Fiscal Year 2022

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

Single-cycle processor, and
Memory Hierarchy Design

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W831, HyFlex Kenji Kise, Department of Computer Science
Mon 13:45-15:25, Thr 13:45-15:25 Kise _at__ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

The past, present, and future of the world's most important device

Y

SlrongerSoﬂware,
Fewer Bugs The case for
functional pre e
.40

t of Hands On >
Ihe Bes ynal delight of The Next Step in Worker

P ivity> EEG Brai
amming Szoduc(nnty EEG Brain

Transistor

o

The Past, Present,
and Future of
the World’s Most
Important Device

| EDITOR'S NOTE

The Device

p —

That Changed

Everything

Transistors are civilization’s
| invisible infrastructure

was roaming around the /EEE Spectrum office
a couple of months ago, fooking at the display
cases the IEEE History Center has installed in
the corridor that runs along the conference
rooms at 3 Park. They feature photos of illustrious
engineers, plaques for IEEE milestones, and a
handful of vintage electronics and memorabilia
including an original Sony Walkman, an Edison
Mazda lightbulb, and an RCA Radiotron vacuum
tube. And, to my utter surprise and delight, a
replica of the first point-contact transistor
invented by John Bardeen, Walter Brattain, and
William Shockley 75 years ago this month.

I dashed over to our photography director,
Randi Klett, and startled her with my excitement,
which, when she saw my discovery, she under-
stood: We needed a picture of that replica, which

she expertly shot and now accompanies this
column.

What amazed me most besides the fact that
the very thing this issue is devoted to was here
with us? I'd passed by it countless times and
never noticed it, even though it is tens of billions
times the size of one of today’s transistors. In fact,
each of us is surrounded by billions, if not trillions
of transistors, none of which are visible to the
naked eye. It is a testament to imagination and

i of three i fel ics engi-
neers who took the (by today’s standards) mam-
moth point-contact transistor and shrunk it
down to the point where transistors are so ubig-
uitous that civilization as we know it would not
exist without them.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

1
1

The best
explanation
of the point-
contact
transistoris
in Bardeen’s

| 1956 Nobel

|

Prize lecture,
but even
that left out
important
details.

int-contact
eplica of the original po
I:::s;sZor is on display outside IEEE Spectrum' g
conference rooms.

Of course, this wouldn’t be a Spectrum specia]
issue if we didn’t tell you how the origina]
point-contact transistor worked, _something that
even the inventors seemed a little fuzzy on,
According to our editorial director for content
development, Glenn Zorpette, the best explana-
tion of the point-contact transistor is in Bardeen’s
1956 Nobel Prize lecture, but even that left out
important details, which Zorpette explores in clas-
sic Spectrum style in “The First Transistor and
How It Worked,” on page 24.

And while we're celebrating this historic
accomplishment, Senior Editor Samuel K. Moore,
who covers semiconductors for Spectrum and
curated this special issue, looks at what the tran-
sistor might be like when it turns 100. For “The
Transistor of 2047” [p. 38], Moore talked to the
leading lights of semiconductor engineering, many
of them [EEE Fellows, to get a glimpse of a future
where transistors are stacked on top of each other
and are made of increasingly exotic 2D materials,
evenas the OG of transistor materials, germanium,
is poised for a comeback.

When I was talking to Moore a few weeks ago
about this issue, he mentioned that hie’s attending
his favorite conference jus
out, the 68th edition of IEEE's International Elec-
tron Devices Meeting, in San Francisco. The
mind-bending advances that emer e from that
conference always get him excited ah: ut the engi-

neering feats oceurring in today’s labs and on
tomorrow’s production lines. This v i1 he’s most
excited about new devices that com € comput-
ing capability with memory to s« «d machine
learning. Who knows, maybe the tra - stor of 2047

will make its debut there, too. w

as this issue comes

PORTRALT BY SERGIO ALBIAC; RANDI KLETT

—

The past, present, and future of the world's most important device

THE TRANSISTOR AY 76

TRANSISTOR
OF 2047

| What will the device
| be like on its 100th
anniversary?

|
| by Samuel K. Moore
|

|
|

THE 100TH ANNIVERSARY of the
[invention of the transistor will happen in
2047. What will transistors be like then?
Will they even be the critical computing
element they are today? /EEE Spectrum
asked experts for their predictions.

| WHAT WILL TRANSISTORS BE LIKE
| IN2047?
| Expect transistors to be even more
| varied than they are now, says one
researcher. Just as processors have
| evolved from CPUs to include GPUs,
| network processors, Al accelerators,
| and other specialized computing chips,
| transistors will evolve to fit a variety of
| purposes. “Device technology will
become application domain-specificin
hi

multi-university nanotech research
center ASCENT. This device will likely
have minimum critical dimensions of
1 nanometer or less, enabling device
densities of 10 trillion per square cen-

‘ timeter, says Tsu-Jae King Liu, an IEEE
Fellow, dean of the college of engineer-
ing at the University of California,
Berkeley, and a member of Intel’s board
of directors.

