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Assignment 3

1. Design a four stage pipelined scalar processor supporting MIPS add and bne
instruction in Verilog HDL. Please download proc06.v and procO7.v from the
support page and refer it.

2. Verify the behavior of designed processor using following assembly code.

p.imem.mem[@®] = {6'h@, 5'de, 5'de, 5'de, 5'de, 6'h20}; // NOP

p.imem.mem[1] = {6'h@, 5'd5, 5'd1l, 5'd5, 5'de, 6'h20}; // L1: add $5, $5, $1

p.imem.mem[2] = {6'he, 5'de, 5'de, 5'de, 5'de, 6'h2e}; // NOP

p.imem.mem[3] = {6'h@, 5'de, 5'de, 5'de, 5'de, 6'h20}; // NOP

p.imem.mem[4] = {6'he, 5'de, 5'de, 5'de, 5'de, 6'h2e}; // NOP while(l){
p.imem.mem[5] = {6'h5, 5'd4, 5'd5, 16'hfffb}; // bne $4, $5, L1 for(int i=1; il=4; i++){
p.imem.mem[6] = {6'h@, 5'de, 5'de, 5'de, 5'de, 6'h20}; // NOP

p.imem.mem[7] = {6'h@, 5'd0, 5'de, 5'de, 5'de, 6'h20}; // NOP }
p.imem.mem[8] = {6'h@, 5'de, 5'de, 5'd5, 5'de, 6'h20}; // add $5, $0, $0 }
p.imem.mem[9] = {6'he@, 5'de, 5'de, 5'de, 5'de, 6'h2e}; // NOP

p.imem.mem[10]= {6'h@, 5'de, 5'de, 5'de, 5'de, 6'h20}; // NOP

p.imem.mem[11]= {6'h5, 5'd2, 5'do, 16'hfff5}; // bne $2, %0, L1

p.imem.mem[12]= {6'he@, 5'de, 5'de, 5'de, 5'de, 6'h2e}; // NOP

p.imem.mem[13]= {6'hO, 5'd0, 5'do, 5'de, 5'de, 6'h20}; // NOP

p.regfile.r[1] = 1; p.regfile.r[2] = 22; p.regfile.r[3] = 0; p.regfile.r[4] = 4; p.regfile.r[5] = 0O;

3. Submit your report in a PDF file via E-mail by the next Thursday.

___+  The report should include a block diagram, a source code in Verilog HDL, and
~@9' obtained waveforms of your design.
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Four stage pipelined processor supporting ADD and BNE, which does not
adopt data forwarding (procO8.v, Assignment 5)
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Scalar and Superscalar processors

 Scalar processor can execute at most one instruction per clock

cycle by using one ALU.
« IPC (Executed Instructions Per Cycle) is less than 1.

 Superscalar processor can execute more than one instruction

per clock cycle by executing multiple instructions by using

multiple pipelines.
« IPC (Executed Instructions Per Cycle) can be more than 1.
* using n pipelines is called n-way superscalar
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Exploiting Instruction Level parallelism (ILP) X
\

* A superscalar has to handle some flows efficiently to exploit ILP

« Control flow (control dependence)

« To execute ninstructions per clock cycle, the processor has to
fetch at least ninstructions per cycle.

« The main obstacles are branch instruction (BNE, BEQ)
e Prediction
* Another obstacle is instruction cache

« Register data flow (data dependence)

e QOut-of-order execution (1) add $5,$1,$2 0
. . (2) add $9,$5,%$3
* Register renaming (3) 1w $4, 4($7) RAW
* Dynamic scheduling (4) add $8,%9,%4 @
« Memory data flow (3) Tw $4, 4($7) -
. £ : (1) add $5,$1,$2 RAW
Out-of-order execution (2) 2dd $9.$5.$3
e Another obstacle is data cache  (4) add $8,$9,%4
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Exploiting Instruction Level Parallelism (ILP)

What is the solution?

4 cycles for 4 insns

Prediction & speculation ILP=10
Control

B1 m dependence

BE[ /}\
Error check

v T
BZ[ }
*C=*C+ (*A + *B) vy

False True (3)

N

Control flow graph
Data flow graph
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Data dependence

return

\

3 cycles for 4 insns
ILP =133

Data flow graph
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Exercise: what is data dependence

\
+ Draw a data flow graph for each instruction stream %%

R3 = R2 + 1 (1)
RS = R4 + 2 (2)
R7 = R6 + 3 (3)

Instruction stream 1

R3 = R2 + 1 (1)
RS = R4 + 2 (2)
R7 = R3 + 3 (3)

Instruction stream 2

R3 = R2 + 1 (1)
R3 = R4 + 2 (2)
R7 = R6 + 3 (3)

