Fiscal Year 2022

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

9. Instruction Level Parallelism:
Concepts and Challenges

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W831, HyFlex Kenji Kise, Department of Computer Science
Mon 13:45-15:25, Thr 13:45-15:25 Kise _at__ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Conventional five steps (stages) of MIPS
\

« IF: Instruction Fetch from instruction memory

« ID: Instruction Decode and operand fetch from regfile (register file)

« EX: EXecute operation or calculate address for load/store or calculate
branch condition and target address

« MEM (MA): MEMory access for load/store
« WB: Write result Back to regfile

Add J_ —
AL l
4 EX >Add .
— result
ID 5]
o shirt} | -
Vleft 2) — E
S MEM
.|| Instruction [25:21] Read
PC & 2{?{;%88 reqgister 1 Read M—
Instruction [20‘Z| G] Bead data 1 Z;I:;
i S -
{ | Instruction || i1 o register 2 > ALL
R M Wirite Read oy I_:E'I‘ULIJ[—+| Address Fide::g |
. |
Instruction TAstruction [15:71] | x register dala l-l: (. o '||.|ﬂ
memor 4
1 | write L x| L b4
| -]
WB data Registers A t
Write memory
IF data
Instruction [15:0] 16 sign 32
| extend

Instruction [5:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Pipelined MIPS processor with data forwarding

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

IF ! ID ! EX MEM WB
i Ifid_pc |1 1dEx_pc ExMe_pc MeWb_pc
: w_op || IdEx_op ExMe_op MeWb_op
. - w_rd2 |t ISEX_rdZ ExMe_rd2 MeWb_w
: w_w || ldEx_w ExMe_w -
z 32 | 1fld_pc4 ~ WF w_we |'| 1dEx_we ExMe_we
c : z 2 W_tpC wrs [1dEx rs B
I o =+ 132 wrt [i| IdEx_rt
w_npc : >
E \/IV_lmm 0'%’ W_|mm32 W_taken E
1 =) 1
w_pc4 i 3 i
P ! 3 1|
! W_rs i >h
h o % > wrrs |, ->§ I MeWb_rslt N
= w_rt 25 i @ 2 [i| Exme rsit 2
>Ir_pc %’ : m_regfile ~ |7 §/2 =zl =
R | I C |
(32bitx 2048) || 2| w_rd2 m_regs wmt e PR3 11 =] 32
: c 5 (32bit x 32) ! .; = - m_memory
E 5 E _/ , m_dmem MeWb_Idd
i w_rd | 29 (32bit x 2048)||| 32
i w_rslt2 i IdEX_rrt ExMe_rrt ,E’)
Pipeline register MeWb_rd2
IfId TIdEX ExMe MeWb

Single-cycle and pipelined processors

Program
execution —. 200 400 600 800 1000 1200 1400 1600 1800
ordor Time . I I I | | | l e
(in instructions)

lw $1, 100($0) '”Sftgt‘ccr:i”” Reg | ALU aE:é:s Reg

w $2, 200($0) 800 ps ~[Ireirtion) peg [ERALUE | D212 - f peg

w $3, 300($0) 800 ps I

L it . -

800 ps

Program

exeoution —. 200 400 600 800 1000 1200 1400

order Time I T I | T | | >

(in instructions)

Instructi Dat
lw $1, 100($0) nsf;?chm Reo N ac?e:S Reg
- :
w $2, 200($0) 200 ps "V Reg| AL | D |aeg
B — i
w $3, 300($0) 200 ps| e | |Pee | AL S |Reg
Y B e e o o e

200 ps 200 ps 200 ps 200 ps 200 ps

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Scalar and Superscalar processors

 Scalar processor can execute at most one instruction per clock

cycle by using one ALU.
« IPC (Executed Instructions Per Cycle) is less than 1.