Experts seem to agree that the transis-
tor of 2047 will need new materials and
probably a stacked or 3D architecture,
expanding on the planned complemen-

[tary field-effect transistor (CFET, or
' 3D-stacked CMOS). [For more on the
CFET, see “Taking Moore's Law to New

Butadvances in quantum computing
won't happen fast enough to challenge
the transistor by 2047, experts in electron
devices say. “Transistors will remain the

| most important computing element,”
says Sayeef Salahuddin, an IEEE Fellow
and of ical engil i
and science at the Uni

1 Heights,"in thisissue.] And the
channel, which now runs parallel to the
plane of the silicon, may need to become

of California, Berkeley. “Currently, even
with an ideal quantum computer, the
i seemto be

vertical in order to conti in areas of-

density, says Datta. rather limited compared to classical
AMD senior fellow Richard Schultz, | computers.”

suggests that the main aim in ping Sri d: vice

these new devices will be power. “The
focus will be on reducing power and the
"he

the same way that i

de

d cooling

need for ady luti
i focus on devices that

ture has become app
specific,” says H.-S. Philip Wong, an
IEEE Fellow, professor of electrical
engineering at Stanford University, and
former vice president of corporate
research at TSMC.

Despite the variety, the fundamental
operating principle—the field effect
that switches transistors on and off—
will likely remain the same, suggests

| Suman Datta, an IEEE Fellow, professor
of electrical and computer engineering
at Georgia Tech, and director of the

18 SPECTAUM.IEEE.ORG DECEMBER 2022

says. i
work at lower voltages is required.”

WILL TRANSISTORS STILL BETHE
HEART OF MOST COMPUTING?
It’s hard to imagine a world where com-
puting is not done with transistors, but,
of course, vacuum tubes were once the
digital switch of choice. Startup funding
for quantum computing, which does not
directly rely on transistors, reached
US $1.4 billion in 2021, according to
McKinsey & Co.

of CMOS technologies at the European
chip R&D center Imec, agrees. “Transis-
tors will still be very important comput-
ing elements for a majority of the

= Sen

& purp
he says. “One cannot ignore the efficien-

cies realized from decades of continuous
optimization of transistors.”

HAS THE TRANSISTOR OF 2047
ALREADY BEEN INVENTED?
Twenty-five years is a long time, but in the
world of semiconductor R&D, it's not that
long. [See “The Ultimate Transistor Time-
line,” in this issue.] “In this industry, it
usually takes about 20 years from [demon-

=g

k
‘

The luminaries who dared predict the future
of the transistor for IEEE Spectrum are
[clockwise from left] Gabriel Loh, Sri
Samavedam, Sayeef Salahuddin, Richard
Schultz, Suman Datta, Tsu-Jae King Liu, snd
H.-S. Philip Wong,

WILL SILICON STILL BE THEACTIVE

Experts
the transistor channel region, will still be
silicon, or possibly silicon-germanium—

strating a pt] to i di n into
m::nufacmrirg"s:ysSamavedm'hk

ly -or ger-
Mmhnhzm7mmymp.mxyme
i that are

me that

architectures of 2047 have already been
demonstrated on a lab scale” even if the
materials involved won't be exactly the

same, King Liu, who d the

exotic today. These could include oxide
semiconductors like indium gallium zinc
oxide; 2D semiconductors, such as the

modem FInFET about 25 years ago with
colleagues at Berkeley, agrees.
Buttheidea that the transistor

metal dich tungsten disulfide;

and one-di

compatible with many other materials
PART OF MOST TRANSISTORS IN that form other parts of the device,”
20477 says Salahuddin. And we know a lot
about integrating materials with
silicon.

WHERE WILL TRANSISTORS BE
COMMON WHERE THEY ARE NOT
FOUND TODAY?
Everywhere. No, seriously. Experts really
do expect some amount of intelligence
and sensing to creep into every aspect of
our lives. That means devices will be

such as carbon nanotubes. Or even

hed to our bodies and implanted
inside them; embedded in all kinds of

‘&qth‘,m!umbe‘ " says Imec's

isalready sitting in a lab hereisn't
R v shared. Salah forooa)

Silicon-based chi "

doesn’t think it's been invented yet, “But
just like the FinFET in the 1990, it is

in the same package with chips that rely
justas p

possible to make a ible predi
for the geometric structure” of future
transistors, he says.

