Fiscal Year 2022

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

6. Instruction Level Parallelism:
Instruction Fetch and Branch Prediction

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W831, HyFlex Kenji Kise, Department of Computer Science
Mon 13:45-15:25, Thr 13:45-15:25 Kise _at__ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Four stage pipelined processor supporting ADD

If stage Id stage

Ex stage Wb stage
IfId IdEx ExWb
4
pc
If IR || IfId_IR
—> pc imem
Id_RS ~_
Id_RRS IdEX_RRS m
Id_RT 3 |
o 2
v
ExWb_RD | K = ExWb_RSLT
M + —>
Id_RRT IdEX_RRT
Id RD IdEx_RD ExWb_RD

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Assignment 4 (2023-01-05)

\
1. Design a four stage pipelined processor supporting MIPS add instructions in X
Verilog HDL. Please download procOl.v from the support page and refer it.

2. Verify the behavior of designed processor using following assembly code
assuming initial values of r[1]=22, r[2]=33, r[3]=44, and r[4]=55

add %0, %0, %o
add $1, $1, ¢$1
add %2, $2, $2
add $3, $3, $3
add $4, $4, $4

NOP {6'h®, 5'do, 5'de, 5'de, 5'de, 6'h20}

H OH H H

3. Submit a report printed on A4 paper at the beginning of the next lecture on
Thursday. Or,
Submit your report in a PDF file via E-mail (kise [at] c.titech.ac.jp) by the
beginning of the next lecture on Thursday.

« The report should include a block diagram, a source code in Verilog HDL,
and obtained waveforms of your design.

* E-mail title should be "Assignment of Advanced Computer Architecture”

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Exploiting Instruction Level parallelism (ILP) X
\

* A superscalar has to handle some flows efficiently to exploit ILP

« Control flow (control dependence)

« To execute ninstructions per clock cycle, the processor has to
fetch at least ninstructions per cycle.

« The main obstacles are branch instruction (BNE, BEQ)
e Prediction
* Another obstacle is instruction cache

« Register data flow (data dependence)

e QOut-of-order execution (1) add $5,$1,$2 0
. . (2) add $9,%$5,%$3
. R@ngTer renaming (3) 1w $4, 4($7) RAW
» Dynamic scheduling (4) add $8,%9,%4 @
° Memor'y data flow (3) lw $4, 4($7) ”~
. £ : (1) add $5,%$1,%$2 RAW
Out-of-order execution (2) add $9.95. 93
e Another obstacle is data cache (4) add $8,$9,%4

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Branch predictor %\%
\

« A branch predictor is a digital circuit that tries to guess or predict
which way (taken or untaken) a branch will go before this is known
definitively.

« A random predictor will achieve about a 50% hit rate because the
prediction output is 1 or O.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Sample program: vector add \
\

31[=0]

#define VSIZE 4 B2 e * ™
void vadd(long *A, long *B, long *C){ *C=*C+ (*A+*B)
for(i=0; i<VSIZE; i++) :+
C[i] += (A[i] + B[i]); o
} C++
i<4
N /
False True
B3 [return
Control flow graph
B3 —> B3 — B3 —> B2 —»
Executed instruction sequence /ﬁQofThken(O»ﬁﬂofThken(OyﬂﬂoTThken(O»fThken(U
B1 B2 B2 B2 B2 B3

Taken (1) Taken(1) Taken (1) Not Taken (O)

Predicting the sequence of 1110 1110 1110 1110 1110 ..

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Simple branch predictor: 2bit counter

« Tt uses two bit register or a counter.
« How to update the register

« TIf the branch outcome is taken and the value is not 3, then increment the

register.

« TIf the branch outcome is untaken and the value is
the register.

* Hot to predict
« It predictsas1if the MSB of the register is one,

not O, then decrement

otherwise predicts as O.

Taken
Strongly
2 bit Taken (11)

Tak -
F aken -~ Untaken
»
Weakly _Taken Strongly
. 4. e
Prediction Untaken (01 Untaken Untaken (00)

G——

Taken
Weakly
—_———
Untaken ~_Taken (10)

-~
-~

o _
Untaken

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Sample program: vector add with two branches

L=

#tdefine VSIZE 4

void vadd(long *A, long *B, long *C){
for(i=0; i<VSIZE; i++) {

if(A[1]<@) error_routine();

C[i] += (A[i] + B[i]);

}
}

Executed instruction sequence

BEL }
Error check

¢ T
BZ[}
*C=*C+ (*A + *B)
False True

3 (o

Control flow graph

/33 — /33 — /33 — /BZ —
B1 BE| (B2 BE| (B2 BE| (B2 BE| (B2 B3
o 1 o 1 o 1 0 0

G Predicting the sequence of 01010100 01010100 01010100 ..