Instruction stream 3

R3 = R2 + 1 (1)
R5 = R4 + 2 (2)
R4 = R6 + 3 (3)

Instruction stream 4



Tr

ue data dependence

« Insniwrites aregister that insn j reads, RAW (read after write)
* Program order must be preserved to ensure insn j receives the value of

<

nsn i.
R3 = R3 x R5 (1)
R4 = R3 + 1 (2)

(R3)= R5 + 2 (3)
R7 =(R3)+ R4 (4)

Assume R3=10, R5=3

20 = 10 X 2 (1) 20_ =
21 = 20 + 1 (2) 21 =2

=3 +2 (3) 41 =
26 =(5 )+ 21 (4) 5 =

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH
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Output dependence

A
* Insniand jwrite the same register, WAW (write after write) 2%

« Program order must be preserved to ensure that the value finally
written corresponds to instruction j.

(R3)= R3 x RS (1)
R4 = R3 + 1 (2)
(R3)= R5 + 2 (3)

R7 = R3 + R4 (4)

Assume R3=10, R5=3 Assume R3=10, R5=3
(20)= 10 x 2 (1) (5)=3 +2 (3)
21 = 20 + 1 (2) (20)= 10 x 2 (1)
(GH=3 +2 (3) 21 = 20 + 1 (2)
26 = 5 + 21 (4) 41 = 20 + 21 (4)



Antidependence

« Insnireads aregister that insn j writes, WAR (write after read)

« Program order must be preserved to ensure that i reads the correct

value.
R3 = R3 X R5
R4‘ijia}+ 1
(R3)= R5 + 2
R7 = R3 + R4

<

Assume R3=10, R5=3
10 x 2

.+1

20 =
21=

@:

26 =

5

+ 2
+ 21

(1)
(2)
(3)
(4)

Assume R3=10, R5=3

20

5= 3

6
11

10 x 2
+ 2

®+1

6

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

(1)
(3)
(2)
(4)

\

11



Exercise: what is data dependence

\
+ Draw a data flow graph for each instruction stream %%

R3 = R2 + 1 (1)
RS = R4 + 2 (2)
R7 = R6 + 3 (3)

Instruction stream 1

R3 = R2 + 1 (1)
RS = R4 + 2 (2)
R7 = R3 + 3 (3)

Instruction stream 2

R3 = R2 + 1 (1)
R3 = R4 + 2 (2)
R7 = R6 + 3 (3)

Instruction stream 3

R3 = R2 + 1 (1)
R5 = R4 + 2 (2)
R4 = R6 + 3 (3)

Instruction stream 4
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Data dependence and renaming

« True data dependence (RAW)
« Name dependences

<

 Output dependence (WAW)
« Antidependence (WAR)

R3 = R3 x R5 (1)
R4 = R3 + 1

R3 = R5 +

R7 = R3 + R4 (4)
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Hardware register renaming

« A processor renames (converts) each logical register to a
unique physical register dynamically in the renaming stage

IF ID EX MEM WB

Commit/
Retire

IF ID Renaming | Dispatch Issue | Execute | Complete
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Hardware register renaming

 Logical registers (architectural registers) which are ones defined by
ISA

« $0, %1, .. $31
 Physical registers
« Assuming plenty of registers are available, p0O, p1, p2, ...

« A processor renames (converts) each logical register to a unique
physical register dynamically in the renaming stage

Typical instruction pipeline of scalar processor

IF

ID

EX

MEM

WB

Typical instruction pipeline of high-performance superscalar processor

IF

ID

Renaming

Dispatch

Issue

Execute

Commit

Retire
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Exercise: register renaming

« Rename the following instruction stream using physical registers
of p9, pl0, pl1, and p12

10:
I11:
12:
I13:

sub $5,%$1,%2
add $9,%5,%4
or $5,%5,%2
and $2,%9,%1

\
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Example behavior of register renaming (1/4) X
\

« Renaming the first instruction I0

Register map table

Cycle 1
Y . -
10: sub $5,%1,%2 1 1
I1: add $9,$5,$4 — %2 2
I2: or $5,%5,%2 3 3
I3: and $2,%$9,%1 4 4
5 ......... Fo->9 | | e » dst = p9
Free tag buffer | 6 | 6ot L srcl = pl
I I 5 =  orc2 = p2
13]12[11]10] 9 p=" 8 8
9
Thead 10 I0: sub p9,pl,p2
dst = $5
srcl = $1 —
src2 = $2

iﬁw .
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Example behavior of register renaming (2/4) x
\

