
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

Single-cycle processor, and
Memory Hierarchy Design

Ver. 2022-12-21aFiscal Year 2022

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W831, HyFlex
Mon 13:45-15:25, Thr 13:45-15:25

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

The past, present, and future of the world’s most important device

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

The past, present, and future of the world’s most important device

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Datapath of processor supporting ADD and ADDI

$8 = 7

0x804 addi $9, $8, 3

IR[20:16]IR[25:21]

op rs rt 16 bit immediate I format

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Datapath of processor supporting ADD, ADDI, LW

IR[20:16]IR[25:21]

$8 = 12
mem[16] = 3

0x808 lw $10, 4($8)

op rs rt 16 bit immediate I format

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Datapath of processor supporting ADD, ADDI, LW, SW

IR[20:16]IR[25:21]

$8 = 12
$10 = 5
mem[16] = 3

0x808 sw $10, 4($8)

op rs rt 16 bit immediate I format

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Datapath of proc. supporting ADD, ADDI, LW, SW, BNE

IR[20:16]IR[25:21]

$10 = 4
$11 = 7
IR[15:0] = 3

0x808 bne $10, $11, Label

op rs rt 16 bit immediate I format

0x808 bne

0x80c insn2

0x810 insn3

0x814 insn4

0x818 insn5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

A Typical Memory Hierarchy

Second

Level

Cache

(SRAM)

Control

Datapath

Secondary

Memory

(Disk)

On-Chip Components

R
e
g
F

ile

Main

Memory

(DRAM)D
a

ta

C
a
c
h
e

In
s
tr

C
a

c
h

e

IT
L

B
D

T
L

B

Speed (%cycles): ½’s 1’s 10’s 100’s 1,000’s

Size (bytes): 100’s K’s 10K’s M’s G’s to T’s

Cost: highest lowest

❑ By taking advantage of the principle of locality in time and space
Present much memory in the cheapest technology

at the speed of fastest technology

TLB: Translation Lookaside Buffer

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)

20Tag 10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

What kind of locality are we taking advantage of?

20

Data

32

Hit

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Assignment 3

1. Design a single-cycle processor supporting MIPS add, addi, lw and sw
instructions in Verilog HDL.

2. Verify the behavior of designed processor using following assembly
code

• add $0, $0, $0 # NOP {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}

• addi $8, $0, 8 # {6'h8, 5'd0, 5'd8, 16’d8}, $8 = 8

• sw $8, 4($8) # {6'h2b,5'd8, 5'd8, 16’d4}, mem[12] = 8

• lw $9, 4($8) # {6'h23,5'd8, 5'd9, 16’d4}, $9 = mem[12]

• addi $10, $9, 6 # {6'h8, 5'd9, 5'd10,16’h6}, $10 = $9 + 6

3. Submit your report in a PDF file via E-mail (kise [at] c.titech.ac.jp) by
13:00 on January 5th.

• The report should include a block diagram, a source code in Verilog HDL,
and obtained waveforms of your design.

• E-mail title: Assignment of Advanced Computer Architecture

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Advanced Computer Architecture

4. Pipelining

Ver. 2022-12-21aFiscal Year 2022

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W831, HyFlex
Mon 13:45-15:25, Thr 13:45-15:25

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Single-cycle implementation of processors

• Single-cycle implementation also called single clock cycle
implementation is the implementation in which an
instruction is executed in one clock cycle. While easy to
understand, it is too slow to be practical.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Single-cycle implementation of laundry

• (A) Ann, (B) Brian, (C) Cathy, and (D) Don each have dirty clothes to be
washed, dried, folded, and put away where each takes 30 minutes.

• Cycle time is 2 hours.

• Sequential laundry takes 8 hours for 4 loads.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Single-cycle implementation and pipelining

• Pipelined laundry takes 3.5 hours just using the same hardware
resources. Cycle time is 30 minutes.

• What is the latency of each load?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Single-cycle and pipelined processors

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Conventional five steps (stages) of MIPS

• IF: Instruction Fetch from instruction memory

• ID: Instruction Decode and operand fetch from regfile (register file)

• EX: EXecute operation or calculate address for load/store or calculate
branch condition and target address

• MEM (MA): MEMory access for load/store

• WB: Write result Back to regfile

IF

ID
EX

WB

MEM

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Towards four stage pipelined one supporting ADD

• IF: Instruction Fetch from instruction memory

• ID: Instruction Decode and operand fetch from regfile

• EX: EXecute operation

• WB: Write result Back to regfile

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

The key : pipeline registers

IF ID EX WB

This datapath may have some errors and lackings.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Execution behavior of a pipelining processor

• [1] 0x00: add $0, $0, $0 # NOP, $0 <= 0 + 0

• [2] 0x04: add $1, $1, $1 # $1 <= 22 + 22

• [3] 0x08: add $2, $2, $2 # $2 <= 33 + 33

• [4] 0x0c: add $0, $0, $0 # NOP

• [5] 0x10: add $0, $0, $0 # NOP

• [6] 0x14: add $0, $0, $0 # NOP

IF ID EX WB

assuming that the initial values of r[1]=22 and r[2]=33

cc1

This datapath may have some errors and lackings.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Execution behavior of a pipelining processor

