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The past, present, and future of the world’s most important device
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The past, present, and future of the world’s most important device
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Datapath of processor supporting ADD and ADDI

$8 = 7

0x804 addi $9, $8, 3 

IR[20:16]IR[25:21]

op           rs rt 16 bit immediate I  format
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Datapath of processor supporting ADD, ADDI, LW

IR[20:16]IR[25:21]

$8 = 12
mem[16] = 3

0x808 lw $10, 4($8) 

op           rs rt 16 bit immediate I  format
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Datapath of processor supporting ADD, ADDI, LW, SW

IR[20:16]IR[25:21]

$8 = 12
$10 = 5
mem[16] = 3

0x808 sw $10, 4($8) 

op           rs rt 16 bit immediate I  format
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Datapath of proc. supporting ADD, ADDI, LW, SW, BNE

IR[20:16]IR[25:21]

$10 = 4
$11 = 7
IR[15:0] = 3

0x808 bne $10, $11, Label

op           rs rt 16 bit immediate I  format

0x808 bne

0x80c insn2

0x810 insn3

0x814 insn4

0x818 insn5
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this slide is to be used as a whiteboard
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A Typical Memory Hierarchy
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Cost:       highest                                                                                     lowest

❑ By taking advantage of the principle of locality in time and space
Present much memory in the cheapest technology

at the speed of fastest technology

TLB: Translation Lookaside Buffer
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MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)
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this slide is to be used as a whiteboard
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Assignment 3

1. Design a single-cycle processor supporting MIPS add, addi, lw and sw
instructions in Verilog HDL. 

2. Verify the behavior of designed processor using following assembly 
code

• add  $0,  $0,  $0  # NOP {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}

• addi $8, $0, 8     # {6'h8, 5'd0, 5'd8, 16’d8}, $8 = 8

• sw $8, 4($8)     # {6'h2b,5'd8, 5'd8, 16’d4}, mem[12] = 8

• lw $9, 4($8)     # {6'h23,5'd8, 5'd9, 16’d4}, $9 = mem[12]

• addi $10, $9, 6    # {6'h8, 5'd9, 5'd10,16’h6}, $10 = $9 + 6

3. Submit your report in a PDF file via E-mail (kise [at] c.titech.ac.jp ) by 
13:00 on January 5th.

• The report should include a block diagram, a source code in Verilog HDL, 
and obtained waveforms of your design.

• E-mail title: Assignment of Advanced Computer Architecture
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Single-cycle implementation of processors

• Single-cycle implementation also called single clock cycle 
implementation is the implementation in which an 
instruction is executed in one clock cycle. While easy to 
understand, it is too slow to be practical.
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Single-cycle implementation of laundry 

• (A) Ann,  (B) Brian, (C) Cathy, and (D) Don each have dirty clothes to be 
washed, dried, folded, and put away where each takes 30 minutes.

• Cycle time is 2 hours.

• Sequential laundry takes 8 hours for 4 loads.
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Single-cycle implementation and pipelining

• Pipelined laundry takes 3.5 hours just using the same hardware 
resources. Cycle time is 30 minutes. 

• What is the latency of each load?
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Single-cycle and pipelined processors
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Conventional five steps (stages) of MIPS

• IF: Instruction Fetch from instruction memory

• ID: Instruction Decode and operand fetch from regfile (register file)

• EX: EXecute operation or calculate address for load/store or calculate 
branch condition and target address

• MEM (MA): MEMory access for load/store

• WB: Write result Back to regfile

IF

ID
EX

WB

MEM
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Towards four stage pipelined one supporting ADD

• IF: Instruction Fetch from instruction memory

• ID: Instruction Decode and operand fetch from regfile

• EX: EXecute operation

• WB: Write result Back to regfile
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this slide is to be used as a whiteboard
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The key : pipeline registers

IF ID EX WB

This datapath may have some errors and lackings.
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Execution behavior of a pipelining processor

• [1] 0x00: add  $0,  $0,  $0   # NOP, $0 <= 0 + 0

• [2] 0x04: add  $1,  $1,  $1   # $1 <= 22 + 22

• [3] 0x08: add  $2,  $2,  $2   # $2 <= 33 + 33

• [4] 0x0c: add  $0,  $0,  $0   # NOP

• [5] 0x10: add  $0,  $0,  $0   # NOP

• [6] 0x14: add  $0,  $0,  $0   # NOP

IF ID EX WB

assuming that the initial values of r[1]=22 and r[2]=33

cc1

This datapath may have some errors and lackings.
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Execution behavior of a pipelining processor

