Fiscal Year 2022

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

3. HDL, Single-cycle processor, and
Memory Hierarchy Design

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W831, HyFlex Kenji Kise, Department of Computer Science
Mon 13:45-15:25, Thr 13:45-15:25 Kise _at__ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Sample circuit 1
\

* 4-bit counter
* synchronous reset

* negative-logic reset, initialize or reset the value of register cnt to
zero if RST_X is low

module counter

CLK

RST_X
—_— 1
—>
+
4 4
| ent , cnt
7 7

[3:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Sample Verilog HDL Code

Signals

Time
CLK =0
RST X=1
cnt[3:08] =0

8 module top();
9 reg CLK, RST_X;
10 wire [3:0] w_cnt;

12 initial begin CLK = 1; forever #50 CLK = ~CLK; end
13 initial begin RST X = ©@; #240 RST X = 1; end

14 initial #8600 $finish();

i5 initial begin

module counter

LK 16 $dumpfile("wave.vcd");

- 17 $dumpvars(@, cntl);

2T x 18 end

— 1 19 always @(posedge CLK) $write("cntl: %d %x¥n", RST X, w_cnt);
- . 20

21 counter cntl(CLK, RST X, w_cnt);
22 endmodule

4 “ cnt 23

1 (e . 24
25 module counter(CLK, RST_X, cnt);
26 input wire CLK, RST_X;
27 output reg [3:0] cnt;
28
29 always @(posedge CLK) begin
30 if(!RST_X) cnt <= #5 0;
31 else cnt <= #5 cnt + 1;
32 end

counter.v 33 endmodule

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Single-cycle implementation of processors

A

« Single-cycle implementation also called single clock cycle 2%
implementation is the implementation in which an
instruction is executed in one clock cycle. While easy to
understand, it is too slow to be practical.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Some building blocks of processor datapath

4 —

Read
address

Instruction

(31:0) [

Instruction
memory

Sign
extend

_ Read
register 1 Read
i Read data 1
register 2
: Read
Write —
i register daia 2
.| Write
data Registers

We use 8K word memory.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Datapath of single-cycle processor supporting ADD

IR[25:21] IR[20:16] IR[15:11] x

op rs rt rd shamt funct
Ox800 add $t0, $s1, $s2 [add $8, $17, $18]

-/

dd

>A
Ry

Instruction [25:21] Read
.| Read | register 1
PC "™ address d Read | _
Instruction [20:16] Pead data 1
* > i Zero
Instruction | [r register 2 > ALU
[31:0] _ Read - ALU
| Write data 2 result
Instruction | | nstruction register —_— i
memory | ¢ >
T Write
el "
data Registers | | S

]
w
|
|

$17
$18 = 4

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Verilog HDL Code of procO1

IR[25:21] IR[20:16] TR[15:11]

op rs rt rd shamt funct

Instruction [25:21] PRead
;‘:daldess register 1 Read
Instruction [20:16] Read data 1
Instruction M register 2 IR[25:21] IR[20:16]
@10 Write dReag x
Instruction nstruction register ata 2 | 1+ 1 H
" |{ = op rs rt 16 bit immediate
data Registers
| format

module PROCESSOR_©1(CLK, RST_X);
input wire CLK, RST_X;

reg [31:0] pc;
wire [31:0] ir;
wire [31:0] rrs, rrt;

always @(posedge CLK) pc <= #5 (!RST_X) ? @ : pc + 4;

IMEM imem(CLK, pc, ir); /* instruction memory */

wire [4:0] #10 rs = ir[25:21];
wire [4:0] #10 rt = ir[20:16];
wire [4:0] #10 rd = ir[15:11];

wire [31:0] #20 result = rrs + rrt; /* ALU */

GPR regfile(CLK, rs, rt, rd, result, 1, rrs, rrt); /* register file */
pr‘ocej_ .V endmodule

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Waveform of procOl

Bl cTKWave - N:¥Lecture¥advance¥2018%¥wave.ved
File Edit Search Time Markers View Help

=
] =

& Q& & . 9 kel <9 & |Fomiossc To:[600 ns &2 | Marker: 297300 ps | Cursor: 10200 ps

v §5T Signals Waves
5 Time i

CLK=I
imem B i E————————
regfile Bogedese /80099094 g L —
ir[31:0] = | CEEENCTETEFT R B "T-F 7171
rs 0] - |
rtla:0] =
rd[4:e] = e T s
rrs[31:0] =| |38 P
rrt[31:0] =
— result[31:8] =
Type |Signals
wire CLK
wire RST_X

wire ir[31:0]

reg pc[31:0]
wire rd[4:0]

wire result[31:0]
wire rrs[31:0]
wire rrt[31:0]
wire rs[4:0]

wire rt[4:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Datapath of processor supporting ADD and ADDI

IR[25:21]

IR[20:16]

op

I'S

It

16 bit immediate

Ox804

addi $ti1, $te, 3

[addi $9, $8, 3]

| format

PC

>

$8 = 7

_ | Read
" | address

Instruction
[31:0]

Instruction
memaory

Instruction [25:21]

Instruction [20:16]

—

L.,

Instruction [15:11]

Instruction [15:0]

+ i 3

Read

register 1 Read R

Read data 1 2

register 2 > ero
ALU a1

Write dzteaag — result

register

Write d

data Registers

l 6 | sign 32
extend

Instruction [5:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

A

10

Assignment 2 X
\

1. Design a single-cycle processor supporting MIPS add, addi instructions
in Verilog HDL. Please download procOl.v from the support page and
refer to it.

2. Verify the behavior of designed processor using following assembly
code
add %0, $0, $0 # {6'he, 5'de, 5'de, 5'do, 5'do, 6'h20}
addi $7, $0, 3 # {6'h8, 5'de, 5°d7, 16'd3}
addi $8, $0, 5 # {6'h8, 5'de, 5°d8, 16'd5}
add $9, $7, $8 # {6'he, 5°d7, 5°d8, 5°d9, 5'de, 6'h20}
3. Submit a report printed on A4 paper at the beginning of the next
lecture on Monday. Or,

Submit your report in a PDF file via E-mail (kise [at] c.titech.ac.jp) by
the beginning of the next lecture on Monday.

« The report should include a block diagram, a source code in Verilog
HDL, and obtained waveforms of your design.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

12

Datapath of processor supporting ADD, ADDI, LW

IR[25:21] IR[20:16] x

op rs rt 16 bit immediate | format
ox808 1w $t2, 4($t0) [1w $10, 4(3$8)]

Ry

Instruction [25:21] Read
.| Read | register 1
PC - address d Read _
Instruction [20:16] Pead data 1
* > i Zero
Instruction »h | 0 register 2 > ALL
[31:0] _ Read ALU| o | agdress Read
u Write data 2 —* result data [" N
Instruction | | nstruction [15:11] | x register
memaory - = ‘
| write d
data Registers Data

B + | Write memory
data

$8 = 0x10 Instruction [15:0] 18 [gign | 32
mem[@x14] = 3 extend

Instruction [5:0]

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

14

A Typical Memory Hierarchy

\
By taking advantage of the principle of locality in time and space
Present much memory in the cheapest technology

at the speed of fastest technology L
S S
On-Chip Components =T T
Control =T
=] Second Secondary
- - [& Level Memory
Datapath | 2 — Cache (Disk)
I (SRAM)
ol] =
Speed (%cycles): Y2's 1's 10’s 100’s 1,000’s
Size (bytes): 100’s K's 10K’s M’s GstoT’s
Cost: highest lowest

ﬁw TLB: Translation Lookaside Buffer
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

MIPS Direct Mapped Cache Example

« One word/block, cache size = 1K words (4KB) X
Byte
3130 1312 11 ... 210
K/ offset
Hit Tag 20 10 Data
t Index 4
Index Valid Tag Data

0
1
2

— ?

