
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

5. Instruction Level Parallelism:
Concepts and Challenges

Ver. 2022-12-26aFiscal Year 2022

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W831, HyFlex
Mon 13:45-15:25, Thr 13:45-15:25

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Conventional five steps (stages) of MIPS

• IF: Instruction Fetch from instruction memory

• ID: Instruction Decode and operand fetch from regfile (register file)

• EX: EXecute operation or calculate address for load/store or calculate
branch condition and target address

• MEM (MA): MEMory access for load/store

• WB: Write result Back to regfile

IF

ID
EX

WB

MEM

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Pipelined MIPS processor with data forwarding

3

m_regfile

m_regs

(32bit x 32)

+

w_rs

w_rt

w_rrs

w_rrt

w_rd

ExMe_rsltm_memory

m_imem

(32bit x 2048)

32

32

5

5

5

ID EX MEM

w_imm

16

Sign
ExtIm

m

M
u

x

w_imm32

M
u

x

w_rd2

m_memory

m_dmem

(32bit x 2048)

WB

M
u

x

32

32

11

w
_

rs
lt

2

MeWb_ldd

32

32

IdEx_rrt

MeWb_rslt

ExMe_rrt

+

r_pc

4

r_pc[12:2]

32

32

11

IF

w_npc

Pipeline register

IfId IdEx ExMe MeWb

IdEx_pc

IdEx_op

IdEx_rd2

IdEx_w

IdEx_we

IdEx_rs

IdEx_rt

ExMe_pc

ExMe_op

ExMe_rd2

ExMe_w

ExMe_we

MeWb_pc

MeWb_op

MeWb_w

If
Id

_
ir

w_rslt2

w
_

rs
lt

IfId_pc

w_op

w_rd2

w_w

w_we

w_rs

w_rt

MeWb_rd2

5

w_pc4

+

Sh
ift

left 2

32

32
w_tpc

IfId_pc4M
u

x

32

!
=

w_taken

1

M
u

x
M

u
x

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Single-cycle and pipelined processors

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Scalar and Superscalar processors

• Scalar processor can execute at most one instruction per clock
cycle by using one ALU.
• IPC (Executed Instructions Per Cycle) is less than 1.

• Superscalar processor can execute more than one instruction
per clock cycle by executing multiple instructions by using
multiple pipelines.
• IPC (Executed Instructions Per Cycle) can be more than 1.

• using n pipelines is called n-way superscalar

n

(a) pipeline diagram of scalar processor

(b) pipeline diagram of 2-way superscalar processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Exercise: datapath of a 2-way superscalar

• Datapath of a 2-way superscalar processor supporting ADD,
which does not adopt data forwarding

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Multi-Ported Memories (for FPGAs)

1W/2R design

LVT (Live Value Tabele) design

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE, BEQ)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution

• Register renaming

• Dynamic scheduling

• Memory data flow

• Out-of-order execution

• Another obstacle is instruction cache

(1) add $5,$1,$2
(2) add $9,$5,$3
(3) lw $4, 4($7)
(4) add $8,$9,$4

(3) lw $4, 4($7)
(1) add $5,$1,$2
(2) add $9,$5,$3
(4) add $8,$9,$4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

MIPS Control Flow Instructions

• MIPS conditional branch instructions:

bne $s0, $s1, Lbl # go to Lbl if $s0$s1
beq $s0, $s1, Lbl # go to Lbl if $s0=$s1

• Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1

add $s3, $s0, $s1
Lbl1: ...

◼ Instruction Format (I format):

op rs rt 16 bit offset

◼ How is the branch destination address specified?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Why do branch instructions degrade IPC?

• The branch taken / untaken is determined in execution stage of the
branch.

• The conservative approach of stalling instruction fetch until the branch
direction is determined.

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

1. add

2. add

3. bne

4. add

5. add

6. add

7. add

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9 cc10

Note that because of a branch instruction, only one instruction is executed in cc4 and no
instructions are executed in CC6 and CC7. This reduces the IPS.