« Renaming the second instruction Il

Register map table

Cycle 2 0 5
I10: sub $5,%$1,%2 1 1
I1: add $9,%5,%4 2 2
I2: or $5,$5,%2 3 3
I3: and $2,$9,%1 4 4
> § 9 1 » dst = plo
6 | 6.t T et - b
freetagbuffer | |- - ;s . arc2 - ba
13112111110 ........ 8 8
T ........................... g =310
head 16 I0: sub p9,pl,p2
I1: add ple,p9,p4s
dst = $9
srcl = $5 —
src2 = $4

iﬁw .
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Example behavior of register renaming (3/4) X
\

« Renaming instruction I2

Cycle 3

Register map table

0 0
I10: sub $5,%1,%2 ; :
I1: add $9,%5,%4 . ]
I2: or $5,%$5,%2 3 3
I3: and $2,%9,%1 ’ 4
g 5 ......... y 9->11
Free tag buffer | =
I e ¥ >
13|12(11 i 8 8
! S 10
e 10
dst = $5
srcl = $5 —
src2 = $2
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...................... » dst = pl1l
.......... srcl = po
> src2 = p2

I0: sub p9,pl,p2
I1: add p10,p9,p4s
I2: or pl1,p9,p2

20



Example behavior of register renaming (4/4)

* Renaming instruction I3

Cycle 4

10:
I1:
I12:
I13:

sub $5,%1,%2
add $9,%5,%4
$5,%$5,%$2
and $2,%$9,%1

or

Free tag buffer

<

13|12
Thead
dst
srcl
src2

Register map table

\

........................ » dst = pl2
.......... srcl = plo
> src2 = pl

° 0
2 N 2—>12
fg“ 3
- 4
5 1
6 B
________________________________________ I
e 8 8
> 9 5
10
$2
$¢9 |
$1
31
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: sub p9,pl,p2

: add pl1o,p9,ps
: or
: and pl2,pleo,pl

pll,p9,p2
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Renaming two instructions per cycle for superscalar

« Renaming instruction I0 and Il

Cycle 1

I0: sub $5,%1,%2

Register map table

—

dst
srcl
src2

dst
srcl
src2

I1: add plo,p5,p4 (Wrong)

0 0
I1: add $9,%5,%4 1 1
I2: or $5,%$5,%2 5 5
13: and $2,%9,31 3 3 | | .
Free tag buffer a4 | A4 g :
O O s "B 5-50
13 12 11 1@ 9 ) I Sl 6 6
T R 7 7 R
head | “[t-.| 8 8 >
dst _ $5 ..... 9 ......... Ul >1@ >
srcl = $1 10
src2 = $2
I0: sub p9,pl,p2
dst = $9
srcl = $5
src2 = $4 — 31

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH
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Renaming two instructions per cycle for superscalar

« Renaming instruction I0 and Il

Cycle 1 Register map table
I0: sub $5,%1,%2 0 0
I1: add $9,%$5,%4 > 1 1
I2: or $5,%$5,%2 > >
I3: and $2,%9,%1 3 3 | e » A dst = p9
Free tag buffer "4 | At : 2 zﬁz ; : E ;
.................................................... *E e 5-0 =
13(/12(11110! 9 - ........... 6 6
MT ............................................... Ve 7 » B dst = plo
nead |-l | o g G B_srcl = p9
I0 Adst =9$5 | | | | 5K 2510 B_src2 = p4
A srcl = $1 10 If B_srcl==A_dst, use tag from free tag buffer
A src2 = $2
I0: sub p9,pl,p2
T1 B_dst = $9 I1: add pleo,p9,ps
B srcl = $5
= $4— 31

ﬁw B src2
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Pollack's Rule

\

* Pollack’s Rule states that microprocessor "performance 2%
increase due to microarchitecture advances is roughly
proportional to the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

? WIKIPEDIA
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Tr

ue data dependence

« Insniwrites aregister that insn j reads, RAW (read after write)
* Program order must be preserved to ensure insn j receives the value of

<

nsn i.
R3 = R3 x R5 (1)
R4 = R3 + 1 (2)

(R3)= R5 + 2 (3)
R7 =(R3)+ R4 (4)

Assume R3=10, R5=3

20 = 10 X 2 (1) 20_ =
21 = 20 + 1 (2) 21 =2

=3 +2 (3) 41 =
26 =(5 )+ 21 (4) 5 =
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+
+

2
1
21

Assume R3=10, R5=3

(1)
(2)
(4)
(3)

\
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Recommended Reading
A
* Focused Value Prediction

«  Sumeet Bandishte, Jayesh Gaur, Zeev Sperber, Lihu Rappoport, Adi Yoaz, and Sreenivas
Subramoney, Intel

«  ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pp. 79-91,
2020

* A quote:
"Value Prediction was proposed to speculatively break true data dependencies, thereby allowing Out of
Order (OOOQ) processors to achieve higher instruction level parallelism (ILP) and gain performance.