1021 I
1022
1023

~~20 <132
) @VJ What kind of locality are we taking advantage of?

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Multiword Block Direct Mapped Cache

Hit

A

Four words/b

ock, cache size = 1K words (4KB)

Byte
3130 ... 1312 11 ... 43210
" offset
Ta 320 ;]
g Block offset
Index

0
1
2

Ll
»

Index Valid Tag

Data (4 word)

v

253
254
255

CJ

A“f_a'

~4-20

~

What kind of locality are we taking advantage of?

N

4

~N
32

P C€SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Data

17

Four-Way Set Associative Cache

« 28:=256 sets each with four ways (each with one block)

3130

1312 11

2 1% /Byte offset

X
Tag 38
Index

IndexV Tag Data V Tag V Tag Data V Tag Data

0 0 0 0

1 1 1 1

2 2 2 2
— Y ? ° Py ? Py M

253 253 253 253

254 254 254 254

255 255 255 255

O i i L

Hit

S 4x1 select

‘ Data

18

Cache Associativity & Replacement Policy
T e e

Book
Bookshelf

(S

J
’ / (
“_17§f§ﬁ;:j Desk
@ZSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Costs of Set Associative Caches

 When a miss occurs,
which way’s block do we pick for replacement ?

* Least Recently Used (LRU):
the block replaced is the one that has been unused for the
longest time

* Must have hardware to keep track of when each way’s block was
used

« For 2-way set associative, takes one bit per set —
set the bit when a block is referenced
(and reset the other way’s bit)

 Random

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

20

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

21

Recommended Reading
\

« Emulating Optimal Replacement with a Shepherd Cache

» Kaushik Rajan, Govindarajan Ramaswamy, Indian Institute of
Science =
« MICRO-40, pp. 445-454, 2007

 Session 8: Cache Replacement Policies

* A quote:
“The inherent temporal locality in memory accesses is filtered out by
the L1 cache. As a consequence, an L2 cache with LRU replacement
incurs significantly higher misses than the optimal replacement policy
(OPT). We propose to harrow this gap through a novel replacement
strategy that mimics the replacement decisions of OPT."

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Memory Hierarchy Design

\ — 4—\ — —
Memory Hierarchy
Fp— L2 and lower caches

@ Objective : Need to reduce expensive
memory accesses

@ Design : Large size, Higher associativity,

CONFLICT - MITENTTY. g
sasses, ([e Complex design
w.‘\-\. f.-'hcmm
INTERACTION |

@ Problem : Do not interact with program
directly and observe filtered temporal locality

@ High Associativity — replacement policy crucial to performance

@ L1 cache services temporal accesses — Lack of temporal
accesses at L2 — LRU replacement inefficient

@ Replacement decisions are taken off the processor critical path

ﬁ Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

LRU has room for improvement
T— ——— ———— —e —

LRU vs OPT

© |Es1zke-lru1s B 512k84ruFa [256KB-0pts [512KB-opti6

I [0/ 100 O mmmm

D_

aart mcf gee luca swim applr’ﬁﬁjmp twulf‘ vpr-i'_'_-f_ﬁ;:-éﬁrﬁgrid ap%i?:avgzﬁ

MPKI

for SPEC2000 suite, Benchmarks with MPKI < 5 not plotted but
count towards average

Huge performance gap between LRU and OPT
OPT at half the size preferable to LRU at double the size

<

MPKI: Miss Per Kilo Instructions Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007
SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

24

OPT: Optimal Replacement Policy
T ——— —_— .y, — o

<

The Optimal Replacement Policy

@ Replacement Candidates : On a miss any replacement policy
could either choose to replace any of the lines in the cache or
choose not to place the miss causing line in the cache at all.

Q Self Replacement : The latter choice is referred to as a
self-replacement or a cache bypass

Optimal Replacement Policy
On a miss replace the candidate to which an access is least
imminent [Belady 1966 Mattson 1970, McFarling-thesis]

@ Lookahead Window : Window of accesses between miss causing

access and the access to the least imminent replacement
candidate. Single pass simulation of OPT make use of lookahead
windows to identify replacement candidates and modify current

cache state [Sugumar-SIGMETRICS1993]

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

Example of Optimal Replacement Policy
e

T

—

gy -

Ty,

Understanding OPT

AW ‘A IA A JA A A TA A A LA
Access Sequence 5)%1; 6/ 3171 45T 21T s T e g
OPTorderfor Asf" (g ! {1} ioi3iaf | |

i i Lo I i I I I —
DPImﬂmfnr%j Co o223y b4

@ Consider 4 way associative cache with one set initially containing lines
(41,42 43 _44), consider the access stream shown in table
@ Access 45 misses, replacement decision proceeds as follows

& Identify replacement candidates : (4y 45 A3, 44.45)
& Lookahead and gather imminence order - shown in table,
lookahead window circled

) Make replacement decision : A4s replaces A
@ Ag self-replaces, lookahead window and imminence order in table

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

26

Shepherd Cache emulation OPT
e,

Emulating OPT with a Shepherd Cache

FPROCESSOR

Shepherd| |
Cache

MEMORY

@ Split the cache into two logical parts

@ Main Cache (MC) for which optimal
replacement is emulated

@ Shepherd Cache (5C) used to provide a
lookahead and guide replacements from MC
towards OPT

@ Operation

& Buffer lines temporarily in SC before moving
them to MC,. SC acts as a FIFO buffer

@ While in SC, gather imminence information and
emulate lookahead

& When forced out of SC, make an MC
replacement based on the gathered imminence
order

<

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

Shepherd Cache Overview

S

Overview of Shepherd Caching

NV, | NV,

SC,
SC)

MC | Ag

CM

"I'E,ﬁl,*ﬂ‘“ﬁ,ﬂlﬁl,ﬁi

|
I
|
I
|
|
|
|
|
|
I
|
A..j |
|
|
|
|
|
|
|
|
I
|
I
|
|

Ag Ay As A7 AgAg |

Ty, - ——

To emulate MC with 4 ways per set and 2 SC
ways per set

To gather imminence order add a counter
matrix (CM)

CM has one column per SC way to track
imminence order w.r.t to it

CM has one row per SC and MC line as any
of them can be a replacement candidate

Each column has one |[Next Value Counter
(NVC) to track the next value to assign along
column

<

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

MC

M
ll.‘a.i.‘a. A A A Ay

AgshqAsAgAg Ag

(a) Initial State

NVCs

:

T

sc{ AL 0fe] |
SC_As ele| |
Ay 0l 1]

e Ay ele| i
Az 1|0 i

Ay 202

cM

A A AL AL AL A

(g) A4 added to
optimal order of
5C,5C

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

| 1
W @] e [
- - !
sC) e Ni\s, e i SC
sC| Ag e 1 5C) ?‘*\c SOy
A ! A 1
1 e ! 1 [:

.“"‘-1. F 1 ."I.Jj c 1
MCF—— b omac—— ¥
Ag € i Ag e i
Ay el | Ay el ||
oM M

' :
1

AshpAgAz Ay Ay

As Ay As Ag Ag Ag :

by As
at Sy

inseried

NVCs

|
.

