
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

3. HDL, Single-cycle processor, and
Memory Hierarchy Design

Ver. 2022-12-19aFiscal Year 2022

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W831, HyFlex
Mon 13:45-15:25, Thr 13:45-15:25

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Sample circuit 1

• 4-bit counter

• synchronous reset

• negative-logic reset, initialize or reset the value of register cnt to
zero if RST_X is low

+

1

4

CLK

RST_X

cnt4

module counter

cnt
[3:0]

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Sample Verilog HDL Code

8 module top();
9 reg CLK, RST_X;
10 wire [3:0] w_cnt;
11
12 initial begin CLK = 1; forever #50 CLK = ~CLK; end
13 initial begin RST_X = 0; #240 RST_X = 1; end
14 initial #800 $finish();
15 initial begin
16 $dumpfile("wave.vcd");
17 $dumpvars(0, cnt1);
18 end
19 always @(posedge CLK) $write("cnt1: %d %x¥n", RST_X, w_cnt);
20
21 counter cnt1(CLK, RST_X, w_cnt);
22 endmodule
23
24
25 module counter(CLK, RST_X, cnt);
26 input wire CLK, RST_X;
27 output reg [3:0] cnt;
28
29 always @(posedge CLK) begin
30 if(!RST_X) cnt <= #5 0;
31 else cnt <= #5 cnt + 1;
32 end
33 endmodulecounter.v

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Single-cycle implementation of processors

• Single-cycle implementation also called single clock cycle
implementation is the implementation in which an
instruction is executed in one clock cycle. While easy to
understand, it is too slow to be practical.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Some building blocks of processor datapath

We use 8K word memory.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Datapath of single-cycle processor supporting ADD

0x800 add $t0, $s1, $s2 [add $8, $17, $18]

op rs rt rd shamt funct

IR[15:11]IR[20:16]IR[25:21]

$17 = 3
$18 = 4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Verilog HDL Code of proc01

module PROCESSOR_01(CLK, RST_X);
input wire CLK, RST_X;

reg [31:0] pc;
wire [31:0] ir;
wire [31:0] rrs, rrt;

always @(posedge CLK) pc <= #5 (!RST_X) ? 0 : pc + 4;

IMEM imem(CLK, pc, ir); /* instruction memory */

wire [4:0] #10 rs = ir[25:21];
wire [4:0] #10 rt = ir[20:16];
wire [4:0] #10 rd = ir[15:11];
wire [31:0] #20 result = rrs + rrt; /* ALU */

GPR regfile(CLK, rs, rt, rd, result, 1, rrs, rrt); /* register file */
endmoduleproc01.v

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Waveform of proc01

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Datapath of processor supporting ADD and ADDI

$8 = 7

0x804 addi $t1, $t0, 3 [addi $9, $8, 3]

IR[20:16]IR[25:21]

op rs rt 16 bit immediate I format

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Assignment 2

1. Design a single-cycle processor supporting MIPS add, addi instructions
in Verilog HDL. Please download proc01.v from the support page and
refer to it.

2. Verify the behavior of designed processor using following assembly
code

• add $0, $0, $0 # {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}

• addi $7, $0, 3 # {6'h8, 5'd0, 5’d7, 16'd3}

• addi $8, $0, 5 # {6'h8, 5'd0, 5’d8, 16'd5}

• add $9, $7, $8 # {6'h0, 5’d7, 5’d8, 5’d9, 5'd0, 6'h20}

3. Submit a report printed on A4 paper at the beginning of the next
lecture on Monday. Or,
Submit your report in a PDF file via E-mail (kise [at] c.titech.ac.jp) by
the beginning of the next lecture on Monday.

• The report should include a block diagram, a source code in Verilog
HDL, and obtained waveforms of your design.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Datapath of processor supporting ADD, ADDI, LW

IR[20:16]IR[25:21]

$8 = 0x10
mem[0x14] = 3

0x808 lw $t2, 4($t0) [lw $10, 4($8)]

op rs rt 16 bit immediate I format

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

A Typical Memory Hierarchy

Second

Level

Cache

(SRAM)

Control

Datapath

Secondary

Memory

(Disk)

On-Chip Components

R
e
g
F

ile

Main

Memory

(DRAM)D
a

ta

C
a
c
h
e

In
s
tr

C
a

c
h

e

IT
L

B
D

T
L

B

Speed (%cycles): ½’s 1’s 10’s 100’s 1,000’s

Size (bytes): 100’s K’s 10K’s M’s G’s to T’s

Cost: highest lowest

❑ By taking advantage of the principle of locality in time and space
Present much memory in the cheapest technology

at the speed of fastest technology

TLB: Translation Lookaside Buffer

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)

20Tag 10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

What kind of locality are we taking advantage of?

