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Conventional five steps (stages) of MIPS
\

« IF: Instruction Fetch from instruction memory

« ID: Instruction Decode and operand fetch from regfile (register file)

« EX: EXecute operation or calculate address for load/store or calculate
branch condition and target address

« MEM (MA): MEMory access for load/store
«  WB: Write result Back to regfile
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Pipelined MIPS processor with data forwarding
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Single-cycle and pipelined processors
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Scalar and Superscalar processors

 Scalar processor can execute at most one instruction per clock

cycle by using one ALU.
« IPC (Executed Instructions Per Cycle) is less than 1.

 Superscalar processor can execute more than one instruction

per clock cycle by executing multiple instructions by using

multiple pipelines.
« IPC (Executed Instructions Per Cycle) can be more than 1.
* using n pipelines is called n-way superscalar
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Exercise: datapath of a 2-way superscalar

« Datapath of a 2-way superscalar processor supporting ADD

which does not adopt data forwarding
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Multi-Ported Memories (for FPGAs)

LVT (Live Value Tabele) design
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Figure 1: A 2W/2R Live Value Table (LV'T) design.

[8] C.E. LaForest and J. G. Steffan. Efficient Multi-ported
Memories for FPGAs. In Proceedings of the 18th annual
ACM/SIGDA international symposium on Field
programmable gate arrays, FPGA " 10, pages 41-50, New
York, NY, USA, 2010. ACM.
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Figure 2: A generalized mW/nR memory implemented using a
Live Value Table (LVT)
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Exploiting Instruction Level parallelism (ILP) X
\

* A superscalar has to handle some flows efficiently to exploit ILP

« Control flow (control dependence)

« To execute ninstructions per clock cycle, the processor has to
fetch at least ninstructions per cycle.

« The main obstacles are branch instruction (BNE, BEQ)
e Prediction
* Another obstacle is instruction cache

« Register data flow (data dependence)

« Out-of-order execution (1) add $5,$1,%2 0
. . (2) add $9,%$5,%$3
. Reg|sTer‘ renaming (3) 1w $4, 4($7) RAW
»  Dynamic scheduling (4) add $8,%9,%4 @
* Memory data flow (3) Tu 4, 4($7)

. _af_ : (1) add $5,$1,%2 RAW
Out-of-order execution (23 2dd $o.45. 43
« Another obstacle is instruction cacde add $8,$9,%4
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MIPS Control Flow Instructions

« MIPS conditional branch instructions:
bne $s0, $sl1, Lbl # go to Lbl if $s0=$sl

« Ex: if (i==j) h = 1 + 7;
bne $s0, $s1, Lbl1l

add $s3, $s0, $si1
Lbll:

= Instruction Format (I format):

op rs rt 16 bit offset

= How is the branch destination address specified?
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Why do branch instructions degrade IPC?

« The branch taken / untaken is determined in execution stage of the
branch.

\

« The conservative approach of stalling instruction fetch until the branch
direction is determined.

7.

o0k wnNn =

add
add
bne
add
add
add
add

ccl cc2 «cc3 cc4| cc5 cc6| cc7 cc8 cc9 «cclo
| IF | ID | EX | MEM| WB |
| IF | ID | EX | MEM| WB |
| IF | ID | EX |MEM| WB
Control dependency IF | ID | EX |MEM| we |
IF | ID | EX [MEM| WB |
| IF | ID | EX |MEM| WB |
| IF | ID | EX | MEM| WB |

2-way superscalar processor executing instruction sequence with a branch

Note that because of a branch instruction, only one instruction is executed in cc4 and no
=~ instructions are executed in CC6 and CC7. This reduces the IPS.

Af_a'
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Deeper pipeline

 In conservative approach, IPC degradation will be

significant by deeper pipeline

add
add
bne
add
add
add
add

Nooswn e

ccl cc2 «cc3 cc4d cc5 cc6| cc/7 cc8 cco
| IF | ID1 | ID2 [ ID3 | EX | MEM| WB |
| IF | D1 | ID2 | ID3 | EX | MEM| WB |

| IF | ID1 | ID2 | ID3 | EX | MEM| WB |

Conftrol dependencyx

cclo

ccll ccl2 ccl3 ccl4d

IF | ID1 | D2 | ID3

EX | MEM| WB |

IF | IDd1 | ID2

ID3

EX | MEM | WB |

| IF | ID1

ID2

ID3

EX | MEM| WB |

| IF | ID1 | ID2

ID3

EX | MEM| WB |

2-way superscalar adopting deeper pipeline executing instruction sequence with a branch

Agesﬂ
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Branch predictor X
\

« A branch predictor is a digital circuit that tries to guess or predict
which way (taken or untaken) a branch will go before this is known

definitively.
« A random predictor will achieve about a 50% hit rate because the
prediction output is 1 or O.