AMD's Schultz says you can glimpse
this structure in proposed 3D-stacked
devices made of 2D !

ay g chips using
ogies into the same package, notes [EEE
Fellow Gabriel Loh, a senior fellow at
AMD,

Which isat

carbon-based semiconductors. “Device
materials that have not yet been invented
couldalso be in scope in this time frame,*

. including roads, walls,

and houses; woven {nto our clothing;

stuck to our food; swaying in the breeze

Ingrain fields; watching just about every
step in every supply chain; and doing
many other things in places nobody has
thought of yet.

Transistors will be “everywhere that
need: and con-
trol, data col!
storage and analysis, intelligence, sensing

the heart of the device may not even be
the central issue in 2047, “The choice
of channel material will essentially be

and actuation, interaction with humans,
or an entrance portal to the virtual and
mixed reality world,” sums up Stanford's

he adds,

Photo-illustration by ¢ luekit

dictated by which material is the most

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Wong. &

DECEMBER 2022

SPECTRUM 1EEE ORG 39

Datapath of processor supporting ADD and ADDI

IR[25:21]

IR[20:16]

op

I'S

It

16 bit immediate

Ox804

addi $9, $8, 3

| format

PC

>

$8 = 7

_ | Read
" | address

Instruction
[31:0]

Instruction
memaory

Instruction [25:21]

Instruction [20:16]

—

L.,

Instruction [15:11]

Instruction [15:0]

+ i 3

Read

register 1 Read R

Read data 1 2

register 2 > ero
ALU a1

Write dzteaag — result

register

Write d

data Registers

l 6 | sign 32
extend

Instruction [5:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A

Datapath of processor supporting ADD, ADDI, LW

IR[25:21] IR[20:16]
op rs rt 16 bit immediate | format

Ox808 1w $10, 4(9$8)

g . N
4 —b/
Instruction [25:21] Read

.| Read T | register 1
PC " |address 9 Read N
Instruction [20:16] Pead data 1
- . _ -
Instruction | register 2 ero
—iy
(31:0] i Read AL ALU | | dress Rad |
Wn_te data ? B result data i
register
Write d
data Registers Data

- 4 | Write memory
data

\

Instruction | | nstruction [15:11]
memory | ¢ >

1 i

$8 = 12 Instruction [15:0] 1 [sign | 3

mem[16] — 3 extend

Instruction [5:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Datapath of processor supporting ADD, ADDI, LW, SW
\

IR[25:21] IR[20:16]
op rs rt 16 bit immediate | format

Ox808 sw $10, 4(9$8)

Ry

Instruction [25:21] Read
.| Read | register 1
PC - address d Read _
Instruction [20:16] Pead data 1
* > i Zero
Instruction | 0 register 2
31:0) [T ALU aly Read
ML writ Read ~| Address ——
u nie data 2 —* result data M
Instruction | | nstruction [15:11] | x register M
memory | ¢ - 1 ‘ u
™ 4]

Write

data Registers Data
s WWrite memory
$8 _ 12 data
- . 16 32
Instruction [15:0] .| Sign
$1@ = 5 B extend
mem[16] = 3

Instruction [5:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Datapath of proc. supporting ADD, ADDI, LW, SW, BNE

IR[25:21] IR[20:16]
op rs rt 16 bit immediate | format
Ox808 bne $10, $11, Label
\ e
>Add - u
X
ALU
4_'"/ >Add result !
0x808 bne
©x80c insn2 Instruction [25:21] Read
] PC Lo gc?darcirss " registert o
©x810 1nsn3 Instruction [20:16] Read data 1)
. - " fero
0x814 insn4 nawucton | £ Loy | reoeere DAL AL Read
(31:0] M Write Read o0 resulL Address deata
Ox818 insnb5 '“n-’::;'::;" Instruction [15:11] 1: register data 2 '3
| Write 1
data Registers _ Data
. E";rt':* memory
$1@ = 4 Instruction [15:0] 18 [sign | &
$11 = 7 =~ | extend
IR[15:0] = 3 |
Instruction [5:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A Typical Memory Hierarchy

\
By taking advantage of the principle of locality in time and space
Present much memory in the cheapest technology

at the speed of fastest technology L
R ———————————— T S
On-Chip Components =T)
Control .-
: j %C} = Second Secondary
1"kl | 3¢ Level Memory
Datapath [Z|| — == Cache (Disk)
3l Bl | &9 (SRAM)
ol B 3"
Speed (%cycles): Y2's 1's 10’s 100’s 1,000’s
Size (bytes): 100’s K's 10K’s M’s GstoT’s
Cost: highest lowest

ﬁw TLB: Translation Lookaside Buffer
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

MIPS Direct Mapped Cache Example

« One word/block, cache size = 1K words (4KB) X
Byte
3130 1312 11 ... 210
K/ offset
Hit Tag 20 10 Data
t Index 4
Index Valid Tag Data

0
1
2

— ?

