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Conventional five steps (stages) of MIPS

• IF: Instruction Fetch from instruction memory

• ID: Instruction Decode and operand fetch from regfile (register file)

• EX: EXecute operation or calculate address for load/store or calculate 
branch condition and target address

• MEM (MA): MEMory access for load/store

• WB: Write result Back to regfile

IF

ID
EX

WB

MEM
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Pipelined MIPS processor with data forwarding
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Single-cycle and pipelined processors
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Scalar and Superscalar processors

• Scalar processor can execute at most one instruction per clock 
cycle by using one ALU. 
• IPC (Executed Instructions Per Cycle) is less than 1.

• Superscalar processor can execute more than one instruction 
per clock cycle by executing multiple instructions by using 
multiple pipelines.
• IPC (Executed Instructions Per Cycle) can be more than 1.

• using n pipelines is called n-way superscalar

n

(a) pipeline diagram of scalar processor

(b) pipeline diagram of 2-way superscalar processor
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Exercise: datapath of a 2-way superscalar

• Datapath of a 2-way superscalar processor supporting ADD, 
which does not adopt data forwarding
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this slide is to be used as a whiteboard
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Multi-Ported Memories  (for FPGAs)

1W/2R design

LVT (Live Value Tabele) design
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Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to 
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE, BEQ)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution 

• Register renaming 

• Dynamic scheduling

• Memory data flow

• Out-of-order execution 

• Another obstacle is instruction cache

(1) add $5,$1,$2
(2) add $9,$5,$3
(3) lw  $4, 4($7)
(4) add $8,$9,$4

(3) lw  $4, 4($7)
(1) add $5,$1,$2
(2) add $9,$5,$3
(4) add $8,$9,$4
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MIPS Control Flow Instructions

• MIPS conditional branch instructions:

bne $s0, $s1, Lbl # go to Lbl if $s0$s1 
beq $s0, $s1, Lbl # go to Lbl if $s0=$s1

• Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1

add $s3, $s0, $s1
Lbl1: ...

◼ Instruction Format (I format):

op            rs             rt                 16 bit offset

◼ How is the branch destination address specified?
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Why do branch instructions degrade IPC?

• The branch taken / untaken is determined in execution stage of the 
branch.

• The conservative approach of stalling instruction fetch until the branch 
direction is determined.

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

1. add

2. add

3. bne

4. add

5. add

6. add

7. add

cc1  cc2  cc3   cc4  cc5  cc6  cc7  cc8  cc9  cc10

Note that because of a branch instruction, only one instruction is executed in cc4 and no 
instructions are executed in CC6 and CC7. This reduces the IPS.

Control dependency

2-way superscalar processor executing instruction sequence with a branch
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Deeper pipeline

• In conservative approach, IPC degradation will be 
significant by deeper pipeline

IF ID1 EX MEM WB1. add

2. add

3. bne

4. add

5. add

6. add

7. add

cc1  cc2  cc3   cc4  cc5  cc6  cc7  cc8  cc9  cc10 cc11 cc12 cc13 cc14

Control dependency

2-way superscalar adopting deeper pipeline executing instruction sequence with a branch

ID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3

IF ID1 EX MEM WBID2 ID3



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

this slide is to be used as a whiteboard
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Branch predictor

• A branch predictor is a digital circuit that tries to guess or predict 
which way (taken or untaken) a branch will go before this is known 
definitively.

• A random predictor will achieve about a 50% hit rate because the 
prediction output is 1 or 0.

• Let’s guess the accuracy. What is the accuracy of typical branch 
predictors for high-performance commercial processors?
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Prediction Accuracy of weather forecasts

Tomorrow will be rainy?
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Simple branch predictor: 2bit counter

• It uses two bit register or a counter.

• How to update the register

• If the branch outcome is taken and the value is not 3, then increment the 
register.

• If the branch outcome is untaken and the value is not 0, then decrement 
the register.

• Hot to predict

• It predicts as 1 if the MSB of the register is one, otherwise predicts as 0.

Prediction

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken

2 bit
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Exploiting Instruction Level parallelism (ILP)

• A superscalar has to handle some flows efficiently to exploit ILP

• Control flow (control dependence)

• To execute n instructions per clock cycle, the processor has to 
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE, BEQ)

• Prediction

• Another obstacle is instruction cache

• Register data flow (data dependence)

• Out-of-order execution 

• Register renaming 

• Dynamic scheduling

• Memory data flow

• Out-of-order execution 

• Another obstacle is instruction cache

(1) add $5,$1,$2
(2) add $9,$5,$3
(3) lw  $4, 4($7)
(4) add $8,$9,$4

(3) lw  $4, 4($7)
(1) add $5,$1,$2
(2) add $9,$5,$3
(4) add $8,$9,$4
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True data dependence

• Insn i writes a register that insn j reads, RAW (read after 
write)

• Program order must be preserved to ensure insn j receives 
the value of insn i.

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 2      (3)

R7 = R3 + R4     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 3  + 2      (3)

26 = 5 + 21     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

41 = 20 + 21     (4)

5 = 3  + 2      (3)
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Output dependence

• Insn i and j write the same register, WAW (write after 
write)

• Program order must be preserved to ensure that the value 
finally written corresponds to instruction j.

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 2      (3)

R7 = R3 + R4     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 3  + 2      (3)

26 = 5 + 21     (4)

Assume R3=10, R5=3

5  = 3  + 2      (3)

20 = 10 x 2      (1)

21 = 20 + 1      (2)

41 = 20 + 21     (4)
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Antidependence

• Insn i reads a register that insn j writes, WAR (write after 
read)

• Program order must be preserved to ensure that i reads 
the correct value.

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 2      (3)

R7 = R3 + R4     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5  = 3  + 2      (3)

26 = 5  + 21     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

5  = 3  + 2      (3)

6  = 5  + 1      (2)

11 = 5  + 6      (4)
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Data dependence and renaming

• True data dependence (RAW)

• Name dependences

• Output dependence (WAW)

• Antidependence (WAR)

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 2      (3)

R7 = R3 + R4     (4) (3)

(4)

(3)

(4)

(1)

(1)

(2)

(2)

RAW

RAW

RAW

WAW

WAR

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R8 = R5 + 2      (3)

R7 = R8 + R4     (4)

RAW

RAW
RAW
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Hardware register renaming

• Logical registers (architectural registers) which are ones 
defined by ISA
• $0, $1, … $31

• Physical registers
• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a 
unique physical register dynamically in the renaming stage 

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Complete
Commit/
Retire

Typical instruction pipeline of high-performance superscalar processor
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Out-of-order execution

• In in-order execution model, all instructions are 
executed in the order that they appear. 
This can lead to unnecessary stalls.

• Instruction (3) stalls waiting for insn (2) to go first, 
even though it does not have a data dependence.

• With out-of-order execution,

• Using register renaming to eliminate output dependence 
and antidependence, just having true data dependence

• insn (3) is allowed to be executed before the insn (2)

• Scoreboarding (CDC6600 in 1964)

• Tomasulo algorithm 
(IBM System/360 Model 91 in 1967)

(3)

(4)

Data flow graph

(1)

(2)

R3 = R3 x R5  (1)

R4 = R3 + 1   (2)

R3 = R5 + 2   (3)

R7 = R3 + R4  (4)
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Dynamic scheduling
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