 Superscalar processor can execute more than one instruction

per clock cycle by executing multiple instructions by using

multiple pipelines.
« IPC (Executed Instructions Per Cycle) can be more than 1.
* using n pipelines is called n-way superscalar

Time (in clock cycles)

ccz2 CC3

200 400 600 800 1000 1200 1400
T T T T T T T CC1 cc2 CC3 CcC4 CC5 cCe6 CC1
Instruction | Instruction . Data
Instruction Data fetch decode Bl access Wirite back
ot Reg| ALU Reg n
C aceess Instruction | Instruction . Data
fetch decode EEE access Wirite back
- .
Instruction Re ALU Data Re
200 ps fetch 8 access 8 Instruction | Instruction Execui Data Write back
fetch decode cutan access fite bas
- ™1 Instruction Data
200 ps Reg ALU Reg Instruction | Instruction Data)
P feteh | |_“ | | access fetch decode B access Write back
P P P N - Y Instruction | Instruction . Data .
200 ps 200ps 200 ps 200 ps 200 ps fetch decode Execution access | VWrite back
Instruction | Instruction Data .
fetch deco B access Write back
Instrue Instruction . Data .
fetcl decod Execution access Write back
(a) pipeline diagram of scalar processor insivetion [Minsructon [l ™ pata T oy

t
ﬁ, (b) pipeline diagram o
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

o
h
h
f 2-way superscalar processor

\

Exercise: datapath of a 2-way superscalar

« Datapath of a 2-way superscalar processor supporting ADD

which does not adopt data forwarding

If stage
IfId

Id stage

Wb stage
IQE E§Wb
4
pc [
. If_IR||IfId_IR
pc imem[— —
Id RS
- Id RR IdEX RRS 3
1d_RT| 8 I3
h n
Ewa=52 E + i ExWb RSLT
Id RRT. IdEx_RRT ///J
Id RD IdEx_RD ExWb_RD

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

’

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Multi-Ported Memories (for FPGAs)

LVT (Live Value Tabele) design

BRAM

WOData_

BRAM

2w2r

ROAddr—I'
RlAddr——J'

WOAddr —

WlAddr—’

LVT
(ALMs)

wOData_ v

WlData__V

4

BRAM

BRAM

BRAM

v
\P—' or-‘(

> ROData

BRAM

:io |
>|1 RlData

Figure 1: A 2W/2R Live Value Table (LV'T) design.

[8] C.E. LaForest and J. G. Steffan. Efficient Multi-ported
Memories for FPGAs. In Proceedings of the 18th annual
ACM/SIGDA international symposium on Field
programmable gate arrays, FPGA " 10, pages 41-50, New
York, NY, USA, 2010. ACM.

| mW/nR

Read
Addr. I

l LVT
Write ————

Addr.

I
I
| IW/nR
I

Wy —— M,

IW/nR

v, —/—— M,

IW/nR

Wml X Mml

Figure 2: A generalized mW/nR memory implemented using a
Live Value Table (LVT)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Exploiting Instruction Level parallelism (ILP) X
\

* A superscalar has to handle some flows efficiently to exploit ILP

« Control flow (control dependence)

« To execute ninstructions per clock cycle, the processor has to
fetch at least ninstructions per cycle.

« The main obstacles are branch instruction (BNE, BEQ)
e Prediction
* Another obstacle is instruction cache

« Register data flow (data dependence)

« Out-of-order execution (1) add $5,$1,%2 0
. . (2) add $9,%$5,%$3
. Reg|sTer‘ renaming (3) 1w $4, 4($7) RAW
» Dynamic scheduling (4) add $8,%9,%4 @
* Memory data flow (3) Tu 4, 4($7)

. _af_ : (1) add $5,$1,%2 RAW
Out-of-order execution (23 2dd $o.45. 43
« Another obstacle is instruction cacde add $8,$9,%4

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

MIPS Control Flow Instructions

« MIPS conditional branch instructions:
bne $s0, $sl1, Lbl # go to Lbl if $s0=$sl

« Ex: if (i==j) h = 1 + 7;
bne $s0, $s1, Lbl1l

add $s3, $s0, $si1
Lbll:

= Instruction Format (I format):

op rs rt 16 bit offset

= How is the branch destination address specified?

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

10

Why do branch instructions degrade IPC?

« The branch taken / untaken is determined in execution stage of the
branch.

\

« The conservative approach of stalling instruction fetch until the branch
direction is determined.