1021 I
1022
1023

~~20 <132
) @VJ What kind of locality are we taking advantage of?

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

11

Assignment 3
\
1.

Design a single-cycle processor supporting MIPS add, addi, Iw and sw
instructions in Verilog HDL.

2. Verify the behavior of designed processor using following assembly

code
add $0, $0, $0 # NOP {6'ho, 5'do, 5'de, 5'de, 5'de, 6'h20}
addi $8, $0, 8 # {6'h8, 5'do, 5'd8, 16°d8}, $8 = 8
sw $8, 4($8) # {6'h2b,5'd8, 5'd8, 16°d4}, mem[12] = 8
lw $9, 4($8) # {6'h23,5'd8, 5'd9, 16°d4}, $9 = mem[12]

addi $10, $9, 6 # {6'h8, 5'd9, 5'd1@,16°h6}, $10 = $9 + 6

3. Submit your report in a PDF file via E-mail (kise [at] c.titech.ac.jp) by
13:00 on January 5th.

« The report should include a block diagram, a source code in Verilog HDL,
and obtained waveforms of your design.

« E-mail title: Assignment of Advanced Computer Architecture

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Fiscal Year 2022

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

4. Pipelining

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W831, HyFlex Kenji Kise, Department of Computer Science
Mon 13:45-15:25, Thr 13:45-15:25 Kise _at__ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 13

Single-cycle implementation of processors

« Single-cycle implementation also called single clock cycle
implementation is the implementation in which an
instruction is executed in one clock cycle. While easy to
understand, it is too slow to be practical.

0
M
Add u
X
ALL
1
4 @ Add ooyt
Instruction [25:21] Read
Read register 1
" address 9 Fead
Instruction [20:16] Read data 1
Instruction s register 2
[31:0] Write Read Address Ff;g
Instruction struction [15:11] | x register data 2
memory [
| Write
data Registers Data

Write memory

data
Instruction [15:0] 16 Sign 32

Instruction [5:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

14

Single-cycle implementation of laundry

A
* (A) Ann, (B) Brian, (C) Cathy, and (D) Don each have dirty clothes to bex

washed, dried, folded, and put away where each takes 30 minutes.
« Cycle time is 2 hours.
« Sequential laundry takes 8 hours for 4 loads.

6 PM 7 8 9 10 11 12 1 2 AM

L I

Task
» Oo=ll
e

order
c mEE |
5 Jo=l

(90)

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Single-cycle implementation and pipelining X
\

« Pipelined laundry takes 3.5 hours just using the same hardware
resources. Cycle time is 30 minutes.

* What is the latency of each load?

Ti 6 PM 7 8 9 10 11 12 1 2 AM .
me 1 711 1] 111
Task
order —
» (6=l
: J0=l__
. 0=l
; mEs
6 PM 7 8 g9 10 11 12 1 2 AM
Time -
| | | | |]
Task l
order —
» o=l
» (5=l
c ol
0 5=

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Single-cycle and pipelined processors

Program

execution 200 400 600 800 1000 1200 1400 1600 1800

order Time J | T T T T | | —

(in instructions)

w $1,100($0) Instuction| geg | apy | Dala - fggg

lw $2, 200($0) 800 ps '”S;ﬁi“” Reg| ALU aE:;is Reg

w $3, 300($0) - 800 ps ™ |istructon

L ——— .
800 ps

Program

execution . 200 400 600 800 1000 1200 1400

order Time ! I 1 T T T T -

(in instructions)

w $1,1000)| | [mes| A | 222 [

e .
w $2, 200($0) 200 ps|™ " |Reg| AU | D2 [Reg
| .
w $3, 300($0) 200 ps | "HCion - NReg | Aw | D2 [Reg
\ B e L

200 ps 200 ps 200 ps 200 ps 200 ps

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

17

Conventional five steps (stages) of MIPS
\

« IF: Instruction Fetch from instruction memory

« ID: Instruction Decode and operand fetch from regfile (register file)

« EX: EXecute operation or calculate address for load/store or calculate
branch condition and target address