Af_a'

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

Sample program: vector add with two branches

A

B3| — B3| B3| —» B2| |—»
Executed instruction sequence / /‘ /‘ /‘
B1 BE| |B2 BE| |B2 BE| |B2 BE| |B2 B3
o 1 o 1 o 1 0O O

Predicting the sequence of 01010100 01010100 01010100 ..

The BE’s sequence of 01010100 01010100 0101010

The B2’s sequence of 91010100 01010100 01010100 ..

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Simple branch predictor: bimodal

* Program has many static branch instructions. The behavior may depend

on each branch. Use one counter for one branch instruction
* How to predict

« Select one counter using PC, then it predicts 1 if the MSB of the
register is one, otherwise predicts O.

* How to update
« Select one counter using PC, then update the counter in the same

way as 2bit counter.

Pattern History Table (PHT)

Counter 2" entry
L]
n Prediction
£ > 5
[
T 2bit

<

\

Taken
S‘rrongly
Taken (11)

Taken

UnTaken

Taken

»
Weakly
Untaken (01) / = = =

-~
-~

Taken

G—

Untaken

Weakly
Taken (10)

Un’raken

Strongly
> \ Untaken (00 \

v,

~ -
Untaken

/

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

10

Accuracy of simple predictors with 8KB HW budget

\

100
%0 8KB hardware budget O Branch Always
O 2bit counter
80 HI _ n
) B Bimodal
= 710 _ 1 _—
£ 60 I
ad
2 50 | 1 s
.0
= | _
'_6 40 1N | |] 1] 7__ | K = | |
e - -
a 30 | I | T
2
20 | | U
. k IE 100 I Gl
0 L] | _L | | | |
—_ ™ O
| | o0
al > ©
s i :
n <

SERV-5 oo

ﬁ, Benchmark for CBP(2004) by Intel MRL and TEEE TC uARCH.
c

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Pipelined MIPS processor of five stages

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

IF s ID i EX | MEM | WB
H N | | |
| 32 i : |
w_tpc = 32 ! |f|d_pC4 + 7 \: 0 0
c 1 a5 U W_tpc | 0 :
w_ped % | 32/ | | |
w_npc i] E >i i
i vlv_lmm 0'% w_imm32 i w_taken i i
1 =)] 1 1
4 . 32 w_pc4 16 g
= 5 = L) e
32 | w_rs 0 | i
n<|5 - w_rrs |, 9% ek | Mewb rsit o
11 metn | IS w_rt 7 |) 2 [i| Exme rsit i Iz
>r_pc nstru | 79 m_regfile 32 | + : o | 2!
. Cache ! 5 = ! M | 32 . =< ‘
r_pc[12:2] | =|w_rd2 m_regs . =) = i ! <3,
" S i) [tE S 1 e
: 5 ¢ 32 Y l Data Ll 1 mewn_tdd
i i 7 | Cache | -
: w_rd : 32 : : 32
w_rslt2 I IdEx_rrt i | exvie o i /5/,
Pipeline register ! Wb, rd2
IfId IdEx ExMe Melb

Instruction fetch unit of super-scalar in IF stage

* For high-bandwidth instruction delivery, prediction, and speculation

If stage

Target address

Next PC generator

\

Id stage

A 4

PC

P
<

\ 4

BTB SIB

PC + 8|

>

lPC’ BHR

Untaken

Branch predictor

Instruction cache

\4

Branch Target PC
for recovery

Pipeline registers

& BTB: Branch Target Buffer

Af_a'

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

[
»

13

Simple Branch Target Buffer (BTB) Example

\
* memory size of 4KB X

3130 1312 11 210 BYte
" offset
Hit Tag 20 10 Data (target address)
1 Index 4
Index Valid Tag Data
0
1
2
., _ -
' I
1021 |
1022
1023
0 .32

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Why do branch instructions degrade IPC?

« The branch taken / untaken is determined in execution stage of the
branch.

\

« The conservative approach of stalling instruction fetch until the branch
direction is determined.

7.

o0k wnNn =

add
add
bne
add
add
add
add

ccl cc2 «cc3 cc4| cc5 cc6| cc7 cc8 cc9 «cclo
| IF | ID | EX | MEM| WB |
| IF | ID | EX | MEM| WB |
| IF | ID | EX |MEM| WB
Control dependency IF | ID | EX |MEM| we |
IF | ID | EX [MEM| WB |
| IF | ID | EX |MEM| WB |
| IF | ID | EX | MEM| WB |

2-way superscalar processor executing instruction sequence with a branch

Note that because of a branch instruction, only one instruction is executed in cc4 and no
=~ instructions are executed in CC6 and CC7. This reduces the IPS.