T

s Ag Ole| |
SC Ag 33 :
Ay 0l 1]

Ag ele i

MCF 0] !
Ay 2[2]1

cM i

A Ay Ag Az A Ayl
|

A5AnAgAgAgAg!

(hl Az added to
optimal order of
SC1.5C

increment

Ag A Ap Az A Ay

As Aj Ag Ag Ag Ag : As Ag Asg Ag Ag Ag :

(c) Ax added tw (d) As inserted
the optimal order at S
of 57
oldest (FIFO)
nves [S5]3] nves [0]5]
sc Ag Ole| 1 sc\ g eleli
SC Ag 3|3 : 5C, A, e 0 :
Ay o1 | Ay el 1] |
R 4]4] R e|3]
Az 1 0f Ag e 0]
Ay 212 i Ay e|2 i
CM | CM |
A A Az a L.‘*‘4.i As Ay Ag *"?,f‘ |.A4.i
| |

AsdaAsAgAgAgl 5A;AsA7AL Ag

(i) Az added to
optimal order of
8,850

() Az moves
from 3C to MC
replacing Ag

(e) Ag added to
the optimal order
of S .85

MY Cs |_IF

,
.

|

scf Ag a5
sC| A, clo| !
Ay el 1]

A5 [el3]

MCIx [0
Ag e|2|!

cM i
‘*‘5-'*1.”‘6.‘*‘3.'*1:}*"4.:
|

1

AsAjzAgAgAgiAg

(k' Ag added to
optimal order

NVCs
o] (O
sc| A3 ele

A]

Ag ele
MC iTo

Ay ele

oy

(1 A1 added to
optimal order of
SCha

Ag Ay Ag Az Ay Ay

oldest
|
wves [110] |
R |
sc VA, 0| e i
SC| -""'-T c F 1
1
Al ele i
A5 ele| !

MC

Ag ele i
Ay elef !
CM
1
1
1
1

Ag Ay As Ag AgAg!

(1} Self Replace-
ment (Ag evicts
itself)

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

Shepherd cache bridges 32 - 52% of the gap

S

Bridging the performance gap

Average MPKI

T

—

m lru=-1s (JB)
¢ sc-12(136E)
¥ sc-8 (92E)
& go-A ([T1E)
B co-4 (488)
4 so-2 [25E)
M opt=16 (=)

S12KB

1MB 2MB 4MB

Avg MPKI over SPEC2000 suite

p —

Ty,

Bridging the LRU-OPT gap
@ SC-4 bridges 32-52%
of gap
@ SC moves closer to

OPT as cache size
increases

MPKT: Miss Per Kilo Instructions

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

30

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

31

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

32

Course number: CSC.T341

OvEa—2imIEERE
Computer Logic Design

2. N\—Fkx 7R EE SRR
Hardware Description Language: Combinational Circuit

TR FHRIFR
Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp www.arch.cs.titech.ac.jp/lecture/CLD/

Zoom
AEEHR 3-485[E 10:45-12:25, KIEH 1-285PfE8:50-10:30, 3-485fE10:45-12:25

Ver. 2022-04-14a

33

Sample Verilog HDL code \
\
* ACRi Room [ZAY 12T 5. %%

« /home/tu_kise/cld/lec2/ IZH 2T ILa—KhWHEDT. BH DT
fLYR)I2OE—T 5.

cd
mkdir cld

cd cld
cp /home/tu_kise/cld/lec2/* .

e codeQ0lv &L 2al—L309 5.

$ iverilog code@@l.v
$./a.out

34

Inside code0OO01l.v

e EVA—ILOEEIEF—T—FmodulehrbF*F—"T—FendmoduleZx T. \
¢ moduleMRIZED1—ILEAZFEL ZOHITIEmainhED 2—IL4A.

e EDa2—ILZDEDIEFEBMAICAE DD FRLEINETSH. CCTIRIGFIXREERELT
RYA{AY

« EIOAV()T, BV —IILALIHFDINEEZRZD.

« F—T—Fkinitiadl2&KY, LIaL—a Rk (FFZI0) ICT—EL RTINSO LETE
EY .

« $display F1=I& $write [FLRATLERID1DT, Ayt—T%H AT 5. $write T
[FeiTENnily. EXIECEEDprintf LEIH.

Verilog HDL code (code@@l.v) Simulation output

module main (); hello, world
initial $display("hello, world");

endmodule

Verilog HDLOOA—KIIFRT, ¥2al—2avDHEAIFERTKRY.

@54PPDF#J\%::E—?%&EL(EM’EUZ;L\:HJ“%%;@’G, AR R—hR—DFBBLTHLEEL, 5
CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH 3

Inside code002.v

\

* main.vzxcode002. VORI R ELGAHEIIZAHNALT, 2alb—i3avd 5. \

o 2DMIRTLARYS$displayz HWLNV=HADH]. 2DV AT LARYZTAYIELTEE
HTLS.

o JAYYIEF—T—kbeginTIEFY, ¥—T—FendTHHS. CEZED { } (T3,
» c0de002_ngl.viE2Z H M $displayhinitial T OV I[CEENLGEVNDTXELIS—E4D.

code002.v
module main (); hello, world
initial begin in Verilog HDL

$display("hello, world");
$display("in Verilog HDL");
end
endmodule

code@02_ng.v

module main ();
initial $display("hello, world");
$display("in Verilog HDL");

endmodule
@54Ppomx»s:E—a“éazEL@MFu:;u:wmwt AR R—hR—DFBBLTHLEEL,
CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH 36

Inside code003.v

* main.vzxcodeO03.VORRELGAHEIIZAHNALT, 2alb—i3avd 5.

e EDA—I)LATEHODInitiadlZAWNTERL.
code002.v&code003.vD H AlZFEIL.

code002.v

module main ();
initial begin
$display("hello, world");
$display("in Verilog HDL");
end
endmodule

hello, world
in Verilog HDL

code@@3.v

module main ();
initial $display("hello, world");
initial $display("in Verilog HDL");
endmodule

hello, world
in Verilog HDL

@54PPDF#J\%:IE’—d’é&IEL,@M’FUZ;L\:&fJ“%éO)’G, I—REHR—R—SESBL TS,

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

37

Inside code00b.v

* main.vzxcodeO05.VORRELGAHELIIZAHNALT, 2alb—i3avd 5.

« EELEFHRNEBTIFETH-EL2mTH ZRALVH.