« MEM (MA): MEMory access for load/store
« WB: Write result Back to regfile

Add J_ —
AL l
4 EX >Add .
— result
ID 5]
o shirt} | -
Vleft 2) — E
S MEM
.|| Instruction [25:21] Read
PC & 2{?{;%88 reqgister 1 Read M—
Instruction [20‘Z| G] Bead data 1 Z;I:;
i S -
{ | Instruction || i1 o register 2 > ALL
R M Wirite Read oy I_:E'I‘ULIJ[—+| Address Fide::g |
. |
Instruction TAstruction [15:71] | x register dala l-l: (. o '||.|ﬂ
memor 4
1 | write L x| L b4
| -]
WB data Registers A t
Write memory
IF data
Instruction [15:0] 16 sign 32
| extend

Instruction [5:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Towards four stage pipelined one supporting ADD
\

« IF: Instruction Fetch from instruction memory

« ID: Instruction Decode and operand fetch from regfile

« EX: EXecute operation

« WB: Write result Back to regfile

Add >
4
Instruction [25:21] Fead
Read register 1
PC address 9 Read
Instruction [20:15] Read data 1
Instruction M register 2
. —
[31:0] _ Read
| Write data 2
Instruction Instruction register ata = |
memory >
o WTite
data Registers

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

20

The key : pipeline registers

Fead

address

Instruction
[31:0]

Instruction
memory

IF

Add -

Instruction [25:21]

Instruction [20:16]
hd

Instruction

ID

'V

Read
register 1 Pead
Bead data 1
register 2

- Read
Write
register ~ 0ata 2
Write
data Registers

oS

Zero

ALU a1
result

A4

WB

This datapath may have some errors and lackings.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Execution behavior of a pipelining processor

[1] ox00: add ¢$0, ¢$0, %0 # NOP, $0 <= 0 + ©
[2] Ox04: add $1, $1, $1 # $1 <= 22 + 22
[3] ox08: add $2, $2, $2 # $2 <= 33 + 33
[4] ox0c: add $0, ¢$0, %o # NOP
[5] ©x10: add ¢$0, $0, $0 # NOP

« [6] 0x14: add $0, ¢$0, $0 # NOP

assuming that the initial values of r[1]=22 and r[2]=33

1
Add - >
4
1
| Instruction [25:21] Fead
Read | register 1
PC address 9 Read
Instruction [20:15] Read data 1
Instruction M register 2
(51:01 Write Read
Instruction Instruction 1 register data 2|
memory >
T | Write
data Registers
1 T 1 1
1 1 1
1 1 1
I 1 |
I I I
|] |
I F ' I D ! EX I W B
1 1 1
1] 1

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH This datapath may have some errors and Iackings.22

Execution behavior of a pipelining processor

[1] ox00: add ¢$0, ¢$0, %0 # NOP, $0 <= 0 + ©
[2] Ox04: add $1, $1, $1 # $1 <= 22 + 22
[3] ox08: add $2, $2, $2 # $2 <= 33 + 33
[4] ox0c: add $0, ¢$0, %o # NOP
[5] ©x10: add ¢$0, $0, $0 # NOP

« [6] 0x14: add $0, ¢$0, $0 # NOP

assuming that the initial values of r[1]=22 and r[2]=33

1
Add - >
4
1
| Instruction [25:21] Fead
Read | register 1
PC address 9 Read
Instruction [20:15] Read data 1
Instruction M register 2
(51:01 Write Read
Instruction Instruction 1 register data 2|
memory >
T | Write
data Registers
1 T 1 1
1 1 1
1 1 1
I 1 |
I I I
|] |
I F ' I D ! EX I W B
1 1 1
1] 1

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH This datapath may have some errors and |Cleih95.23

Execution behavior of a pipelining processor

[1] ox00: add ¢$0, ¢$0, %0 # NOP, $0 <= 0 + ©
[2] Ox04: add $1, $1, $1 # $1 <= 22 + 22
[3] ox08: add $2, $2, $2 # $2 <= 33 + 33
[4] ox0c: add $0, ¢$0, %o # NOP
[5] ©x10: add ¢$0, $0, $0 # NOP

« [6] 0x14: add $0, ¢$0, $0 # NOP

assuming that the initial values of r[1]=22 and r[2]=33

1
Add - >
4
1
| Instruction [25:21] Fead
Read | register 1
PC address 9 Read
Instruction [20:15] Read data 1
Instruction M register 2
(51:01 Write Read
Instruction Instruction 1 register data 2|
memory >
T | Write
data Registers
1 T 1 1
1 1 1
1 1 1
I 1 |
I I I
|] |
I F ' I D ! EX I W B
1 1 1
1] 1