Af_a'

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Why do branch instructions degrade IPC?

« The branch taken / untaken is determined in execution stage of the
branch.

« Prediction and speculation, then training
 'Recovery whan a prediction miss

ccl cc2 cc3 cc4| cc5 cc6| cc7 cc8 cc9 cclo

1. add | IF | 1D | EX [MEM| WB |

2. add | IF | 1D | EX [MEM| wWB |

3. bne [IF] 10 [EX [MEM] wB

4 add IF | ID | EX |MEM| WB |

5. add IF | ID | EX |[MEM| WB |

6. add | IF | ID | EX [MEM| wWB |
7. add [IF [1D [EX [MEM] we |

2-way superscalar processor executing instruction sequence with a branch

Af_a'

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

16

Why do branch instructions degrade IPC?

« The branch taken / untaken is determined in execution stage of the
branch.

« Prediction and speculation, then training
 Recovery whan a prediction miss

ccl cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9 cclo

1. add | IF | 1D | EX [MEM| WB |

2. add | IF | 1> | EX |MEM| WB |

3. bne [IF [0 | EX [MEM[WB]

4. add MEM | WB | . .
flush some instructions

5. add MEM] W |

6 add EX | MEM| WB |

7 add EX | MEM| WB |

IF | ID | EX | MEM| WB |

IF | ID | EX | MEM| WB |

ﬁw 2-way superscalar processor executing instruction sequence with a branch
c

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

17

An innovation in branch predictors in 1993

 Using branch history
* global branch history
* local branch history

 2-level branch predictor and Gshare

« Assume predicting the sequence 1110 1110 1110 1110 1110 ...

1116111 ©
11101110 °?
111011101 °?
1110111011 ?
11101110111 2
111011101110 ?

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

adr

pred

000
001
010
011
100
101
110
111

\

Recommended Reading
\

« Combining Branch Predictors
« Scott McFarling, Digital Western Research Laboratory
« WRL Technical Note TN-36, 1993

* A quote:
"In this paper, we have presented two new methods for improving
branch prediction performance. First, we showed that using the bit-
wise exclusive OR of the global branch history and the branch address
to access predictor counters results in better performance for a given

counter array size."

~ =
! 19

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Gshare (TR-DEC 1993)
* How Yo predict x

« Using the exclusive OR of the global branch history and PC to access PHT,
then MSB of the selected counter is the prediction.

* How to update
 Shifting BHR one bit left and update LSB by branch outcome in IF stage.
« Update the used counter in the same way as 2BC in WB stage.

Program 1110111011 (shift register)

Counter
\ Branch History
| | | Register (BHR)
n m Taken
a # Pattern History Table (PHT) Taken
l l 2N entr S‘ff‘ongly - Weakly
x0R D) ! Taken (11) Untaken” . Taken (10)
. Taken Un’raken
' Prediction = Token
7 > > Weakly — Strongly
Untaken (01) T)n?ak_en* Untaken (00) \
n —— v, /
~@9' 2 bit Untaken = =
J i i 20

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

21

Bi-Mode (MICRO 1997)
AN

« A choice predictor (bimodal) is used as a meta-predictor

* How to predict
* Like Gshare, both of Taken PHT and Untaken PHT make two
predictions.
« Select one among them by the choice predictor which tracks the
global bias of a branch.

e How tou BHR Program Counter
pdate |
« The used PHT is updated
in the same way as 2BC. 14 ‘
XORP g]

« Choice predictor is update
in the same way as bimodal

Choice predittor

> <«
Taken PHT | ‘ Untaken PHT
Prediction

Af_a'
P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

YAGS, Yet Another Global Scheme (MICRO 1998)

+ Using two tagged PHTs

« When a PHT miss, choice PHT makes a prediction.

Figure 3.
| address | Bi-Mode

©

| address |

0,

choice PHT
direchon PHT NT

]

pradicion

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

direchon PHT T

chosce PHT

T cache

-

ibe Zbe tag
]

S

cache hit

Figure 6.
YAGS

prediction

From YAGS paper

23

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

24

An innovation in branch predictors in 1993 (again) x
\

 Using branch history
* global branch history
* local branch history

 2-level branch predictor and Gshare

« Assume predicting the sequence 1110 1110 1110 1110 1110 ...