\

« #200 [2&Y, CCTEYZaL—arBtaE (FFI0) 152007 1T BfE AVHE B L =B %

20012 hello, world #x&Rr9 5.

e #100 IZ&KY, CCTIFP 2 aL—a R (BFZI0) o100 (TR AN ER B L =Rl

100IZ in Verilog HDL &% ~9 5.
« 1{7BIEaAVk, Verilog HDLO AU MEC, C++ LRIk

code05.v

/* sample Verilog code */
module main ();
initial #200 $display("hello, world");
initial #100 $display("in Verilog HDL");
endmodule

in Verilog HDL
hello, world

@54PPDFM:E’—a“étﬂ@ﬂﬂr:;u:waaéo)f, I—REHR—hR—UESBLTIESL,

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

38

Inside code006.v

\
* main.vzxcode006. VORI R ELGEAHEDIIZAHNALT, 2alb—3avd 5. \
» $displaylZ&AHHNDIEHFIEESGLHM?

code06.v

module main ();
initial #200 $display("hello, world");
initial begin
#100 $display("in Verilog HDL");
#150 $display("When am I displayed?");
end
endmodule

@@;54FPDFfJ\BZIE’—T%&IEL(EM’FLUUC&fJQﬁ%)@'G, A—REHR—IR—UZSRL TS0,
CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH 39

Inside code007.v

\
* main.vzxcode007 . vVOORRBRELGAHEIIZAHNALT, 2alb—3avd 5. \
« HAIKESLGZEZMN?

« VivadoZALNTY2al—23v 9 51568, TI74/ILEDERE TIEH1000nsL M 2oL —Y
32 L7ELND T Verilog is easy? [&H gLy,

code@07.v

module main ();
initial #200 $display("hello, world");
initial begin
#100 $display("in Verilog HDL");
#150 $display("When am I displayed?");
#1000 $display("Verilog is easy?");

end
endmodule
@54PPDF#J\%::E—?%&EL(EM’EUZ;L\:HJ“%%;@’G, AR R—hR—DFBBLTHLEEL, 40
CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code008.v

« mainvzcodeO08 VD RNBEELZDLIZAALT, V2alb—avdb.
o VATLARTS$timeld, 64AEVRD UL — 3 BERIERT .

« ZOI—FTIE, ThEND $display BRRTHEFZNZERTT D.

o BHLAEEODIIAL—I3VTHE, EOHANEDHRIZHASN =DM HNYIZLVG

BhHD. TDEHE, COFDEIIHRZTEATHIERL.

code08.v

\

module main ();
initial #200 $display("%3d hello, world", $time);
initial begin
#100 $display("%3d in Verilog HDL", $time);
#150 $display("%3d When am I displayed?", $time);
end
endmodule

100 in Verilog HDL
200 hello, world
250 When am I displayed?

@54@%#6:E’—?’%&IEL(EM’FUZ;L\:Hﬁ%é@’G, I—REHR—R—SESBL TS,

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

41

Inside code009.v

* main.vzxcodeO09. VORI RELGEAHEIIZAHNALT, 2alb—i3avd 5.

o DATLARY$FinishlE, 2ol —a ERTIES.
o ZOO—KRTIXRZI210TYZaL—avh&T95.

\

* VivadoDT I+ ILEDERTE TIF1000ns>2aL—23rd 50, TALYEVDEFROIZ

L—Lar, HAFEHETOIAL—a3 xR T8 =L

code@9.v

G FIZHAWSERL.

module main ();
initial #200 $display("%3d hello, world", $time);
initial begin
#100 $display("%3d in Verilog HDL", $time);
#150 $display("%3d When am I displayed?", $time);
end
initial #210 $finish;
endmodule

100 in Verilog HDL
200 hello, world

@54PPDF#J\B:IE’—d’é&IEL(EM’FUZ;L\:&h“%éOTG, I—REHR—R—SESBL TS,

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

42

Inside codeQOll.yv

\

© regMIEFa, bZEETH. reg [ICEEDEMICHET . \

« wireB2NEBSCEES TS wireRII/N—FOz7RAREZBICEAEFENLD.

o MR Aassign [E, wireR DIEBcEa & bIZERT 5. initial 7 By Palways@ T v o D4
ERPUNCRZSY

« & IXANDDFREEEF.

« always@T0Ov7(E, @LURIZEMNI-FRAVFELET H-UITRYIRLEITENS. always@(*) T
&, FISADAANNEILI=FZRELD.

o initiadlZAYIDHD <= (F/0TAvFUTRALEEN, reg DIEFTADHKAZRT. a<=0; [
regB DIESa~DEODHKAZRT. wire 2/ TOvF TR AILEZLEL.

code@ll.v Simulation output

module main (); 11: 6 0 -> 0
reg a, b; 21: 0 1 ->

0
d — wire c; 31: 10 -> 0
b C assign ¢ = a & b; 41;11—>1

AND gate initial
#10 a

#10 a

#10 a

#10 a
end
always@(*) #1 $display("%2d: %d %d -> %d", $time, a, b, c);

ﬁj endmodule
CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH 43

M
(0]
=)

o e
o e

e
e

AN N N N T

(T I T T

PR O®®
-

oo oo

AN AN AN AN

(T I T T

PO RO
-

e
e

Inside codeQl2.v

\
| (FORMDHIFEEF. \
- WMEEEFICE BIEEETO ~ (NOT), 2IEEEFLLT & (AND), | (OR),

" (EXOR)H' 5.
- BiDEEFICE, + (NE), - (RE), * (FH), / (RE), % FER)HH5.
« hoDWREBEEREF BNEREFIIXCEELFEL.

code@12.v Simulation output
module main (); 11: 6 06 -> ©
5 FEE &y 197 21: @1 -> 1
C ol 31: 10 -> 1
b assign ¢ = a | b; 41: 11 -> 1
OR gate initial begin
#10 a <= 0; b <= 0;
#10 a <= 0; b <= 1;
#10 a <= 1; b <= 0;
#10 a <= 1; b <= 1;
end
always@(*) #1 $display("%2d: %d %d -> %d", $time, a, b, c);
endmodule

K CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH 44

Inside code0O13.v

o wiredlZEZIZTHEHINTULVEL. O3aL—ia iERE? \

- ESHEOMYBBIEIZE, 0,1, x, z DD, xITFEEE, zIF/NAAVE—F O RERT.

o EZIZHEEHREINTULV L Wire, HAWIBATRMIZN/AUE—F U RIZERESNF=wireld z&
5.

o WHEESN TV regBDIEEDL, FEBZRAVWVEERRELE L.

« EBEEMIZx, zELTWELDIZX, zhBE AEINSIHE, I—RIZEEBRIANHAHZENZLNDT
, A—FDEREFREITEEL.

* code012.v @ | DN ZMOHBFEEFOEMEFEFICEELTIIaL—2a0F 5L

code@l13.v Simulation output

—d module main (); 11:
reg a, b; 21:

wire c, d; 31:
C assign ¢ = a | b; 41:

OR gate initial begin
#10 a <= 0;
#10 a <= 0
#1090 a <=1
#1090 a <=1
end
always@(*) #1 $display("%2d: %d %d -> %d %d", $time, a, b, c, d);

. AEE51' endmodule

P CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH 45

PP OO®
R O L X
| T

vV VvV VvV Vv

PR P X
N N N N

)

-
C O O
AN AN A
i mnnu
e oo

RO R
-

-

I

Inside code014.v

« Verilog HDLTIE, 2R EDEFHRDEIZE /N A (bus)EFEA. \

* reg®, wireR2DEBRENRELTEETSICIE, reg, wire DRIZ [3:0] DERICKREEIEET S
Bl Z X reg [3:0] a X, a[3], a[2], a[1], a[01DAE NS B/ \REEET 5.