« Let's guess the accuracy. What is the accuracy of typical branch
predictors for high-performance commercial processors?
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Prediction Accuracy of weather forecasts
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Simple branch predictor: 2bit counter

« Tt uses two bit register or a counter.
« How to update the register

« TIf the branch outcome is taken and the value is not 3, then increment the

register.

« TIf the branch outcome is untaken and the value is
the register.

* Hot to predict
« It predictsas1if the MSB of the register is one,

not O, then decrement

otherwise predicts as O.

Taken
Strongly
2 bit Taken (11)

Tak -
F aken -~ Untaken
»
Weakly _Taken Strongly
. 4. e
Prediction Untaken (01 Untaken Untaken (00 )

G——

Taken
Weakly
—_———
Untaken ~_Taken (10)

-~
-~

o _
Untaken
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Exploiting Instruction Level parallelism (ILP) X
\

* A superscalar has to handle some flows efficiently to exploit ILP

« Control flow (control dependence)

« To execute ninstructions per clock cycle, the processor has to
fetch at least ninstructions per cycle.

« The main obstacles are branch instruction (BNE, BEQ)
e Prediction
* Another obstacle is instruction cache

« Register data flow (data dependence)

e QOut-of-order execution (1) add $5,$1,$2 0
. . (2) add $9,%$5,%$3
. Reg|sTer‘ renaming (3) 1w $4, 4($7) RAW
» Dynamic scheduling (4) add $8,%9,%4 @
° Memor'y data flow (3) lw $4, 4($7) ”~
. £ : (1) add $5,%$1,%$2 RAW
Out-of-order execution (2) add $9.95. 93
e Another obstacle is instruction cacfe add $8,$9,%4
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True data dependence x
\

« Insniwrites aregister that insn j reads, RAW (read after
write)

* Program order must be preserved to ensure insn j receives
the value of insn i.

R3 = R3 x RS (1)
R4 = R3 + 1 (2)
‘nEl:iii|+ 2 (3)
R7 =(R3)+ R4 (4)
Assume R3=10, R5=3 Assume R3=10, R5=3
20 = 10 X 2 (1) 20 = 10 X 2 (1)
21 = 20 + 1 (2) 21 220 + 1 (2)
=3 + 2 (3) 41 = 20 + 21 (4)
26 = + 21 (4) =3 + 2 (3)
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Output dependence

A
« Insniand j write the same register, WAW (write after 2%
write)

* Program order must be preserved to ensure that the value

finally written corresponds to instruction j.
(R = R3 x RS (1)
@: R3 + 1 (2)
(R3)= R5 + 2 (3)
R7 = R3 + R4 (4)
Assume R3=10, R5=3 Assume R3=10, R5=3

(29) = 10 x 2 (1) (5)=3 +2 (3)

21 = 20 + 1 (2) = 10 x 2 (1)

=3 +2 (3) 21 =+ 1 (2)

26 = 5 + 21 (4) 41 = 20 + 21 (4)
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Antidependence
I e ——— ——————

* Insnireads aregister that insn j writes, WAR (write after
read)

* Program order must be preserved to ensure that i reads
the correct value.

R3 = R3 x R5 (1)
R4+ 1 (2)
R3I= RS + 2 (3)
R7 = R3 + R4 (4)
Assume R3=10, R5=3 Assume R3=10, R5=3
20 = 10 x 2 (1) 20 = 10 x 2 (1)

21 =QO)+ 1 (2) GD=3 +2 (3)
G)=3 +2 (3) 6 @+ 1 (2)
26 =5 + 21 (4) 11 =5 + 6 (4)
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Data dependence and renaming

* True data dependence (RAW)

* Name dependences
« Output dependence (WAW) "3
 Antidependence (WAR) .

RS
R7

R3 = R3 X R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)
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Hardware register renaming

« A processor renames (converts) each logical register to a
unique physical register dynamically in the renaming stage

IF ID EX MEM WB

Commit/
Retire

IF ID Renaming | Dispatch Issue | Execute | Complete
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Out-of-order execution
i\&‘
« Inin-order execution model, all instructions are

executed in the order that they appear. @
This can lead to unnecessary stalls.
 Instruction (3) stalls waiting for insn (2) to go first,
even though it does not have a data dependence. @D\{ @

« With out-of-order execution,

« Using register renaming to eliminate output dependence
and antidependence, just having true data dependence

« insn (3) is allowed to be executed before the insn (2) Ei - E; X F1<5 <;>
Scoreboarding (CDC6600 in 1964) A 23;
Tomasulo algorithm R7 = R3 + R4 (4)
(IBN\ SYSTZIT\/360 Model 91 in 1967) Data flow graph
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Dynamic scheduling
D e Y
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