
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

7. Instruction Level Parallelism:
Dynamic Scheduling

Ver. 2022-01-06aFiscal Year 2022

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W831, HyFlex
Mon 13:45-15:25, Thr 13:45-15:25

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Assignment 5

1. Design a four stage pipelined scalar processor supporting MIPS add and bne
instruction in Verilog HDL. Please download proc06.v and proc07.v from the
support page and refer it.

2. Verify the behavior of designed processor using following assembly code.

3. Submit your report in a PDF file via E-mail by the next Thursday.

• The report should include a block diagram, a source code in Verilog HDL, and
obtained waveforms of your design.

p.imem.mem[0] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.imem.mem[1] = {6'h0, 5'd5, 5'd1, 5'd5, 5'd0, 6'h20}; // L1: add $5, $5, $1

p.imem.mem[2] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.imem.mem[3] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.imem.mem[4] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.imem.mem[5] = {6'h5, 5'd4, 5'd5, 16'hfffb}; // bne $4, $5, L1

p.imem.mem[6] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.imem.mem[7] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.imem.mem[8] = {6'h0, 5'd0, 5'd0, 5'd5, 5'd0, 6'h20}; // add $5, $0, $0

p.imem.mem[9] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.imem.mem[10]= {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.imem.mem[11]= {6'h5, 5'd2, 5'd0, 16'hfff5}; // bne $2, $0, L1

p.imem.mem[12]= {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.imem.mem[13]= {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.regfile.r[1] = 1; p.regfile.r[2] = 22; p.regfile.r[3] = 0; p.regfile.r[4] = 4; p.regfile.r[5] = 0;

while(1){
for(int i=1; i!=4; i++){

}
}

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Four stage pipelined processor supporting ADD and BNE, which does not
adopt data forwarding (proc08.v, Assignment 5)

+

pc
If_IR

4

pc

If stage Id stage

Id_RRS

Id_RRT

Id_RS

Id_RT
IdEx_RRS

E
x
_
R
S
L
T

Ex stage Wb stage

IfId IdEx ExWb

ExWb_RSLT

Id_RD

imem

r
e
g
f
i
l
e

IdEx_RRT

I
f
I
d
_
I
R

IdEx_RD ExWb_RD

ExWb_RD

Sign extend &
Shift left 2

Id_IM

+

Ex_TKN

If_NPC Id_I32

Id_TPC

M
u

x

IfId_NPC IdEx_TPC

IdEx_TPC

Ex_TKN

+
,

!
=

Id_OP IdEx_OP

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Scalar and Superscalar processors

• Scalar processor can execute at most one instruction per clock
cycle by using one ALU.
• IPC (Executed Instructions Per Cycle) is less than 1.

• Superscalar processor can execute more than one instruction
per clock cycle by executing multiple instructions by using
multiple pipelines.
• IPC (Executed Instructions Per Cycle) can be more than 1.

• using n pipelines is called n-way superscalar

n

(a) pipeline diagram of scalar processor

(b) pipeline diagram of 2-way superscalar processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE, BEQ)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution

• Register renaming

• Dynamic scheduling

• Memory data flow

• Out-of-order execution

• Another obstacle is data cache

(1) add $5,$1,$2
(2) add $9,$5,$3
(3) lw $4, 4($7)
(4) add $8,$9,$4

(3) lw $4, 4($7)
(1) add $5,$1,$2
(2) add $9,$5,$3
(4) add $8,$9,$4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Exploiting Instruction Level Parallelism (ILP)

(3)

(4)

Data flow graph

Instruction

Data dependence

(3)

(4)

Data flow graph

4 cycles for 4 insns
ILP = 1.0

3 cycles for 4 insns
ILP = 1.33

i = 0

*C = *C + (*A + *B)

return

False True

B1

BE

B3

Error check

B2

Control flow graph

(1)

(1)(2)

(2)

Control
dependence

Prediction & speculation

What is the solution?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Exercise: what is data dependence

• Draw a data flow graph for each instruction stream

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R3 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R6 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R4 = R6 + 3 (3)

R3 = R2 + 1 (1)

R3 = R4 + 2 (2)

R7 = R6 + 3 (3)

Instruction stream 1

Instruction stream 2 Instruction stream 3 Instruction stream 4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the value of
insn i.

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 3 + 2 (3)

26 = 5 + 21 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

41 = 20 + 21 (4)

5 = 3 + 2 (3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Output dependence

• Insn i and j write the same register, WAW (write after write)

• Program order must be preserved to ensure that the value finally
written corresponds to instruction j.

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 3 + 2 (3)

26 = 5 + 21 (4)

Assume R3=10, R5=3

5 = 3 + 2 (3)

20 = 10 x 2 (1)

21 = 20 + 1 (2)

41 = 20 + 21 (4)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Antidependence

• Insn i reads a register that insn j writes, WAR (write after read)

• Program order must be preserved to ensure that i reads the correct
value.