« codeOl4.v TlE, 4EYMED/NREL TregHla, b, 4EYMED/NRELTwirecEEE T 5.

o BUEZRINTH=OIZIE, (T IWo4+—T—230) FYRTIDOEFHNE VMEEZRL, 'DEDbMN2
HETHAHIEERT (FDM, 161 %N, 10E%d, 8#%£on H D). HIZ I, 4b1010 [F2H#EETRS
N1-4EvbD1010¢E455. BUIED R TIEIKRF, MNFIFRFIESNELY. 4b1010 & 4'B1010 &
4hAIXEICIEEES.

EvhEZERTHEI2E VN LS. BEMHFIBTELLGWNWEI0E L LA S.
o VRTLARYS$displayTlE, 2HEETRIRT 51=6HD %b NFIFATES.

code@l4d.v Simulation output

module main (); 11: 1010 1100 -> 1110
4 reg [3:0] a, b;

d 4 c wire [3:0] c;
b 4 assign c = a | b;

OR gate initial begin
#10 a <= 4°b1010; b <= 4°b1100;

end
always@(*) #1 $display("%2d: %b %b -> %b", $time, a, b, c);
endmodule

K CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH 46

Inside code015.v

« Multiplexer(ZJLFTL YY) DVerilog HDLEEREE Z 5.
o sHOTHNILaZH HELT, sHhITHNIEbEE LT HMEEEK.

I

b -
code@l5.v Simulation output
module main (); 11: 00 0 -> @
ree 2 b, s; 21: 001 -> 0
assign ¢ = (a & ~s) | (s & b); SLs @4 @ >
initial begin 41: 011 ->1
#10 s <= 0; a <= 0; b <= 0; 51: 1 060 -> 0
#10 s <= 0; a <= 0; b <= 1; 61: 101 ->1
#10 s <= 0; a <= 1; b <= 0; 71: 110 -> 0
#10 s <= 0; a <= 1; b <= 1; 81: 111 -> 1
#10 s <= 1; a <= 0; b <= 0;)
#10 s <= 1; a <= 0; b <= 1;
#1090 s <= 1; a <= 1; b <= 0;
#10 s <= 1; a <= 1; b <= 1;
end
always@(*) #1 $display("%2d: %d %d %d -> %b", $time, s, a, b, c);

ﬁj endmodule
CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code016.v

« TILFTILUYDVerilog HDLEEHREE Z 5.
« JEEHEFOEFHEERET) 2FE>THRILHERIZES. CORBDAMNEHETH
S

URck i AY
d - d
c s —E:D_:Z}c
b | —

b -
code@16.v Simulation output
module main (); 11: 900 -> 0
reg a, b, s; 21: 901 -> 0
WS s 31: @10 ->1
assign c =s ? b : a;
initial begin 41: 811 ->1
#10 s <= 0; a <= 0; b <= 0; 51: 1 @0 -> 0
#10 s <= 0; a <= 0; b <= 1; 61: 101 ->1
#1090 s <= 0; a <= 1; b <= 0; 71: 110 -> 0
#10 s <= 0; a <= 1; b <= 1; 81: 11 1 -> 1
#10 s <= 1; a <= 0; b <= 0;
#10 s <= 1; a <= 0; b <= 1;
#1090 s <= 1; a <= 1; b <= 0;
#1090 s <= 1; a <= 1; b <= 1;
end
always@(*) #1 $display("%2d: %d %d %d -> %b", $time, s, a, b, c);

ﬁ’-’ endmodule
CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH 48

Inside code0O17.v

« EDANWTAVRZVAILT BBIETRT.

o EVAINWBEARAVAZERBLT, TORICAHNIGFLEINET L. CEEOBEHTY
HLUIZEITLS. ZOFITIE m_mux ELVDEDA—ILBDAAREA Am_mux0 XK 5.

code@l7.v
module m_top (); S
r‘gg a, b, s; a .
wire c;
initial begin C
#10 s <= 0; a <= 0; b <= 0;
#10 s <= 0; a <= 0; b <= 1; b -
#10 s <= 0; a <= 1; b <= 0;
#10 s <= 0; a <= 1; b <= 1;
#10 s <= 1; a <= 0; b <= 0; Simulation output
#10 s <= 1; a <= 0; b <= 1; .
#10 s <= 1; a <= 1; b <= 0; 110 0R0E= >0
#10 s <= 1; a <= 1; b <= 1; 21: 601 ->0
end 31: 910 ->1
always@(*) #1 $display("%2d: %d %d %d -> %b", $time, s, a, b, c); 41: 611 -> 1
m_mux m_mux® (a, b, s, c); 51: 10 0 -> 0
endmodule 61: 1 061 -> 1
module m_mux (a, b, s, c); gL8 L L B> 6
input wire a, b, s; 8l: 111 ->1
output wire c;
assign c = s ? b : a;

@:} endmodule
CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH 49

Inside code010.v

e mainvZxcodeOlI0OVORBELEAELIIZAALT, 2al—arvd 5.

o E¥integer&for/l—THHAWEEERTOT S LD,

o EBHAIDfahr, celsiusrE .

code010.v

CEIEENWRITEEF++IXFEZLLY. fahr++ ELVSEERIEZITS—ELADTE

x=r
=]
SN -

module main ();
integer fahr, celsius;
initial begin

celsius = 5*(fahr-32) / 9;
$display("%3d %6d", fahr, celsius);
end
end
endmodule

for (fahr = @; fahr <= 300; fahr = fahr + 20) begin

Jns5zv452EC

e
£

o
TREd

@54PPDF#J\%:IE’—d’é&IEL,@M’FUZ;L\:&fJ“%éO)’G, I—REHR—R—SESBLTLEEL.

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

%)
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

-17
-6
4
15
26
37
48
60
71
82
93
104
115
126
137
148

50

Some rules for following lectures and exercises

\
« EDaA-ILDARNIIE m_ DoIRFEABRIZED. wireRDESDARIZIE w_ 75\611&‘?\
HAHZEED. regB DAHNZIE r_ HNBIRFEDREIZED.
o VEal—iavDiRLEOEDI—IL(IMYTED2—IL)IZIE m_top ELVIRBIERED.
« $display GED L AT LARYIE m_top DHFTULMALTIELLMFZALY.
o WEAHOMYTED—ILIZIE m_main ELVDBETERES.
« NamebW\SRRIDED2A—ILDAVRAVRALIZIE Namel 23 FZEFmL-&ai&EfES.

JL—ILEEALT=Verilog HDLEZ DI

module m_top ();

reg r_a, r_b, r_s;

wire w_c;

initial begin
#10 r_s <= 0,
#10 r_s <= 0

end

always@(*) #1 $display("%2d: %d %d %d -> %b", $time, r_s, r_a, r_b, w c);

m_mux m_mux® (r_a, r_ b, r.s, wc);

0; 9;
0 1

r_a< r b <
; r_a < rb <

)

.
J J

endmodule
module m_mux (w_a, w b, w s, w c);
input wire w_a, w_b, w_s;

output wire w_c;
assign w c =w.s ? wb : w_a;

ﬁz’ endmodule
CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH 51

Inside code018.v

« 0~9% %~ 5 seven-segment LED decoder DHlZTRT .

« BERITONEZFERT 516D caseX HH5.