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH This datapath may have some errors and Iackings.24

Execution behavior of a pipelining processor

[1] ox00: add ¢$0, ¢$0, %0 # NOP, $0 <= 0 + ©
[2] Ox04: add $1, $1, $1 # $1 <= 22 + 22
[3] ox08: add $2, $2, $2 # $2 <= 33 + 33
[4] ox0c: add $0, ¢$0, %o # NOP
[5] ©x10: add ¢$0, $0, $0 # NOP

« [6] 0x14: add $0, ¢$0, $0 # NOP

assuming that the initial values of r[1]=22 and r[2]=33

1
Add - >
4
1
| Instruction [25:21] Fead
Read | register 1
PC address 9 Read
Instruction [20:15] Read data 1
Instruction M register 2
(51:01 Write Read
Instruction Instruction 1 register data 2|
memory >
T | Write
data Registers
1 T 1 1
1 1 1
1 1 1
I 1 |
I I I
|] |
I F ' I D ! EX I W B
1 1 1
1] 1

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH This datapath may have some errors and Iackings.25

Execution behavior of a pipelining processor

[1] ox00: add ¢$0, ¢$0, %0 # NOP, $0 <= 0 + ©
[2] Ox04: add $1, $1, $1 # $1 <= 22 + 22
[3] ox08: add $2, $2, $2 # $2 <= 33 + 33
[4] ox0c: add $0, ¢$0, %o # NOP
[5] ©x10: add ¢$0, $0, $0 # NOP

« [6] 0x14: add $0, ¢$0, $0 # NOP

assuming that the initial values of r[1]=22 and r[2]=33

1
Add - >
4
1
| Instruction [25:21] Fead
Read | register 1
PC address 9 Read
Instruction [20:15] Read data 1
Instruction M register 2
(51:01 Write Read
Instruction Instruction 1 register data 2|
memory >
T | Write
data Registers
1 T 1 1
1 1 1
1 1 1
I 1 |
I I I
|] |
I F ' I D ! EX I W B
1 1 1
1] 1

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH This datapath may have some errors and |Cleih95.26

Four stage pipelined processor supporting ADD

If stage Id stage

Ex stage Wb stage
IfId IdEx ExWb
4
pc
If IR || IfId_IR
—> pc imem
Id_RS ~_
Id_RRS IdEX_RRS m
Id_RT 3 |
o 2
v
ExWb_RD | K = ExWb_RSLT
M + —>
Id_RRT IdEX_RRT
Id RD IdEx_RD ExWb_RD

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

28

Single-cycle and pipelined processors

Program

execution 200 400 600 800 1000 1200 1400 1600 1800

order Time J | T T T T | | —

(in instructions)

w $1,100($0) Instruction| gog [Fapy | Data fggg

lw $2, 200($0) 800 ps '”S;ﬁi“” Reg| ALU aE:;is Reg

w $3, 300($0) - 800 ps ™ |istructon

L ——— .
800 ps

Program

execution . 200 400 600 800 1000 1200 1400

order Time ! I 1 T T T T -

(in instructions)

w $1,1000)| | [mes| A D22 [

e .
w $2, 200($0) 200 ps|™ " [Reg| AL | P [Reg
| .
w $3, 300($0) 200 ps | "Heion - Reg | AU | P2t [Reg
\ B e L

200 ps 200 ps 200 ps 200 ps 200 ps

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

29

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

30

Fiscal Year 2022

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

3. HDL, Single-cycle processor, and
Memory Hierarchy Design

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W831, HyFlex Kenji Kise, Department of Computer Science
Mon 13:45-15:25, Thr 13:45-15:25 Kise _at__ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 31

MIPS Direct Mapped Cache Example

« One word/block, cache size = 1K words (4KB) X
Byte
3130 1312 11 ... 210
K/ offset
Hit Tag 20 10 Data
t Index 4
Index Valid Tag Data

0
1
2

— ?

1021 I
1022
1023

~~20 <132
) @VJ What kind of locality are we taking advantage of?

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 32

Multiword Block Direct Mapped Cache

Hit

A

Four words/b

ock, cache size = 1K words (4KB)

Byte
3130 ... 1312 11 ... 43210
" offset
Ta 320 ;]
g Block offset
Index

0
1
2

Ll
»

Index Valid Tag

Data (4 word)

v

253
254
255

CJ

A“f_a'

~4-20

~

What kind of locality are we taking advantage of?

