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Assignment 5

1. Design a four stage pipelined scalar processor supporting MIPS add and bne
instruction in Verilog HDL. Please download proc06.v and proc07.v from the 
support page and refer it. 

2. Verify the behavior of designed processor using following assembly code.

3. Submit your report in a PDF file via E-mail by the next Thursday.

• The report should include a block diagram, a source code in Verilog HDL, and 
obtained waveforms of your design.

p.imem.mem[0] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[1] = {6'h0, 5'd5, 5'd1, 5'd5, 5'd0, 6'h20};  // L1: add  $5, $5, $1

p.imem.mem[2] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[3] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[4] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[5] = {6'h5, 5'd4, 5'd5, 16'hfffb};           //     bne $4, $5, L1

p.imem.mem[6] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[7] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[8] = {6'h0, 5'd0, 5'd0, 5'd5, 5'd0, 6'h20};  //     add  $5, $0, $0

p.imem.mem[9] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP    

p.imem.mem[10]= {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[11]= {6'h5, 5'd2, 5'd0, 16'hfff5};           //     bne $2, $0, L1

p.imem.mem[12]= {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP    

p.imem.mem[13]= {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP    

p.regfile.r[1] = 1; p.regfile.r[2] = 22; p.regfile.r[3] = 0; p.regfile.r[4] = 4; p.regfile.r[5] = 0;

while(1){
for(int i=1; i!=4; i++){

}
}
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Four stage pipelined processor supporting ADD and BNE, which does not 
adopt data forwarding (proc08.v, Assignment 5)
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Scalar and Superscalar processors

• Scalar processor can execute at most one instruction per clock 
cycle by using one ALU. 
• IPC (Executed Instructions Per Cycle) is less than 1.

• Superscalar processor can execute more than one instruction 
per clock cycle by executing multiple instructions by using 
multiple pipelines.
• IPC (Executed Instructions Per Cycle) can be more than 1.

• using n pipelines is called n-way superscalar

n

(a) pipeline diagram of scalar processor

(b) pipeline diagram of 2-way superscalar processor
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Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to 
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE, BEQ)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution 

• Register renaming 

• Dynamic scheduling

• Memory data flow

• Out-of-order execution 

• Another obstacle is data cache

(1) add $5,$1,$2
(2) add $9,$5,$3
(3) lw  $4, 4($7)
(4) add $8,$9,$4

(3) lw  $4, 4($7)
(1) add $5,$1,$2
(2) add $9,$5,$3
(4) add $8,$9,$4
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Exploiting Instruction Level Parallelism (ILP)

(3)

(4)

Data flow graph

Instruction

Data dependence

(3)

(4)

Data flow graph

4 cycles for 4 insns
ILP = 1.0

3 cycles for 4 insns
ILP = 1.33

i = 0

*C = *C + (*A + *B)

return

False True

B1

BE

B3

Error check

B2

Control flow graph

(1)

(1)(2)

(2)

Control 
dependence

Prediction & speculation

What is the solution?
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this slide is to be used as a whiteboard
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Exercise: what is data dependence

• Draw a data flow graph for each instruction stream

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R3 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R6 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R4 = R6 + 3 (3)

R3 = R2 + 1 (1)

R3 = R4 + 2 (2)

R7 = R6 + 3 (3)

Instruction stream 1

Instruction stream 2 Instruction stream 3 Instruction stream 4
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True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the value of 
insn i.

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 2      (3)

R7 = R3 + R4     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 3  + 2      (3)

26 = 5 + 21     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

41 = 20 + 21     (4)

5  = 3  + 2      (3)
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Output dependence

• Insn i and j write the same register, WAW (write after write)

• Program order must be preserved to ensure that the value finally 
written corresponds to instruction j.

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 2      (3)

R7 = R3 + R4     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 3  + 2      (3)

26 = 5 + 21     (4)

Assume R3=10, R5=3

5  = 3  + 2      (3)

20 = 10 x 2      (1)

21 = 20 + 1      (2)

41 = 20 + 21     (4)
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Antidependence

• Insn i reads a register that insn j writes, WAR (write after read)

• Program order must be preserved to ensure that i reads the correct 
value.