« EVa—I)lm_7segledTlE, ANDIEIZKY, RATESESLEDDEYRE1ET S.
« r_led ® MSBH5, LEDDabcdefgD 4 A hEEIY HTS.

codedl18.v

Lk [ECEFEERIFk.

output reg

case (w_in)
4'de
4'd1
4'd2
4'd3
4'd4
4'd5
4'de6
4'd7
4'd8
4'd9
default:

endcase

end
endmodule

: r_led
: r_led
: r_led
: r_led
: r_led
: r_led
: r_led
: r_led
: r_led
: r_led

r_led

module m_7segled (w_in, r_led);
input wire [3:0] w_in;

[6:0] r_led;

always @(*) begin

7'b1111110;
7'b0110000;
7'bl101101;
7'bll11001;
7'b0110011;
7'bl1011011;
7'b1011111;
7'b1110000;
7'b1111111;
7'b1111011;
7 'b0000000;

module m top ();
reg [3:0] r_in;
wire [6:0] w_led;
integer i;
initial

for (i=@; i<=15; i=i+1l) begin r_in <= i; #10; end

initial

$display ("

abcdefg");

always@(*) #1 $display(" %x -> %b", r_in, w_led);

m_7segled m_7segled® (r_in, w_led);

endmodule

K CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

I i1 i1
Lot Li L
-
il St el
aa BEX L

I L1 L

-~ QN VW VoONOTUDWNEDOO

abcdefg
1111110
0110000
1101101
1111001
0110011
1011011
1011111
1110000
1111111
1111011
0000000
0000000
0000000
0000000
0000000
0000000

52

Inside code019.v

\
« Seven-segment LED decoder DRI DHIZERT . \
o BAREBEEF(E)ETFELVEICIbIERY, Z5THRIFNILID0OELS.
« c0de019.v Tldreg® (FFE-TULVELY. ZDT=8, m_T7segled Mo IEHEERBENERIND.
« c0de018.v M m_7segled 1o, HHEEEERNEHRINSD ? [EFEIENERINEIMN ?

* regBDESNEICLORZICERINDENIRTIFHZL.

a
code19.v (m_topMDidikildcodel8.vEREIL) f b
module m_7segled (w_in, w_led); abcdefg g
input wire [3:0] w_in; 0 -> 1111110 e c
output wire [6:0] w_led; 1 -> 0110000
2 -> 1101101 d
assign w_led = (w_in==4'de) ? 7'b1111110 : 3 -> 1111001
(w_in==4"'d1l) ? 7'b0110000 : 4 -> 0110011 — —
(w_in==4'd2) ? 7'b1101101 : 5 -5 1011011 [i i
(w_in==4'd3) ? 7'bill11ee01 : 6 -> 1011111 } ""‘"“ ""’"
(w_in==4'd4) ? 7'bo110011 : 7 -> 1110000 Y. —
(w_in==4'd5) ? 7'bleile11l : 8 -> 1111111 l ’ r... ,......
(w_in==4'd6) ? 7'b1011111 : 9 -> 1111011 s - —
(W_in==4"d7) ? 7'b1110000 : a -> 0000000 i ¥ L3
(w_in==4'd8) ? 7'b1111111 : b -> 0000000 — S i
(w_in==4'd9) ? 7'bli11011 : c -> 0000000 ’ L_J LJ
7'b0000e0e; d -> 0000000 ¢4 L.J £ 1
endmodule e -> 0000000
.F

ﬁ, -> 0000000
CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH 53

Inside code020.v

« Seven-segment LED decoder DRI DHIZERT .
* c0de020.v M m_7segled Mo, A EEAEHRENEGD ? IEFRERNE RSN ?

w_in A\ 4ha DEFIZ, ES5LT 7'b1111011 NHASNLHZDH ?

code018.v code020.v
module m_7segled (w_in, r_led); abcdefg module m_7segled (w_in, r_led); abcdefg
input wire [3:0] w_in; 0 -> 1111110 input wire [3:0] w_in; 0 -> 1111110
output reg [6:0] r_led; 1 -> 0110000 output reg [6:0] r_led; 1 -> 0110000
always @(*) begin 2 -> 1101101 always @(*) begin 2 -> 1101101
case (w_in) 3 -> 1111001 case (w_in) 3 -> 1111001
4'de : r_led <= 7'bl1111110; 4 -> 0110011 4'de r_led <= 7'bl111110; 4 -> 0110011
4'd1l : r_led <= 7'b0110000; 5 -> 1e11011 4'd1l r_led <= 7'b0110000; 5 -> 1011011
4'd2 : r_led <= 7'bll01101; 6 -> 1011111 4'd2 r_led <= 7'bl1le1101; 6 -> 1011111
4'd3 : r_led <= 7'bl111001; 7 -> 1110000 4'd3 r led <= 7'bl111001; 7 -> 1110000
4'd4 : r_led <= 7'b0110011; 8 -> 1111111 4'd4 r_led <= 7'b0110011; 8 -> 1111111
4'd5 : r_led <= 7'blol1011; 9 -> 1111011 4'd5 r_led <= 7'bl011011; 9 -> 1111011
4'd6 : r_led <= 7'b1011111; a -> 00000o 4'd6 r led <= 7'b1011111; a -> 1111011
4'd7 : r_led <= 7'b1110000; b -> 0000000 4'd7 r_led <= 7'b1110000; b -> 1111011
4'd8 : r_led <= 7'b1111111; C -> 0000000 4'd8 r led <= 7'b1111111; c -> 1111011
4'd9o : r_led <= 7'bl111011; d -> 0000000 4'd9 r_led <= 7'bl111011; d -> 1111011
default: r_led <= 7'b0000000O; e -> 0000000 endcase e -> 1111011
endcase f -> 0000000 end f -> 1111011
end endmodule
endmodule
ff_a'

P CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

54

Inside codeQ21.v

+ Seven-segment LED decoder DRI DHIZETRT .
o caseX TIF%L, i3 (if else) #ANTiEib 3521 TES.
« codel8.v & code2lv ITRILH hELS.

code@18.v code@21l.v
module m_7segled (w_in, r_led); module m_7segled (w_in, r_led);
input wire [3:0] w_in; input wire [3:0] w_in;
output reg [6:0] r_led; output reg [6:0] r_led;
always @(*) begin always @(*) begin
case (w_in) if (w_in==4'd@) r_led <= 7'bl111110;
4'de : r_led <= 7'b1111110; else if (w_in==4"dl) r_led <= 7'b0110000;
4'dl : r_led <= 7'b0110000; else if (w_in==4'd2) r_led <= 7'bl101101;
4'd2 : r_led <= 7'bl101101; else if (w_in==4"'d3) r_led <= 7'bl111001;
4'd3 : r_led <= 7'b1111001; else if (w_in==4"'d4) r_led <= 7'b0110011;
4'd4 : r_led <= 7'b0110011; else if (w_in==4"'d5) r_led <= 7'bl011011;
4'd5 : r_led <= 7'bl1011011; else if (w_in==4"'d6) r_led <= 7'b1011111;
4'd6 : r_led <= 7'b1011111; else if (w_in==4"'d7) r_led <= 7'b1110000;
4'd7 : r_led <= 7'b1110000; else if (w_in==4"'d8) r_led <= 7'b1111111;
4'd8 : r_led <= 7'b1111111; else if (w_in==4"'d9) r_led <= 7'bl111011;
4'do : r_led <= 7'bl111011; else r led <= 7'bo000000;
default: r_led <= 7'b0000000; end
endcase endmodule
end
endmodule

Inside codeQ22.v

« EVMERDBIZTRT. NRAFZEVFDERTRFEINADT, NAMERTLHEVFDE
BZEET S MIPST—FTI/F DM T TROOhAIBRX DGR/ I —ILE
2RI HH.