11101110 °? 11101110 >?
111011101 ? 111011101 ?
1110111011 ? 1110111011 °?
11101110111 °? 11101110111 °?
111011101110 °? 111011101110 »

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

Perceptron (HPCA 2001)

* How to predict
« Select one perceptron by PC
« Compute y using the equation. It predicts 1if y>=0, predicts O if y<O
* How to update
* Train the weights of used perceptron when the prediction miss or |y| < T

@ Program Counter Branch History (x)
woN\ wl\ w2 /wn | | | |

*y) Computey

A\ 4

Perceptron Model Selected
: Perceptron

T
Yy = wp + E T, Prediction
i=1

Table of Perceptrons (w)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

27

Branch predictors based on pattern matching

\
« Find the longest matching pattern (green rectangle) \
« Select the proper matching length or long matching pattern (blue rectangle)

« Count the number of O and the number of 1 after the pattern (red rectangle),
then predict.

Global branch history Prediction O or 1
]
The longest matching pattern
0 1 0 >
——

The long matching pattern

0 Prediction
 E—

ﬁ: Ol Appearing O twice and 1 once, so the prediction will be O
c

—

28

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Partial Pattern Matching (CBP 2004)

Table 4 Table 3 Table 2 Table 1 Table O \
pc pc h[0:9] pc h[0:19] pc h[0:39] pc h[0:79]

12 zlzﬁ ; ;|: zlzﬁ ; ;|: zlzﬁ ; ;|: zlzﬁ ; ;|:
;t hash hash hash hash hash hash hash hash
8 1oi 8L 1oi 8L 1o;|; 8

i 10;{:
i 3! 8bit ! || 130! 8wt || |3b: 8bit || |36 8bit
5’3 m| for! tag || fcri tag | [eri tag Y| |otr! tag i
E 8 8 8 8
A1 A1 A1 A1 A1 A1 A1 A1
1 WV

7
1 %\/
Z

7

1

prediction 0/1
_ Df_a' From CBP2004 presentation slide

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

Prediction accuracy

The accuracy of 4KB Gshare is about 93%.
The accuracy of 4KB PPM is about 97%.

|
8KB hardware budget

O 0O ©W < N O 0o ©o < o o
AN -

—

(%) 932y SuoRoIpeIdsIN

o8eJany
S o 9 G-AY3S
(@) © (@] s
E & E Q. v-AY3S
m & m A
B E OM@ €-Ad3S
¢-N\d3S
I-Ad3S

G-NIN
r-NIN
E-NIN
¢-ANIN
I-NIN
G—1NI
v—LNI
€—1NI
¢—1NI
I—1LNI
G-dd
v—d4d
€-dd
¢—d4d
I-dd

30

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Recommended Reading
\
* Prophet-Critic Hybrid Branch Prediction 2%

« Ayose Falcon, UPC, Jared Stark, Intel, Alex Ramirez, UPC,
Konrad Lai, Intel, Mateo Valero

. ISCA-31 pp. 250-261 (2004)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 31

A quote from Introduction (1/2)

\

Conventional predictors are analogous to a taxi with just one driver.

He gets the passenger to the destination using knowledge of the
roads acquired from previous trips; i. e., using history information
stored in the predictor's memory structures.

When he reaches an intersection, he uses this knowledge to decide
which way to turn.

The driver accesses this knowledge in the context of his current
location.

Modern branch predictors access it in the context of the current
location (the program counter) plus a history of the most recent
decisions that led to the current location.

~ =
! 32

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A quote from Introduction (2/2)

\

Prophet/critic hybrids are analogous to a taxi with two drivers: the
front-seat and the back-seat. The front-seat driver has the same role
as the driver in the single-driver taxi. This role is called the prophet.

The back-seat driver has the role of critic. She watches the turns the
prophet makes at intersections. She doesn't say anything unless she
thinks he's made a wrong turn. When she thinks he's made a wrong turn,
she waits until he's made a few more turns to be certain they are lost.
(Sometimes the prophet makes turns that initially look questionable, but,
after he makes a few more turns, in hindsight appear to be correct.)
Only when she's certain does she point out the mistake.

To recover, they backtrack to the intersection where she believes the
wrong-turn was made and try a different direction.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 33

Prophet-Critic Hybrid Branch Prediction

b Critic
PropheiirhedmtlonS Predictions
FTQ
Prophet LKJIHGFEDCBA—»HH

4 future bits
{(C,D,E,F)

Critique of
branch C

I-cache
& Fetch

4.00

3.50

3.00 A

1.00

0.50 1

0.00

\

— —AVG (all benchmarks)
—+—unzip

—%— premiere

—&—msvcy

—a—flash

—=—facerec

—8—1ipcc

e e o

m

Number of Future Bits

Figure 5. Effect of varying the number of fu-
ture bits used by the critic on prediction ac-

curacy for selected benchmarks. (prophet:
8KB perceptron; critic: 8KB tagged gshare)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 34

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

35