In
this paper we motivate fowards lower coverage, but focused, value prediction. Instead of aggressively
increasing the coverage of value prediction, at the cost of higher area and power, we motivate
refocusing value prediction as a mechanism to achieve an early execution of instructions that
frequently create performance bottlenecks in the OOO processor.

Simulation results on 60
diverse workloads show that we deliver 3.3% performance gain over a baseline similar to the Intel
Skylake processor.
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Final report of Advanced Computer Architecture %\%
\

1. This is a tentative version. The contents may change
slightly.

2. Submit your final report describing your answers to
questions 1 - 7 in a PDF file
via E-mail (kise [at] c.titech.ac.jp ) by February 13, 2023

E-mail title should be "Report of Advanced Computer
Architecture”

3. Enjoy!

™

Af_a'

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH
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1. Academic paper reading

« Select an academic paper from the list below and

o List

\

In your own word, describe the problem that the authors try to solve,
Describe the key idea of the proposal,

Describe your opinion why the authors could solve the problem
although there may be many researchers try to solve similar
problems.

Prophet/critic hybrid branch prediction, ISCA'04, 2004

The V-Way Cache: Demand Based Associativity via Global Replacement, ISCA'05, 2005
Emulating Optimal Replacement with a Shepherd Cache, MICRO-40, 2008

A new case for the TAGE branch predictor, MICRO-44, 2011

Skewed Compressed Caches, MICRO-47, 2014

Focused Value Prediction, ISCA, 2020

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30



2. MIPS assembly programming

« Write MIPS assembly code asml.s for codel.c in C.

int sum = 0;
int i, j;
for (i=0; i=<100; i++)
for (j=0; j=<100; j++) sum += (j+i);

codel.c

« Write MIPS assembly code asm2.s for code2.c in C.

int A[200];
int sum = 0;
int i;

for (i=0; i<200; i++) A[i] = 1i; /* initialize the array */

for (i=1; i<200; i++) A[i] = A[i-1] + A[i]; /* compute */

for (i=0; i<200; i++) sum += A[i]; /* obtain the sum */
code2.c

Af_a'

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH
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3. Pipelined processor 3&‘
\

 Design a three stage pipelined scalar processor supporting MIPS
add, addi, lw, sw, and bne instructions in Verilog HDL.
Configure the critical paths of the three stages to have similar
delays.
Please download proc0O8.v from the support page and refer it.
Note that you do not need to implement data forwarding.

 Verify the behavior of designed processor using asml.s and

asm2.s.
You may insert NOP instructions if necessary.

« The report should include a block diagram, a source code in
Verilog HDL, the description of the changes of the code, and
obtained waveforms of your design.
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4. Oo0 execution and dynamic scheduling

« Draw the cycle by cycle processing behavior of these 10
instructions

* Modify this dataflow graph and draw another cycle by cycle
processing behavior of the graph having 10 instructions

\
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5. Parallel programming

« Describe an efficient parallel program for the following sequential
program using LOCK(), UNLOCK() and BARRIER() assuming a shared

memory architecture

« Explain why your cord runs correctly

and why your code is efficient.

main®@2.c

#define N 8 /* the number of grids */
#define TOL 15.0 /* tolerance parameter */
float A[N+2], B[N+2];

void solve () {
int i, done = 0;
while (!done) {
float diff = 0;
for (i=1; i<=N; i++) { /* use A as input */
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
}
for (i=1; i<=N; i++) { /* use B as input */
A[i] = ©.333 * (B[i-1] + B[i] + B[i+1]);
diff = diff + fabsf(B[i] - A[i]);
}
if (diff <TOL) done = 1;
for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);
printf("| diff=%6.2f¥n", diff); /* for debug */
}
}

int main() {
int i;
for (i=1; i<N-1; i++) A[i] = B[i] = 100+i*i;
solve();

}

A
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6.

Building blocks for synchronization

Fetch-and-increment reads an original value from memory and
increments (adds one to) it in memory atomically

Implement fetch-and-increment (FAT) using the load-linked/store-
conditional instruction pair

« Refer the discussion of implementing an atomic exchange EXCH
Implement BARRIER() using FAT
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7. Cache coherence protocols 3&‘
\

 Select your favorite commercial multi-core processor
« Describe the memory organization including caches and
main memory

 cache line size, write policy, write allocate/no-allocate,
direct-mapped/set-associative, the number of caches (L1, L2,
and L3?)

» Describe the cache coherence protocol used there