• [1] 0x00: add  $0,  $0,  $0   # NOP, $0 <= 0 + 0

• [2] 0x04: add  $1,  $1,  $1   # $1 <= 22 + 22

• [3] 0x08: add  $2,  $2,  $2   # $2 <= 33 + 33

• [4] 0x0c: add  $0,  $0,  $0   # NOP

• [5] 0x10: add  $0,  $0,  $0   # NOP

• [6] 0x14: add  $0,  $0,  $0   # NOP

IF ID EX WB

assuming that the initial values of r[1]=22 and r[2]=33

cc2

This datapath may have some errors and lackings.
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Execution behavior of a pipelining processor

• [1] 0x00: add  $0,  $0,  $0   # NOP, $0 <= 0 + 0

• [2] 0x04: add  $1,  $1,  $1   # $1 <= 22 + 22

• [3] 0x08: add  $2,  $2,  $2   # $2 <= 33 + 33

• [4] 0x0c: add  $0,  $0,  $0   # NOP

• [5] 0x10: add  $0,  $0,  $0   # NOP

• [6] 0x14: add  $0,  $0,  $0   # NOP

IF ID EX WB

assuming that the initial values of r[1]=22 and r[2]=33

cc3

This datapath may have some errors and lackings.
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Execution behavior of a pipelining processor

• [1] 0x00: add  $0,  $0,  $0   # NOP, $0 <= 0 + 0

• [2] 0x04: add  $1,  $1,  $1   # $1 <= 22 + 22

• [3] 0x08: add  $2,  $2,  $2   # $2 <= 33 + 33

• [4] 0x0c: add  $0,  $0,  $0   # NOP

• [5] 0x10: add  $0,  $0,  $0   # NOP

• [6] 0x14: add  $0,  $0,  $0   # NOP

IF ID EX WB

assuming that the initial values of r[1]=22 and r[2]=33

cc4

This datapath may have some errors and lackings.



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

Execution behavior of a pipelining processor

• [1] 0x00: add  $0,  $0,  $0   # NOP, $0 <= 0 + 0

• [2] 0x04: add  $1,  $1,  $1   # $1 <= 22 + 22

• [3] 0x08: add  $2,  $2,  $2   # $2 <= 33 + 33

• [4] 0x0c: add  $0,  $0,  $0   # NOP

• [5] 0x10: add  $0,  $0,  $0   # NOP

• [6] 0x14: add  $0,  $0,  $0   # NOP

IF ID EX WB

assuming that the initial values of r[1]=22 and r[2]=33

cc5

This datapath may have some errors and lackings.
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Four stage pipelined processor supporting ADD
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this slide is to be used as a whiteboard



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

Single-cycle and pipelined processors
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this slide is to be used as a whiteboard
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MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)
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Multiword Block Direct Mapped Cache

• Four  words/block, cache size = 1K words (4KB)

What kind of locality are we taking advantage of?
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Four-Way Set Associative Cache

• 28 = 256 sets each with four ways (each with one block)
31 30       . . .        13 12  11     . . .        2  1  0 Byte offset
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Cache Associativity & Replacement Policy
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Costs of Set Associative Caches

• N-way set associative cache costs
• N comparators (delay and area)
• MUX delay (set selection) before data is available
• Data available after set selection and Hit/Miss decision.   

• When a miss occurs, 
which way’s block do we pick for replacement ?
• Least Recently Used (LRU):

the block replaced is the one that has been unused for the 
longest time
• Must have hardware to keep track of when each way’s block was 

used 
• For 2-way set associative, takes one bit per set →

set the bit when a block is referenced 
(and reset the other way’s bit)

• Random
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Recommended Reading

• Emulating Optimal Replacement with a Shepherd Cache

• Kaushik Rajan, Govindarajan Ramaswamy, Indian Institute of 
Science

• MICRO-40,  pp. 445-454, 2007 

• Session 8: Cache Replacement Policies

• A quote:
“The inherent temporal locality in memory accesses is filtered out by 
the L1 cache. As a consequence, an L2 cache with LRU replacement 
incurs significantly higher misses than the optimal replacement policy 
(OPT). We propose to narrow this gap through a novel replacement 
strategy that mimics the replacement decisions of OPT.”
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Memory Hierarchy Design

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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LRU has room for improvement

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007MPKI: Miss Per Kilo Instructions
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OPT: Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Example of Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Shepherd Cache emulation OPT

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Shepherd Cache Overview

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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empty increment dummy

oldest (FIFO)
oldest

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
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Shepherd cache bridges 32 – 52% of the gap

MPKI: Miss Per Kilo Instructions

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007