7.

o0k wnNn =

add
add
bne
add
add
add
add

ccl cc2 «cc3 cc4| cc5 cc6| cc7 cc8 cc9 «cclo
| IF | ID | EX | MEM| WB |
| IF | ID | EX | MEM| WB |
| IF | ID | EX |MEM| WB
Control dependency IF | ID | EX |MEM| we |
IF | ID | EX [MEM| WB |
| IF | ID | EX |MEM| WB |
| IF | ID | EX | MEM| WB |

2-way superscalar processor executing instruction sequence with a branch

Note that because of a branch instruction, only one instruction is executed in cc4 and no
=~ instructions are executed in CC6 and CC7. This reduces the IPS.

Af_a'

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Deeper pipeline

 In conservative approach, IPC degradation will be

significant by deeper pipeline

add
add
bne
add
add
add
add

Nooswn e

ccl cc2 «cc3 cc4d cc5 cc6| cc/7 cc8 cco
| IF | ID1 | ID2 [ID3 | EX | MEM| WB |
| IF | D1 | ID2 | ID3 | EX | MEM| WB |

| IF | ID1 | ID2 | ID3 | EX | MEM| WB |

Conftrol dependencyx

cclo

ccll ccl2 ccl3 ccl4d

IF | ID1 | D2 | ID3

EX | MEM| WB |

IF | IDd1 | ID2

ID3

EX | MEM | WB |

| IF | ID1

ID2

ID3

EX | MEM| WB |

| IF | ID1 | ID2

ID3

EX | MEM| WB |

2-way superscalar adopting deeper pipeline executing instruction sequence with a branch

Agesﬂ

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

12

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

13

Branch predictor X
\

« A branch predictor is a digital circuit that tries to guess or predict
which way (taken or untaken) a branch will go before this is known

definitively.
« A random predictor will achieve about a 50% hit rate because the
prediction output is 1 or O.

« Let's guess the accuracy. What is the accuracy of typical branch
predictors for high-performance commercial processors?

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Prediction Accuracy of weather forecasts

EAHS O T WSE (P HREOHBT D
a0
. AohEOEPE ||
fia) [\
" P |
& ~
e .
h \]
= \ /
II\ \F
oy &0) 1
“\f B SURO THSE
|
75 5
1985 1990 1995 2000 2006 2010 2015
R LEE=20) —EE GBES E T
— FIREE (FFH) —FEE AES T

2.0

2.5

2 0 © i

@
(]

FR29F(2017E)FTER AL TVET . ROEMEFEMRI1IE(2019F)1A31BEDFETT.

<

Tomorrow will be rainy?

Y I I

£ afUafio |/ 80207

XAUFHOFARERLICHFT - KKTH#AN

12268 X DExE)

£
=
BAeH
3HH
488
588
6HHE
7HH

3~7HBFH 67

EEiE| = 4
79 81
75 77
71 72
68 70
66 67
65 65
63 64

68
T
Enfl

M. ILFE 21—

W OE|d BE|E 8 B o FUMALED | FLMEEED | f8 | 2ETH

85 84 84 84 84 85 85 79

82 80 80 81 80 81 81 75
76 77 75 76 76 77 76 76 71
74 74 72 73 73 74 73 73 69
72 72 69 71 71 72 71 70 68
70 70 66 70 69 71 70 68 67
69 68 64 67 67 69 &8 67 63
72 72 69 71 71 73 72 71 68

muoilnTt

Ministry of Land, Infrastructure, Transport and Tourism

B &8

©) 58T

lapan Meteorclogical Agency

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

83

79

75

72

70

68

67

70

Simple branch predictor: 2bit counter

« Tt uses two bit register or a counter.
« How to update the register

« TIf the branch outcome is taken and the value is not 3, then increment the

register.

« TIf the branch outcome is untaken and the value is
the register.

* Hot to predict
« It predictsas1if the MSB of the register is one,

not O, then decrement

otherwise predicts as O.