N

4

~N
32

P C€SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Data

33

Four-Way Set Associative Cache

« 28:=256 sets each with four ways (each with one block)

3130

1312 11

2 1% /Byte offset

X
Tag 38
Index

IndexV Tag Data V Tag V Tag Data V Tag Data

0 0 0 0

1 1 1 1

2 2 2 2
— Y ? ° Py ? Py M

253 253 253 253

254 254 254 254

255 255 255 255

O i i L

Hit

S 4x1 select

‘ Data

34

Cache Associativity & Replacement Policy
T e e

Book
Bookshelf

(S

J
’ / (
“_17§f§ﬁ;:j Desk
@ZSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Costs of Set Associative Caches

 When a miss occurs,
which way’s block do we pick for replacement ?

* Least Recently Used (LRU):
the block replaced is the one that has been unused for the
longest time

* Must have hardware to keep track of when each way’s block was
used

« For 2-way set associative, takes one bit per set —
set the bit when a block is referenced
(and reset the other way’s bit)

 Random

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

36

Recommended Reading
\

« Emulating Optimal Replacement with a Shepherd Cache

» Kaushik Rajan, Govindarajan Ramaswamy, Indian Institute of
Science =
« MICRO-40, pp. 445-454, 2007

 Session 8: Cache Replacement Policies

* A quote:
“The inherent temporal locality in memory accesses is filtered out by
the L1 cache. As a consequence, an L2 cache with LRU replacement
incurs significantly higher misses than the optimal replacement policy
(OPT). We propose to harrow this gap through a novel replacement
strategy that mimics the replacement decisions of OPT."

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 37

Memory Hierarchy Design

\ — 4—\ — —
Memory Hierarchy
Fp— L2 and lower caches

@ Objective : Need to reduce expensive
memory accesses

@ Design : Large size, Higher associativity,

CONFLICT - MITENTTY. g
sasses, ([e Complex design
w.‘\-\. f.-'hcmm
INTERACTION |

@ Problem : Do not interact with program
directly and observe filtered temporal locality

@ High Associativity — replacement policy crucial to performance

@ L1 cache services temporal accesses — Lack of temporal
accesses at L2 — LRU replacement inefficient

@ Replacement decisions are taken off the processor critical path

ﬁ Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

LRU has room for improvement
T— ——— ———— —e —

LRU vs OPT

© |Es1zke-lru1s B 512k84ruFa [256KB-0pts [512KB-opti6

I [0/ 100 O mmmm

D_

aart mcf gee luca swim applr’ﬁﬁjmp twulf‘ vpr-i'_'_-f_ﬁ;:-éﬁrﬁgrid ap%i?:avgzﬁ

MPKI

for SPEC2000 suite, Benchmarks with MPKI < 5 not plotted but
count towards average

Huge performance gap between LRU and OPT
OPT at half the size preferable to LRU at double the size

<

MPKI: Miss Per Kilo Instructions Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

39

OPT: Optimal Replacement Policy
T ——— —_— .y, — o

<

The Optimal Replacement Policy

@ Replacement Candidates : On a miss any replacement policy
could either choose to replace any of the lines in the cache or
choose not to place the miss causing line in the cache at all.

Q Self Replacement : The latter choice is referred to as a
self-replacement or a cache bypass

Optimal Replacement Policy
On a miss replace the candidate to which an access is least
imminent [Belady 1966 Mattson 1970, McFarling-thesis]

@ Lookahead Window : Window of accesses between miss causing

access and the access to the least imminent replacement
candidate. Single pass simulation of OPT make use of lookahead
windows to identify replacement candidates and modify current

cache state [Sugumar-SIGMETRICS1993]

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

Example of Optimal Replacement Policy
e

T

—

gy -

Ty,

Understanding OPT

AW ‘A IA A JA A A TA A A LA
Access Sequence 5)%1; 6/ 3171 45T 21T s T e g
OPTorderfor Asf" (g ! {1} ioi3iaf | |

i i Lo I i I I I —
DPImﬂmfnr%j Co o223y b4

@ Consider 4 way associative cache with one set initially containing lines
(41,42 43 _44), consider the access stream shown in table
@ Access 45 misses, replacement decision proceeds as follows

& Identify replacement candidates : (4y 45 A3, 44.45)
& Lookahead and gather imminence order - shown in table,
lookahead window circled

) Make replacement decision : A4s replaces A
@ Ag self-replaces, lookahead window and imminence order in table

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

41

Shepherd Cache emulation OPT
e,

Emulating OPT with a Shepherd Cache

FPROCESSOR

Shepherd| |
Cache

MEMORY

@ Split the cache into two logical parts

@ Main Cache (MC) for which optimal
replacement is emulated

@ Shepherd Cache (5C) used to provide a
lookahead and guide replacements from MC
towards OPT