Control dependency

2-way superscalar processor executing instruction sequence with a branch

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Deeper pipeline

• In conservative approach, IPC degradation will be
significant by deeper pipeline

IF ID1 EX MEM WB1. add

2. add

3. bne

4. add

5. add

6. add

7. add

cc1 cc2 cc3 cc4 cc5 cc6 cc7 cc8 cc9 cc10 cc11 cc12 cc13 cc14

Control dependency

2-way superscalar adopting deeper pipeline executing instruction sequence with a branch

ID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Branch predictor

• A branch predictor is a digital circuit that tries to guess or predict
which way (taken or untaken) a branch will go before this is known
definitively.

• A random predictor will achieve about a 50% hit rate because the
prediction output is 1 or 0.

• Let’s guess the accuracy. What is the accuracy of typical branch
predictors for high-performance commercial processors?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Prediction Accuracy of weather forecasts

Tomorrow will be rainy?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Simple branch predictor: 2bit counter

• It uses two bit register or a counter.

• How to update the register

• If the branch outcome is taken and the value is not 3, then increment the
register.

• If the branch outcome is untaken and the value is not 0, then decrement
the register.

• Hot to predict

• It predicts as 1 if the MSB of the register is one, otherwise predicts as 0.

Prediction

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken

2 bit

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE, BEQ)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution

• Register renaming

• Dynamic scheduling

• Memory data flow

• Out-of-order execution

• Another obstacle is instruction cache

(1) add $5,$1,$2
(2) add $9,$5,$3
(3) lw $4, 4($7)
(4) add $8,$9,$4

(3) lw $4, 4($7)
(1) add $5,$1,$2
(2) add $9,$5,$3
(4) add $8,$9,$4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

True data dependence

• Insn i writes a register that insn j reads, RAW (read after
write)

• Program order must be preserved to ensure insn j receives
the value of insn i.

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 3 + 2 (3)

26 = 5 + 21 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

41 = 20 + 21 (4)

5 = 3 + 2 (3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Output dependence

• Insn i and j write the same register, WAW (write after
write)

• Program order must be preserved to ensure that the value
finally written corresponds to instruction j.

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 3 + 2 (3)

26 = 5 + 21 (4)

Assume R3=10, R5=3

5 = 3 + 2 (3)

20 = 10 x 2 (1)

21 = 20 + 1 (2)

41 = 20 + 21 (4)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Antidependence

• Insn i reads a register that insn j writes, WAR (write after
read)

• Program order must be preserved to ensure that i reads
the correct value.

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 3 + 2 (3)

26 = 5 + 21 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

5 = 3 + 2 (3)

6 = 5 + 1 (2)

11 = 5 + 6 (4)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Data dependence and renaming

• True data dependence (RAW)

• Name dependences

• Output dependence (WAW)

• Antidependence (WAR)

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4) (3)

(4)

(3)

(4)

(1)

(1)

(2)

(2)

RAW

RAW

RAW

WAW

WAR

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R8 = R5 + 2 (3)

R7 = R8 + R4 (4)

RAW

RAW
RAW

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Hardware register renaming

• Logical registers (architectural registers) which are ones
defined by ISA
• $0, $1, … $31

• Physical registers
• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a
unique physical register dynamically in the renaming stage

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Complete
Commit/
Retire

Typical instruction pipeline of high-performance superscalar processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Out-of-order execution

• In in-order execution model, all instructions are
executed in the order that they appear.
This can lead to unnecessary stalls.

• Instruction (3) stalls waiting for insn (2) to go first,
even though it does not have a data dependence.

• With out-of-order execution,

• Using register renaming to eliminate output dependence
and antidependence, just having true data dependence

• insn (3) is allowed to be executed before the insn (2)

• Scoreboarding (CDC6600 in 1964)

• Tomasulo algorithm
(IBM System/360 Model 91 in 1967)

(3)

(4)

Data flow graph

(1)

(2)

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

Dynamic scheduling

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

this slide is to be used as a whiteboard