Taken
Strongly
2 bit Taken (11)

Tak -
F aken -~ Untaken
»
Weakly _Taken Strongly
. 4. e
Prediction Untaken (01 Untaken Untaken (00)

G——

Taken
Weakly
—_———
Untaken ~_Taken (10)

-~
-~

o _
Untaken

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

16

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

17

Exploiting Instruction Level parallelism (ILP) X
\

* A superscalar has to handle some flows efficiently to exploit ILP

« Control flow (control dependence)

« To execute ninstructions per clock cycle, the processor has to
fetch at least ninstructions per cycle.

« The main obstacles are branch instruction (BNE, BEQ)
e Prediction
* Another obstacle is instruction cache

« Register data flow (data dependence)

e QOut-of-order execution (1) add $5,$1,$2 0
. . (2) add $9,%$5,%$3
. Reg|sTer‘ renaming (3) 1w $4, 4($7) RAW
» Dynamic scheduling (4) add $8,%9,%4 @
° Memor'y data flow (3) lw $4, 4($7) ”~
. £ : (1) add $5,%$1,%$2 RAW
Out-of-order execution (2) add $9.95. 93
e Another obstacle is instruction cacfe add $8,$9,%4

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

True data dependence x
\

« Insniwrites aregister that insn j reads, RAW (read after
write)

* Program order must be preserved to ensure insn j receives
the value of insn i.

R3 = R3 x RS (1)
R4 = R3 + 1 (2)
‘nEl:iii|+ 2 (3)
R7 =(R3)+ R4 (4)
Assume R3=10, R5=3 Assume R3=10, R5=3
20 = 10 X 2 (1) 20 = 10 X 2 (1)
21 = 20 + 1 (2) 21 220 + 1 (2)
=3 + 2 (3) 41 = 20 + 21 (4)
26 = + 21 (4) =3 + 2 (3)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Output dependence

A
« Insniand j write the same register, WAW (write after 2%
write)

* Program order must be preserved to ensure that the value

finally written corresponds to instruction j.
(R = R3 x RS (1)
@: R3 + 1 (2)
(R3)= R5 + 2 (3)
R7 = R3 + R4 (4)
Assume R3=10, R5=3 Assume R3=10, R5=3

(29) = 10 x 2 (1) (5)=3 +2 (3)

21 = 20 + 1 (2) = 10 x 2 (1)

=3 +2 (3) 21 =+ 1 (2)

26 = 5 + 21 (4) 41 = 20 + 21 (4)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Antidependence
I e ——— ——————

* Insnireads aregister that insn j writes, WAR (write after
read)

* Program order must be preserved to ensure that i reads
the correct value.

R3 = R3 x R5 (1)
R4+ 1 (2)
R3I= RS + 2 (3)
R7 = R3 + R4 (4)
Assume R3=10, R5=3 Assume R3=10, R5=3
20 = 10 x 2 (1) 20 = 10 x 2 (1)

21 =QO)+ 1 (2) GD=3 +2 (3)
G)=3 +2 (3) 6 @+ 1 (2)
26 =5 + 21 (4) 11 =5 + 6 (4)

g CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Data dependence and renaming

* True data dependence (RAW)

* Name dependences
« Output dependence (WAW) "3
 Antidependence (WAR) .

RS
R7

R3 = R3 X R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

R3
R3
R5
R8

R5

1l il
+ + + X
=

R4

(1)
(2)
(3)
(4)

22

Hardware register renaming

« A processor renames (converts) each logical register to a
unique physical register dynamically in the renaming stage

IF ID EX MEM WB

Commit/
Retire

IF ID Renaming | Dispatch Issue | Execute | Complete

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Out-of-order execution
i\&‘
« Inin-order execution model, all instructions are

executed in the order that they appear. @
This can lead to unnecessary stalls.
 Instruction (3) stalls waiting for insn (2) to go first,
even though it does not have a data dependence. @D\{ @

« With out-of-order execution,

« Using register renaming to eliminate output dependence
and antidependence, just having true data dependence

« insn (3) is allowed to be executed before the insn (2) Ei - E; X F1<5 <;>
Scoreboarding (CDC6600 in 1964) A 23;
Tomasulo algorithm R7 = R3 + R4 (4)
(IBN\ SYSTZIT\/360 Model 91 in 1967) Data flow graph

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Dynamic scheduling
D e Y

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

26