@ Operation

& Buffer lines temporarily in SC before moving
them to MC,. SC acts as a FIFO buffer

@ While in SC, gather imminence information and
emulate lookahead

& When forced out of SC, make an MC
replacement based on the gathered imminence
order

<

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

Shepherd Cache Overview

S

Overview of Shepherd Caching

NV, | NV,

SC,
SC)

MC | Ag

CM

"I'E,ﬁl,*ﬂ‘“ﬁ,ﬂlﬁl,ﬁi

|
I
|
I
|
|
|
|
|
|
I
|
A..j |
|
|
|
|
|
|
|
|
I
|
I
|
|

Ag Ay As A7 AgAg |

Ty, - ——

To emulate MC with 4 ways per set and 2 SC
ways per set

To gather imminence order add a counter
matrix (CM)

CM has one column per SC way to track
imminence order w.r.t to it

CM has one row per SC and MC line as any
of them can be a replacement candidate

Each column has one |[Next Value Counter
(NVC) to track the next value to assign along
column

<

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

MC

M
ll.‘a.i.‘a. A A A Ay

AgshqAsAgAg Ag

(a) Initial State

NVCs

:

T

sc{ AL 0fe] |
SC_As ele| |
Ay 0l 1]

e Ay ele| i
Az 1|0 i

Ay 202

cM

A A AL AL AL A

(g) A4 added to
optimal order of
5C,5C

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

| 1
W @] e [
- - !
sC) e Ni\s, e i SC
sC| Ag e 1 5C) ?‘*\c SOy
A ! A 1
1 e ! 1 [:

.“"‘-1. F 1 ."I.Jj c 1
MCF—— b omac—— ¥
Ag € i Ag e i
Ay el | Ay el ||
oM M

' :
1

AshpAgAz Ay Ay

As Ay As Ag Ag Ag :

by As
at Sy

inseried

NVCs

|
.

T

s Ag Ole| |
SC Ag 33 :
Ay 0l 1]

Ag ele i

MCF 0] !
Ay 2[2]1

cM i

A Ay Ag Az A Ayl
|

A5AnAgAgAgAg!

(hl Az added to
optimal order of
SC1.5C

increment

Ag A Ap Az A Ay

As Aj Ag Ag Ag Ag : As Ag Asg Ag Ag Ag :

(c) Ax added tw (d) As inserted
the optimal order at S
of 57
oldest (FIFO)
nves [S5]3] nves [0]5]
sc Ag Ole| 1 sc\ g eleli
SC Ag 3|3 : 5C, A, e 0 :
Ay o1 | Ay el 1] |
R 4]4] R e|3]
Az 1 0f Ag e 0]
Ay 212 i Ay e|2 i
CM | CM |
A A Az a L.‘*‘4.i As Ay Ag *"?,f‘ |.A4.i
| |

AsdaAsAgAgAgl 5A;AsA7AL Ag

(i) Az added to
optimal order of
8,850

() Az moves
from 3C to MC
replacing Ag

(e) Ag added to
the optimal order
of S .85

MY Cs |_IF

,
.

|

scf Ag a5
sC| A, clo| !
Ay el 1]

A5 [el3]

MCIx [0
Ag e|2|!

cM i
‘*‘5-'*1.”‘6.‘*‘3.'*1:}*"4.:
|

1

AsAjzAgAgAgiAg

(k' Ag added to
optimal order

NVCs
o] (O
sc| A3 ele

A]

Ag ele
MC iTo

Ay ele

oy

(1 A1 added to
optimal order of
SCha

Ag Ay Ag Az Ay Ay

oldest
|
wves [110] |
R |
sc VA, 0| e i
SC| -""'-T c F 1
1
Al ele i
A5 ele| !

MC

Ag ele i
Ay elef !
CM
1
1
1
1

Ag Ay As Ag AgAg!

(1} Self Replace-
ment (Ag evicts
itself)

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

Shepherd cache bridges 32 - 52% of the gap

S

Bridging the performance gap

Average MPKI

T

—

m lru=-1s (JB)
¢ sc-12(136E)
¥ sc-8 (92E)
& go-A ([T1E)
B co-4 (488)
4 so-2 [25E)
M opt=16 (=)

S12KB

1MB 2MB 4MB

Avg MPKI over SPEC2000 suite

p —

Ty,

Bridging the LRU-OPT gap
@ SC-4 bridges 32-52%
of gap
@ SC moves closer to

OPT as cache size
increases

MPKT: Miss Per Kilo Instructions

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

45