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 3 + 2 (3)

26 = 5 + 21 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

5 = 3 + 2 (3)

6 = 5 + 1 (2)

11 = 5 + 6 (4)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Exercise: what is data dependence

• Draw a data flow graph for each instruction stream

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R3 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R6 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R4 = R6 + 3 (3)

R3 = R2 + 1 (1)

R3 = R4 + 2 (2)

R7 = R6 + 3 (3)

Instruction stream 1

Instruction stream 2 Instruction stream 3 Instruction stream 4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Data dependence and renaming

• True data dependence (RAW)

• Name dependences

• Output dependence (WAW)

• Antidependence (WAR)

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)
(3)

(4)

(3)

(4)

(1)

(1)(2)

(2)

RAW

RAW

RAW

WAW

WAR

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R8 = R5 + 2 (3)

R7 = R8 + R4 (4)

RAW

RAW
RAW

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Hardware register renaming

• Logical registers (architectural registers) which are ones
defined by ISA
• $0, $1, … $31

• Physical registers
• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a
unique physical register dynamically in the renaming stage

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Complete
Commit/
Retire

Typical instruction pipeline of high-performance superscalar processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Hardware register renaming

• Logical registers (architectural registers) which are ones defined by
ISA

• $0, $1, … $31

• Physical registers

• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a unique
physical register dynamically in the renaming stage

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Commit Retire

Typical instruction pipeline of high-performance superscalar processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Exercise: register renaming

• Rename the following instruction stream using physical registers
of p9, p10, p11, and p12

I0: sub $5,$1,$2

I1: add $9,$5,$4

I2: or $5,$5,$2

I3: and $2,$9,$1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Example behavior of register renaming (1/4)

• Renaming the first instruction I0

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

0

1

2

3

4

5

6

7

8

9

10

31

dst = $5
src1 = $1
src2 = $2

dst = p9
src1 = p1
src2 = p2

I0: sub p9,p1,p2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Example behavior of register renaming (2/4)

• Renaming the second instruction I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 2

101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $9
src1 = $5
src2 = $4

dst = p10
src1 = p9
src2 = p4

I0: sub p9,p1,p2
I1: add p10,p9,p4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Example behavior of register renaming (3/4)

• Renaming instruction I2

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 3

1112

Free tag buffer

head

13

0

Register map table

1

2

3

4

9->11

6

7

8

10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $5
src1 = $5
src2 = $2

dst = p11
src1 = p9
src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4
I2: or p11,p9,p2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Example behavior of register renaming (4/4)

• Renaming instruction I3

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 4

12

Free tag buffer

head

13

0

Register map table

1

2->12

3

4

11

6

7

8

10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $2
src1 = $9
src2 = $1

dst = p12
src1 = p10
src2 = p1

I0: sub p9,p1,p2
I1: add p10,p9,p4
I2: or p11,p9,p2
I3: and p12,p10,p1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Renaming two instructions per cycle for superscalar

• Renaming instruction I0 and I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $5
src1 = $1
src2 = $2

dst = p9
src1 = p1
src2 = p2

I0: sub p9,p1,p2
I1: add p10,p5,p4 (Wrong) dst = $9

src1 = $5
src2 = $4

dst = p10
src1 = p5
src2 = p4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Renaming two instructions per cycle for superscalar

• Renaming instruction I0 and I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

A_dst = $5
A_src1 = $1
A_src2 = $2

A_dst = p9
A_src1 = p1
A_src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4 B_dst = $9

B_src1 = $5
B_src2 = $4

B_dst = p10
B_src1 = p9
B_src2 = p4

M
u

x

If B_src1==A_dst, use tag from free tag buffer
I0

I1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Pollack’s Rule

• Pollack's Rule states that microprocessor "performance
increase due to microarchitecture advances is roughly
proportional to the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

WIKIPEDIA

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the value of
insn i.

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 3 + 2 (3)

26 = 5 + 21 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

41 = 20 + 21 (4)

5 = 3 + 2 (3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

Recommended Reading

• Focused Value Prediction

• Sumeet Bandishte, Jayesh Gaur, Zeev Sperber, Lihu Rappoport, Adi Yoaz, and Sreenivas
Subramoney, Intel

• ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pp. 79-91,
2020

• A quote:
“Value Prediction was proposed to speculatively break true data dependencies, thereby allowing Out of
Order (OOO) processors to achieve higher instruction level parallelism (ILP) and gain performance.
State-of-the-art value predictors try to maximize the number of instructions that can be value
predicted, with the belief that a higher coverage will unlock more ILP and increase performance.
Unfortunately, this comes at increased complexity with implementations that require multiple
different types of value predictors working in tandem, incurring substantial area and power cost. In
this paper we motivate towards lower coverage, but focused, value prediction. Instead of aggressively
increasing the coverage of value prediction, at the cost of higher area and power, we motivate
refocusing value prediction as a mechanism to achieve an early execution of instructions that
frequently create performance bottlenecks in the OOO processor. Since we do not aim for high
coverage, our implementation is light-weight, needing just 1.2 KB of storage. Simulation results on 60
diverse workloads show that we deliver 3.3% performance gain over a baseline similar to the Intel
Skylake processor. This performance gain increases substantially to 8.6% when we simulate a
futuristic up-scaled version of Skylake. In contrast, for the same storage, state-of-the-art value
predictors deliver a much lower speedup of 1.7% and 4.7% respectively. Notably, our proposal is
similar to these predictors in performance, even when they are given nearly eight times the storage
and have 60% more prediction coverage than our solution.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

Final report of Advanced Computer Architecture

1. This is a tentative version. The contents may change
slightly.

2. Submit your final report describing your answers to
questions 1 - 7 in a PDF file
via E-mail (kise [at] c.titech.ac.jp) by February 13, 2023
• E-mail title should be “Report of Advanced Computer

Architecture”

3. Enjoy!

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30

1. Academic paper reading

• Select an academic paper from the list below and

• In your own word, describe the problem that the authors try to solve,

• Describe the key idea of the proposal,

• Describe your opinion why the authors could solve the problem
although there may be many researchers try to solve similar
problems.

• List
• Prophet/critic hybrid branch prediction, ISCA’04, 2004

• The V-Way Cache: Demand Based Associativity via Global Replacement, ISCA’05, 2005

• Emulating Optimal Replacement with a Shepherd Cache, MICRO-40, 2008

• A new case for the TAGE branch predictor, MICRO-44, 2011

• Skewed Compressed Caches, MICRO-47, 2014

• Focused Value Prediction, ISCA, 2020

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 31

2. MIPS assembly programming

• Write MIPS assembly code asm1.s for code1.c in C.

• Write MIPS assembly code asm2.s for code2.c in C.

int sum = 0;
int i, j;
for (i=0; i=<100; i++)

for (j=0; j=<100; j++) sum += (j+i);

int A[200];
int sum = 0;
int i;
for (i=0; i<200; i++) A[i] = i; /* initialize the array */
for (i=1; i<200; i++) A[i] = A[i-1] + A[i]; /* compute */
for (i=0; i<200; i++) sum += A[i]; /* obtain the sum */

code1.c

code2.c

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 32

3. Pipelined processor

• Design a three stage pipelined scalar processor supporting MIPS
add, addi, lw, sw, and bne instructions in Verilog HDL.
Configure the critical paths of the three stages to have similar
delays.
Please download proc08.v from the support page and refer it.
Note that you do not need to implement data forwarding.

• Verify the behavior of designed processor using asm1.s and
asm2.s.
You may insert NOP instructions if necessary.

• The report should include a block diagram, a source code in
Verilog HDL, the description of the changes of the code, and
obtained waveforms of your design.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 33

4. OoO execution and dynamic scheduling

• Draw the cycle by cycle processing behavior of these 10
instructions

• Modify this dataflow graph and draw another cycle by cycle
processing behavior of the graph having 10 instructions

75

6

8 10

9

3

4

1 2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 34

5. Parallel programming

• Describe an efficient parallel program for the following sequential
program using LOCK(), UNLOCK() and BARRIER() assuming a shared
memory architecture

• Explain why your cord runs correctly
and why your code is efficient.

#define N 8 /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

void solve () {

int i, done = 0;

while (!done) {

float diff = 0;

for (i=1; i<=N; i++) { /* use A as input */

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

}

for (i=1; i<=N; i++) { /* use B as input */

A[i] = 0.333 * (B[i-1] + B[i] + B[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("| diff=%6.2f¥n", diff); /* for debug */

}

}

int main() {

int i;

for (i=1; i<N-1; i++) A[i] = B[i] = 100+i*i;

solve();

}main02.c

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 35

6. Building blocks for synchronization

• Fetch-and-increment reads an original value from memory and
increments (adds one to) it in memory atomically

• Implement fetch-and-increment (FAI) using the load-linked/store-
conditional instruction pair

• Refer the discussion of implementing an atomic exchange EXCH

• Implement BARRIER() using FAI

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 36

7. Cache coherence protocols

• Select your favorite commercial multi-core processor

• Describe the memory organization including caches and
main memory

• cache line size, write policy, write allocate/no-allocate,
direct-mapped/set-associative, the number of caches (L1, L2,
and L3?)

• Describe the cache coherence protocol used there