• [1] 0x00: add $0, $0, $0 # NOP, $0 <= 0 + 0

• [2] 0x04: add $1, $1, $1 # $1 <= 22 + 22

• [3] 0x08: add $2, $2, $2 # $2 <= 33 + 33

• [4] 0x0c: add $0, $0, $0 # NOP

• [5] 0x10: add $0, $0, $0 # NOP

• [6] 0x14: add $0, $0, $0 # NOP

IF ID EX WB

assuming that the initial values of r[1]=22 and r[2]=33

cc2

This datapath may have some errors and lackings.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Execution behavior of a pipelining processor

• [1] 0x00: add $0, $0, $0 # NOP, $0 <= 0 + 0

• [2] 0x04: add $1, $1, $1 # $1 <= 22 + 22

• [3] 0x08: add $2, $2, $2 # $2 <= 33 + 33

• [4] 0x0c: add $0, $0, $0 # NOP

• [5] 0x10: add $0, $0, $0 # NOP

• [6] 0x14: add $0, $0, $0 # NOP

IF ID EX WB

assuming that the initial values of r[1]=22 and r[2]=33

cc3

This datapath may have some errors and lackings.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

Execution behavior of a pipelining processor

• [1] 0x00: add $0, $0, $0 # NOP, $0 <= 0 + 0

• [2] 0x04: add $1, $1, $1 # $1 <= 22 + 22

• [3] 0x08: add $2, $2, $2 # $2 <= 33 + 33

• [4] 0x0c: add $0, $0, $0 # NOP

• [5] 0x10: add $0, $0, $0 # NOP

• [6] 0x14: add $0, $0, $0 # NOP

IF ID EX WB

assuming that the initial values of r[1]=22 and r[2]=33

cc4

This datapath may have some errors and lackings.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

Execution behavior of a pipelining processor

• [1] 0x00: add $0, $0, $0 # NOP, $0 <= 0 + 0

• [2] 0x04: add $1, $1, $1 # $1 <= 22 + 22

• [3] 0x08: add $2, $2, $2 # $2 <= 33 + 33

• [4] 0x0c: add $0, $0, $0 # NOP

• [5] 0x10: add $0, $0, $0 # NOP

• [6] 0x14: add $0, $0, $0 # NOP

IF ID EX WB

assuming that the initial values of r[1]=22 and r[2]=33

cc5

This datapath may have some errors and lackings.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

Four stage pipelined processor supporting ADD

+

pc
If_IR

4

pc

If stage Id stage

Id_RRS

Id_RRT

Id_RS

Id_RT
IdEx_RRS

E
x
_
R
S
L
T

Ex stage Wb stage

IfId IdEx ExWb

ExWb_RSLT

Id_RD

+

imem

r
e
g
f
i
l
e

IdEx_RRT

IfId_IR

IdEx_RD ExWb_RD

ExWb_RD

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

Single-cycle and pipelined processors

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 31

Advanced Computer Architecture

3. HDL, Single-cycle processor, and
Memory Hierarchy Design

Ver. 2022-12-19aFiscal Year 2022

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W831, HyFlex
Mon 13:45-15:25, Thr 13:45-15:25

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 32

MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)

20Tag 10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

What kind of locality are we taking advantage of?

20

Data

32

Hit

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 33

8

Index

Data (4 word)
Index TagValid

0

1

2

.

.

.

253

254

255

31 30 . . . 13 12 11 . . . 4 3 2 1 0
Byte
offset

20

20Tag

Hit Data

32

Block offset

Multiword Block Direct Mapped Cache

• Four words/block, cache size = 1K words (4KB)

What kind of locality are we taking advantage of?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 34

Four-Way Set Associative Cache

• 28 = 256 sets each with four ways (each with one block)
31 30 . . . 13 12 11 . . . 2 1 0 Byte offset

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

Index DataTagV
0

1

2

.

.

.

253

254

255

8

Index

22Tag

Hit Data

32

4x1 select

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 35

Cache Associativity & Replacement Policy

E

A B C D

Bookshelf

Desk

Book

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 36

Costs of Set Associative Caches

• N-way set associative cache costs
• N comparators (delay and area)
• MUX delay (set selection) before data is available
• Data available after set selection and Hit/Miss decision.

• When a miss occurs,
which way’s block do we pick for replacement ?
• Least Recently Used (LRU):

the block replaced is the one that has been unused for the
longest time
• Must have hardware to keep track of when each way’s block was

used
• For 2-way set associative, takes one bit per set →

set the bit when a block is referenced
(and reset the other way’s bit)

• Random

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 37

Recommended Reading

• Emulating Optimal Replacement with a Shepherd Cache

• Kaushik Rajan, Govindarajan Ramaswamy, Indian Institute of
Science

• MICRO-40, pp. 445-454, 2007

• Session 8: Cache Replacement Policies

• A quote:
“The inherent temporal locality in memory accesses is filtered out by
the L1 cache. As a consequence, an L2 cache with LRU replacement
incurs significantly higher misses than the optimal replacement policy
(OPT). We propose to narrow this gap through a novel replacement
strategy that mimics the replacement decisions of OPT.”

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 38

Memory Hierarchy Design

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 39

LRU has room for improvement

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007MPKI: Miss Per Kilo Instructions

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 40

OPT: Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 41

Example of Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 42

Shepherd Cache emulation OPT

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 43

Shepherd Cache Overview

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 44

empty increment dummy

oldest (FIFO)
oldest

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 45

Shepherd cache bridges 32 – 52% of the gap

MPKI: Miss Per Kilo Instructions

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