Pl OPCOdﬁ 26[25 rs 217120 rt 1615

immediate v

end

endmodule

input

output
output
output
output
assign
assign
assign
assign

endmodule

wire [4:0]
wire [4:0]
wire [15:0] w_imm;
initial begin
#1 $display (" %x -> %x %x %x %x", r_ir, w_op, w_rs, w_rt, w_imm);
$display(" %b -> ", r_ir);
$display (" %b %b %b %b", w op, w rs, w_rt, w_imm);

module m_top ();
reg [31:0] r_ir = 32'hl464fffe;
wire [5:0]

wW_op;
W_rs;
w_rt;

m_decode m_decode® (r_ir, w op, w rs, w rt, w_imm);

module m decode (w_ir, w op, w rs, w rt, w_imm);

wire [31:0] w_ir;
wire [5:0] w_op;
wire [4:0] w_rs;
wire [4:0] w_rt;
wire [15:0] w_imm;

w_op
w_rs
w_rt
w_imm

w_ir[31:26];
w_ir[25:21];
w_ir[20:16];
w_ir[15:0];

<

SC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Simulation output

1464fffe -> 05 03 04 fffe
00010100011001001111111111111110 ->
000101 00011 00100 1111111111111110

codef22.v

56

Inside code023.v

Ewk®E#E (concatenation) DHIZFTRT .

EREEETF ({}, BIEI curly brackets) &, O DEEEEHELTEYFRORENTIDND/NXI(C
TE5. AEYLDIES w_a, w_b Z#EHET BIZI {w_a, w_b} &8 3 5. 4EVFDIES w_a, w_b,
w_c ZERETBIZIE {w_a, w_b, w_c} &itih 9 5.
HAEBEZEELTEYFROKRENTIDDNRIZTES. HIZIE, AEVFDIES w_a Z3EERLT:E
#£95I121F {(3{w_a}} &3tk 3 5. BIAIE, {4{w_a}} &{w_a, w_a,w_a, w_a} [FRILEYRAIELES.
BEOHITRLETMREYFOMSBEZHEREIL T EAEYREMHIET RI2EL, 2OHEM TRIBEIN-HFE
FEDBYMEFESILRET AERICALLONS. BOEXRTHERRTS.

code@23.v Simulation output
module m_top (); 10010101
reg [3:0] r_a = 4'ble01; 100101011111
reg [3:0] r_b = 4'bo101; 10011001
reg [3:0] rc = 4'b1111; 100110011001
initial #1 begin
$display("%b", {r_a, r b}); 1001100110011001
$display("%b", {r_a, r_b, r_c}); 11111001
$display("%b", {2{r_a}}); 00000101
$display("%b", {3{r_a}});
$display("%b", {4{r_a}});
$display("%b", {{4{r_a[3]}}, r_a});
$display("%b", {{4{r_b[3]}}, r_b});
end
endnodule w_bD{BEFETHIALL.

K CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

57

Inside code024.v

- BREBEEF (> <, >, <=, ==, |:) DPZETRT . \
o PBIZIE w_a>=w_b (F w_a DEA w_b DIELLETHNIX I'bl, £5THMFHIL I'b0 £45.
. CEBLAM

o JUT7AYFUIHRADERF <= £ BRERETF <= [FRICERRZH, SCEMICRFITES.
COEETIX (w_a>= w_b) OFkIC, BREFFOLEERDOEIRIC () Z:EMLTHRMICKRT
B.

code@24.v Simulation output

module m_top ();
reg [3:0] r_a
reg [3:0] r_b
initial #1 begin

P ORPRORLRO

$display("%b", (r_a> r_b));
$display("%b", (r_a< r_b));
$display("%b", (r_a>=r_b));
$display("%b", (r_a<=r_b));
$display("%b", (r_a==r_b));
$display("%b", (r_al=r_b));
end
endmodule

K CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH 58

Inside code02b.v

. HRELINEE (>, «) OBIERT.

- CSREELRIHR

\

e« BIZIE, w a« 3l w aDEZEIZEVFEEISE, TRO3IEYMI0ELD. Bk
(2, w_b>» 2 Tl&, w bDEZHRIZ2E YR EEISE, EAD2EYHI0ELS.

- WMEUIMNEETIE VIMSELIEVMIELTITAVEDOLORFBDESTTALTE

ENAY

codef25.v

module m_top ();

end
endmodule

J

J
)
J
J

reg [7:0] r_a = 8'b11110101;

reg [2:0] r_s = 3'd3;

initial #1 begin
$display("%b"
$display("%b"
$display("%b"
$display("%b"
$display("%b"

(r_a>>0));
(r_a>>1));
(r_a<<l1));
(r_a>>r_s));
(r_a<<r_s));

Simulation output

11110101
01111010
11101010
00011110
10101000

K CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH 59

Inside code026.v

o VEOLAVEREF(& |,) DA
BIZIE "~ [EINADETOEVFDHtRIEREN LGS, AV NS,

coded26.v

module m_top ();
reg [4:0] r_btn;
wire [2:0] w_led;
initial begin
#10 r_btn <= 5°b00000;
#10 r_btn <= 5’b11111;
#10 r_btn <= 5°b00010;
end
always@(*) #1 $display(" %b -> %b", r_btn, w led);
m_main m_main® (r_btn, w_led);
endmodule

module m_main (w_btn, w_led);
input wire [4:0] w_btn;
output wire [2:0] w_led;
assign w_led[0] &w_btn; // same as w_btn[0] & w btn[1] & w btn[2] & w_btn[3] & w_btn[4]
assign w_led[1] |w_btn; // same as w_btn[@] | w btn[1] | w btn[2] | w btn[3] | w_btn[4]
assign w_led[2] w_btn; // same as w_btn[@] ~ w_btn[1] ~ w_btn[2] ~ w_btn[3] * w_btn[4]
endmodule

K CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

60

Course number: CSC.T341

AV E 31— iIEERE

!'_ Computer Logic Design

3. N—FkDx7ieR EEE: BB
Hardware Description Language: Sequential Circuit

SR FHRIFER
Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp www.arch.cs.titech.ac.jp/lecture/CLD/

Ver. 2020-08-27_1

61

Inside codeObl.v

e LRal—larifr=6Hpnravy DR ERT .
« foreverX(d, #E<7AVIDWNEBEERICIEYIRT. COHITIE, regDIESr_clkzFAiakFIC
OIZ#EAIEL, #B0ME&(Zr_clkDIED REF#EVYIRT .
o KWEHRTHILT. VOVIEIKHIOMHZ(VOy 2 E#I100ns) DOy NERINTILNSS
EHHh 5.

coded51.v

Waveform
of GTKwave

;geil'

“timescale 1ns/100ps
module m_top ();
reg r_clk=0;
initial forever #50 r_clk = ~r_clk;

always@(*) $write("%3d %d¥n", $time, r_clk);
initial #8000 $finish;

initial $dumpfile("main.vcd"); /* file name for GTKWave */
initial $dumpvars(@, m_top); /* module for GTKWave */
endmodule

Simulation output

Bl GTKWave - N:¥Lecture¥CLD¥main.ved
File Edit Search Time Markers View Help

&e Q 6‘)‘ Q U;‘j ECH \4,] E:/ From:|0 sec To:|800 ns @ Marker: 188 ps | Cursor: 381300 ps
ves
80 ns 288 ns 380 ns 00 ns g

- 55T Signals Wa
: p

P CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

%)
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

o

ORrOFrROFROFRFOFRLROFRLROFRL O R

62

Inside code0b2.v

- B2 YAV ADRREIZETRY .

o OYVES w_clk MiLk LAY DEF (posedge w_clk) IZ
CAA DA T B, -1EL. PIDEE 0 &9 5,

« 2EVMAIUELGDT, RRIEIDRIFOELTHRAITEER.
 iverilogTY2al—3 L, GTKWave TR /RS 5.

