) load diff
(2) add
(3) store diff

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

}
}
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

33

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

34

Key components of many-core processors

« Interconnection network

* connecting many modules on a chip achieving high throughput

and low latency
* Main memory and caches

\

« Caches are used to reduce latency and to lower network traffic

* A parallel program has private data and shared data
« New issues are cache coherence and memory consistency

e Core

System
* High-performance superscalar
processor providing a hardware e L e T e L
meChGniSm 1-0 Suppor'T Thr‘ead Caches Caches Caches Caches
sy n C h r‘o n i ZaT io n | ; In’zrconnec’rion nef;work .
v v
Main memory (DRAM) I/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

35

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

36

Flynn's taxonomy (1996)
\

« A classification of computer architectures, proposed by Michael J.
Flynn in 1966. The four classifications are based upon the number of
concurrent instruction streams and data streams available in the
architecture.

« SISD (Single Instruction stream, Single Data stream)

« SIMD (Single Instruction stream, Multiple Data stream)

« MISD (Multiple Instruction stream, Single Data stream)

« MIMD (Multiple Instruction stream, Multiple Data stream)

Instruction stream 1 1 uu uu
Data stream 1 1111 1 1111

SISD SIMD MISD MIMD

~ ="
N 37

Flynn's taxonomy (1996)
\

« A classification of computer architectures, proposed by Michael J.
Flynn in 1966. The four classifications are based upon the number of
concurrent instruction streams and data streams available in the
architecture.

« SISD (Single Instruction stream, Single Data stream)

« SIMD (Single Instruction stream, Multiple Data stream)

« MISD (Multiple Instruction stream, Single Data stream)

« MIMD (Multiple Instruction stream, Multiple Data stream)

)))) m
il

i
~@i§' 38

MIMD

Flynn's taxonomy (1996)
\

« A classification of computer architectures, proposed by Michael J.
Flynn in 1966. The four classifications are based upon the number of
concurrent instruction streams and data streams available in the

architecture.
« SISD (Single Instruction stream, Single Data stream)
« SIMD (Single Instruction stream, Multiple Data stream)
« MISD (Multiple Instruction stream, Single Data stream)

Instruction stream 1 1
Data stream 1 1111
SISD SIMD

~ =
N 39

SIMD Variants

 Vector architectures
« SIMD extensions
* Graphics Processing Units (GPUs)

« SIMD variants exploit data-level parallelism
« Instruction-level parallelism in superscalar processors
« Thread-level parallelism in multicore processors

40

Vector architecture

« Computers designed by Seymour Cray starting in the 1970s
* Basic idea:

* Read sets of data elements into "vector registers”

« Operate on those registers

« Disperse the results back into memory

=

A

41

DAXPY in MIPS Instructions

Example: DAXPY (double precision a x X +Y)

L.D FO.a
DADDIU R4 Rx#b12
Loop: L.D F2,0(Rx)
MUL.D F2,F2,FO
L.D F4,0(Ry)
ADD.D F4,F2,F2
S.D F4,9(Ry)

DADDIU Rx,Rx #8
DADDIU Ry Ry #8
SUBBU R20,R4 Rx
BNEZ R20,Loop

; load scalar a

; upper bound of what to load
; load X[i]

cax X[i]

; load Y[i]

;ax X[+ YI[i]

. store into Y[i]

. increment index to X
. increment index to Y
; compute bound

; check if done

 Requires almost 600 MIPS operations

AE_'J‘

42

DAXPY in VMIPS (MIPS with Vector) Instructions
\
- ADDV.D : add two vectors x

« ADDVS.D : add vector to a scalar
« LV/SV . vector load and vector store from address

« Example: DAXPY (double precision a*X+Y)

L.D FO,a ; load scalar a

LV V1,Rx ; load vector X

MULVS.D V2V1FO : vector-scalar multiply

LV V3 Ry ; load vector Y i
ADDV.D V4,v2 V3 ; add LI
SV Ry,vV4 ; store the result

Requires 6 instructions

aaaaaa

A 9‘ egisters
Ql 43