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 2      (3)

R7 = R3 + R4     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5  = 3  + 2      (3)

26 = 5  + 21     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

5 = 3  + 2      (3)

6  = 5 + 1      (2)

11 = 5  + 6 (4)



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Exercise: what is data dependence

• Draw a data flow graph for each instruction stream

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R3 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R6 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R4 = R6 + 3 (3)

R3 = R2 + 1 (1)

R3 = R4 + 2 (2)

R7 = R6 + 3 (3)

Instruction stream 1

Instruction stream 2 Instruction stream 3 Instruction stream 4
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Data dependence and renaming

• True data dependence (RAW)

• Name dependences

• Output dependence (WAW)

• Antidependence (WAR)

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 2      (3)

R7 = R3 + R4     (4)
(3)

(4)

(3)

(4)

(1)

(1)(2)

(2)

RAW

RAW

RAW

WAW

WAR

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R8 = R5 + 2      (3)

R7 = R8 + R4     (4)

RAW

RAW
RAW



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

this slide is to be used as a whiteboard
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Hardware register renaming

• Logical registers (architectural registers) which are ones 
defined by ISA
• $0, $1, … $31

• Physical registers
• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a 
unique physical register dynamically in the renaming stage 

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Complete
Commit/
Retire

Typical instruction pipeline of high-performance superscalar processor
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Hardware register renaming

• Logical registers (architectural registers) which are ones defined by 
ISA

• $0, $1, … $31

• Physical registers

• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a unique 
physical register dynamically in the renaming stage 

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Commit Retire

Typical instruction pipeline of high-performance superscalar processor
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Exercise: register renaming

• Rename the following instruction stream using physical registers 
of p9, p10, p11, and p12 

I0: sub $5,$1,$2

I1: add $9,$5,$4

I2: or  $5,$5,$2

I3: and $2,$9,$1
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Example behavior of register renaming (1/4)

• Renaming the first instruction I0

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

0

1

2

3

4

5

6

7

8

9

10

31

dst = $5
src1 = $1
src2 = $2

dst  = p9
src1 = p1
src2 = p2

I0: sub p9,p1,p2
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Example behavior of register renaming (2/4)

• Renaming the second instruction I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1

Cycle 2

101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $9
src1 = $5
src2 = $4

dst = p10
src1 = p9
src2 = p4

I0: sub p9,p1,p2
I1: add p10,p9,p4
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Example behavior of register renaming (3/4)

• Renaming instruction I2

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1

Cycle 3

1112

Free tag buffer

head

13

0

Register map table

1

2

3

4

9->11

6

7

8

10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $5
src1 = $5
src2 = $2

dst = p11
src1 = p9
src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4
I2: or  p11,p9,p2
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Example behavior of register renaming (4/4)

• Renaming instruction I3

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1

Cycle 4

12

Free tag buffer

head

13

0

Register map table

1

2->12

3

4

11

6

7

8

10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $2
src1 = $9
src2 = $1

dst = p12
src1 = p10
src2 = p1

I0: sub p9,p1,p2
I1: add p10,p9,p4
I2: or  p11,p9,p2
I3: and p12,p10,p1
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Renaming two instructions per cycle for superscalar

• Renaming instruction I0 and I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $5
src1 = $1
src2 = $2

dst = p9
src1 = p1
src2 = p2

I0: sub p9,p1,p2
I1: add p10,p5,p4 (Wrong) dst = $9

src1 = $5
src2 = $4

dst = p10
src1 = p5
src2 = p4
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Renaming two instructions per cycle for superscalar

• Renaming instruction I0 and I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

A_dst = $5
A_src1 = $1
A_src2 = $2

A_dst = p9
A_src1 = p1
A_src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4 B_dst = $9

B_src1 = $5
B_src2 = $4

B_dst = p10
B_src1 = p9
B_src2 = p4

M
u

x

If B_src1==A_dst, use tag from free tag buffer
I0

I1
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Pollack’s Rule

• Pollack's Rule states that microprocessor "performance 
increase due to microarchitecture advances is roughly 
proportional to the square root of the increase in 
complexity".  Complexity in this context means processor 
logic, i.e. its area.

WIKIPEDIA
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True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the value of 
insn i.

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 2      (3)

R7 = R3 + R4     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 3  + 2      (3)

26 = 5 + 21     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

41 = 20 + 21     (4)

5  = 3  + 2      (3)



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

this slide is to be used as a whiteboard
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Recommended Reading

• Focused Value Prediction

• Sumeet Bandishte, Jayesh Gaur, Zeev Sperber, Lihu Rappoport, Adi Yoaz, and Sreenivas 
Subramoney, Intel

• ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA),  pp. 79-91, 
2020 

• A quote:
“Value Prediction was proposed to speculatively break true data dependencies, thereby allowing Out of 
Order (OOO) processors to achieve higher instruction level parallelism (ILP) and gain performance. 
State-of-the-art value predictors try to maximize the number of instructions that can be value 
predicted, with the belief that a higher coverage will unlock more ILP and increase performance. 
Unfortunately, this comes at increased complexity with implementations that require multiple 
different types of value predictors working in tandem, incurring substantial area and power cost. In 
this paper we motivate towards lower coverage, but focused, value prediction. Instead of aggressively 
increasing the coverage of value prediction, at the cost of higher area and power, we motivate 
refocusing value prediction as a mechanism to achieve an early execution of instructions that 
frequently create performance bottlenecks in the OOO processor. Since we do not aim for high 
coverage, our implementation is light-weight, needing just 1.2 KB of storage. Simulation results on 60 
diverse workloads show that we deliver 3.3% performance gain over a baseline similar to the Intel 
Skylake processor. This performance gain increases substantially to 8.6% when we simulate a 
futuristic up-scaled version of Skylake. In contrast, for the same storage, state-of-the-art value 
predictors deliver a much lower speedup of 1.7% and 4.7% respectively. Notably, our proposal is 
similar to these predictors in performance, even when they are given nearly eight times the storage 
and have 60% more prediction coverage than our solution.
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this slide is to be used as a whiteboard
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Final report of Advanced Computer Architecture

1. This is a tentative version. The contents may change 
slightly. 

2. Submit your final report describing your answers to 
questions 1 - 7 in a PDF file 
via E-mail (kise [at] c.titech.ac.jp ) by February 13, 2023
• E-mail title should be “Report of Advanced Computer 

Architecture”

3. Enjoy!
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1. Academic paper reading

• Select an academic paper from the list below and

• In your own word, describe the problem that the authors try to solve,

• Describe the key idea of the proposal,

• Describe your opinion why the authors could solve the problem 
although there may be many researchers try to solve  similar 
problems.

• List
• Prophet/critic hybrid branch prediction, ISCA’04, 2004

• The V-Way Cache: Demand Based Associativity via Global Replacement, ISCA’05, 2005

• Emulating Optimal Replacement with a Shepherd Cache, MICRO-40, 2008

• A new case for the TAGE branch predictor, MICRO-44, 2011

• Skewed Compressed Caches, MICRO-47, 2014

• Focused Value Prediction, ISCA, 2020
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2. MIPS assembly programming

• Write MIPS assembly code asm1.s for code1.c in C.

• Write MIPS assembly code asm2.s for code2.c in C.

int sum = 0;
int i, j;
for (i=0; i=<100; i++)

for (j=0; j=<100; j++) sum += (j+i);

int A[200];
int sum = 0;
int i;
for (i=0; i<200; i++) A[i] = i;             /* initialize the array */
for (i=1; i<200; i++) A[i] = A[i-1] + A[i]; /* compute              */
for (i=0; i<200; i++) sum += A[i];          /* obtain the sum       */

code1.c

code2.c
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3. Pipelined processor

• Design a three stage pipelined scalar processor supporting MIPS 
add, addi, lw, sw, and bne instructions in Verilog HDL. 
Configure the critical paths of the three stages to have similar 
delays.
Please download proc08.v from the support page and refer it. 
Note that you do not need to implement data forwarding.

• Verify the behavior of designed processor using asm1.s and 
asm2.s. 
You may insert NOP instructions if necessary.

• The report should include a block diagram, a source code in 
Verilog HDL, the description of the changes of the code, and 
obtained waveforms of your design.
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4. OoO execution and dynamic scheduling

• Draw the cycle by cycle processing behavior of these 10 
instructions

• Modify this dataflow graph and draw another cycle by cycle 
processing behavior of the graph having 10 instructions

75

6

8 10

9

3

4

1 2
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5. Parallel programming

• Describe an efficient parallel program for the following sequential 
program using LOCK(), UNLOCK() and BARRIER() assuming a shared 
memory architecture

• Explain why your cord runs correctly
and why your code is efficient.

#define N 8      /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

void solve () {

int i, done = 0;

while (!done) {

float diff = 0;

for (i=1; i<=N; i++) { /* use A as input */

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

}

for (i=1; i<=N; i++) { /* use B as input */

A[i] = 0.333 * (B[i-1] + B[i] + B[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("| diff=%6.2f¥n", diff); /* for debug */

}

}

int main() {

int i;

for (i=1; i<N-1; i++) A[i] = B[i] = 100+i*i;

solve();

}main02.c
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6. Building blocks for synchronization 

• Fetch-and-increment reads an original value from memory and 
increments (adds one to) it in memory atomically

• Implement fetch-and-increment (FAI) using the load-linked/store-
conditional instruction pair

• Refer the discussion of implementing an atomic exchange EXCH

• Implement BARRIER() using FAI
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7. Cache coherence protocols

• Select your favorite commercial multi-core processor

• Describe the memory organization including caches and 
main memory

• cache line size, write policy, write allocate/no-allocate, 
direct-mapped/set-associative, the number of caches (L1, L2, 
and L3?)

• Describe the cache coherence protocol used there