Waveform

coded52.v

Bl GTKWave - Ni¥Lecture¥Cl D¥main.ved - m}

File Edit Search Time Markers View Help

To:|1 us @ Marker: 506 ns | Cursor: 956 ns

@R @ G)\ Q U:j ECU :3 E:, Frnm:|D sec

~ S5T Signals Waves
]

s 00 ns 200 ns 300 ns 00 ns 500 ns
B m_top Time -
W clk=i
W cnt[1:0] = a0 0 1] a0 1]

Type ‘S\gnals |

req r_cnt{1:0]

wire w_clk

wire w_ent[1:0]
Filter:

Append| Insert ‘ Replace | 1 | |G

“timescale 1ns/100ps

module m _top ();
reg r_clk=0;
initial forever #50 r clk = ~r clk;
wire [1:0] w_cnt;
m_main m main@® (r_clk, w_cnt);
initial $dumpfile("main.vcd");
initial $dumpvars(@, m maine@);
initial #1000 $finish;

endmodule

module m main (w_clk, w _cnt);
input wire w_clk;
output wire [1:0] w_cnt;

reg [1:0] r_cnt = 9;
always@(posedge w_clk) begin
r cnt <= #5 r_cnt + 1;
end
assign w_cnt = r_cnt;
endmodule

™

Ageil'

P CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code0b3.v

o BHIZ2EYRIVUADRIDRRBIERT .

« OY2EE w_clk DILE ENYDEF (posedge w_clk) IZ
MDAV S, L RPIDEZE 0 &9 5,

« 2EVMAIUELGDT, RRIEIDRIFOELTHRAITEER.

« iverilogT 2al—i3>L, 6TKWave TEHZHERT 5. codeds3. v

“timescale 1ns/100ps

module m_top ();
reg r_clk=0;
initial forever #50 r_clk = ~r_clk;
wire [1:0] w_cnt;
m_main m_main® (r_clk, w_cnt);
initial $dumpfile("main.vcd");
initial $dumpvars(@, m _maine@);
initial #1000 $finish;

endmodule

module m_main (w_clk, r_cnt);
input wire w_clk;
output reg [1:0] r_cnt;

initial r_cnt = 0;
always@(posedge w_clk) r_cnt <= #5 r_cnt + 1;
endmodule

K CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

64

Inside code0b4.v

« RV EyMIEF2E VMO ADRRFIZRT .

o JOYVES w_clkDiIb ENYDEFIZ, JEYMES r_rst
MOBEFIZIEAV U ADEIEREATHEESN, £5TREITH
[F142 D) AN 5.

« 2EVMATIUELDT, RRIEIDRIFOETHRAITEER.
 iverilogT 2al—3 L, GTKWave TR /DT 5.

Waveform

code@54.v

Bl GTKWave - N:¥Lecture¥CLD¥main.ved =N EoR =)

File Edit Search Time Markers View Help |

&9 ®\ G)‘ Q U::l l::;[l \"':l l::, From:(0 sec To:| 700 sec @ Marker: 350 sec | Cursor: 659 sec ‘

= SST Signals Waves
- b
&..m_to Time -
_op w_clk=
w_rst=
““““ r_cnt[l:0] =
Type |Signa|s | — ||lw_ent[1:08] =
reg r_cnt[1:0] :
wire w_clk ! !
wire w_cnt[1:0] =l
Filter:
Append| Insert | Replace | | | (= |

“timescale 1ns/100ps

module m top ();
reg r_clk=0;
initial forever #50 r clk = ~r_ clk;
reg r_rst=1;
initial #230 r_rst=0;
wire [1:0] w_cnt;
m_main m_main® (r_clk, r_rst, w_cnt);
initial $dumpfile("main.vcd");
initial $dumpvars(@, m _main®@);
initial #1000 $finish;

endmodule

module m_main (w_clk, w_rst, w_cnt);
input wire w_clk, w_rst;
output wire [1:0] w_cnt;

reg [1:0] r_cnt;
always@(posedge w_clk) begin
if (w_rst) r_cnt <= 0;
else r_cnt <= #5 r_cnt + 1;
end
assign w_cnt = r_cnt;
endmodule

Ageil'

P CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

65

Inside code0bb5.v and code0b6.v

« IMHz ®Y0vI{ESZANELT I DORERTO,1,0,1
ERESEHN—FDIT7DELFIZRT. LED ZRBSE

SEBEEIZFAT S,

- FHE
- 1MB=1024 x 1024 B
» 1MHz = 1000 x 1000 Hz

coded56.v

coded55.v

module m_main (w_clk, r_out);
input wire w_clk;
output reg r_out;

initial r_out = 0;
reg [31:0] r_cnt = 0;
always@(posedge w_clk) begin

end
endmodule

r_cnt <= (r_cnt==999999) ? 0 :
r_out <= (r_cnt==0) ? ~r_out :

r_cnt +1;
r_out;

K CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

“timescale 1ns/100ps

module m_top ();
reg r_clk=0;
initial forever #50 r_clk = ~r_clk;
wire w_out;
m_main m_main®@ (r_clk, w_out);
initial $dumpfile("main.vcd");
initial $dumpvars(@, m_main®@);
initial #1000 $finish;

endmodule

module m_main (w_clk, r_out);
input wire w_clk;
output reg r_out;

reg [31:0] r_cnt = 0;
always@(posedge w_clk) begin

r_cnt <= (r_cnt==999999) ? © : r_cnt +1;
end

initial r_out = 0©;
always@(posedge w_clk) begin
r_out <= (r_cnt==0) ? ~r_out : r_out;
end
endmodule

66

Inside code0b7.v

100MHz 7BV I{ESZAAELT IWDOMERTO,1,0,1 EE{ESE D/ N\—F0 7 DEC
ZR9. LED ZRRSEHEBLHEICFIRAT B,

- EROENZIEVFDOLEDIZEET S,

code®57.v

module m_main (w_clk, w_led);
input wire w_clk;
output wire [3:0] w_led;

reg r_out 0,
reg [31:0] r_cnt = 0;
always@(posedge w_clk) begin
r_cnt <= (r_cnt==99999999) ? @ : r_cnt +1;
r_out <= (r_cnt==0) ? ~r_out : r_out;
end
assign w_led = {r_out, r_out, r out, r out};
// vio @ vio 00(w_clk, w led[3], w_led[2], w_led[1], w_led[@9]);
endmodule

K CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

A

67

K CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

68