20

Data

32

Hit

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

8

Index

Data (4 word)
Index TagValid

0

1

2

.

.

.

253

254

255

31 30 . . . 13 12 11 . . . 4 3 2 1 0
Byte
offset

20

20Tag

Hit Data

32

Block offset

Multiword Block Direct Mapped Cache

• Four words/block, cache size = 1K words (4KB)

What kind of locality are we taking advantage of?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Four-Way Set Associative Cache

• 28 = 256 sets each with four ways (each with one block)
31 30 . . . 13 12 11 . . . 2 1 0 Byte offset

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

Index DataTagV
0

1

2

.

.

.

253

254

255

8

Index

22Tag

Hit Data

32

4x1 select

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Cache Associativity & Replacement Policy

E

A B C D

Bookshelf

Desk

Book

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Costs of Set Associative Caches

• N-way set associative cache costs
• N comparators (delay and area)
• MUX delay (set selection) before data is available
• Data available after set selection and Hit/Miss decision.

• When a miss occurs,
which way’s block do we pick for replacement ?
• Least Recently Used (LRU):

the block replaced is the one that has been unused for the
longest time
• Must have hardware to keep track of when each way’s block was

used
• For 2-way set associative, takes one bit per set →

set the bit when a block is referenced
(and reset the other way’s bit)

• Random

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Recommended Reading

• Emulating Optimal Replacement with a Shepherd Cache

• Kaushik Rajan, Govindarajan Ramaswamy, Indian Institute of
Science

• MICRO-40, pp. 445-454, 2007

• Session 8: Cache Replacement Policies

• A quote:
“The inherent temporal locality in memory accesses is filtered out by
the L1 cache. As a consequence, an L2 cache with LRU replacement
incurs significantly higher misses than the optimal replacement policy
(OPT). We propose to narrow this gap through a novel replacement
strategy that mimics the replacement decisions of OPT.”

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Memory Hierarchy Design

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

LRU has room for improvement

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007MPKI: Miss Per Kilo Instructions

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

OPT: Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

Example of Optimal Replacement Policy

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

Shepherd Cache emulation OPT

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

Shepherd Cache Overview

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

empty increment dummy

oldest (FIFO)
oldest

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30

Shepherd cache bridges 32 – 52% of the gap

MPKI: Miss Per Kilo Instructions

Emulating Optimal Replacement with a Shepherd Cache, MICRO-2007

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 31

this slide is to be used as a whiteboard

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 32

this slide is to be used as a whiteboard

コンピュータ論理設計
Computer Logic Design

2. ハードウェア記述言語：組合せ回路

Hardware Description Language: Combinational Circuit

吉瀬 謙二 情報工学系
Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp www.arch.cs.titech.ac.jp/lecture/CLD/
Zoom
月曜日 3-4時限 10:45-12:25, 木曜日 1-2時限8:50-10:30, 3-4時限10:45-12:25

Course number: CSC.T341

33Ver. 2022-04-14a

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Sample Verilog HDL code

• ACRi Room にログインする．

• /home/tu_kise/cld/lec2/ にサンプルコードがあるので、自分のデ
ィレクトリにコピーする．

• code001.v をシミュレーションする．

$ cd

$ mkdir cld

$ cd cld

$ cp /home/tu_kise/cld/lec2/* .

$ iverilog code001.v

$./a.out

34

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code001.v

• モジュールの定義はキーワードmoduleからキーワードendmoduleまで．

• moduleの後にモジュール名を書く．この例ではmainがモジュール名．

• モジュール名の後の括弧内に入出力の端子名を列挙する．ここでは端子は何も定義して
いない．

• セミコロン(;)で，モジュール名と端子の列挙を終える．

• キーワードinitialにより，シミュレーション開始時（時刻0）に一度だけ実行されることを指
定する．

• $display または $write はシステムタスクの１つで，メッセージを出力する． $write で
は改行されない．書式はC言語のprintfと同様．

35

hello, world

Verilog HDL code (code001.v) Simulation output

Verilog HDLのコードは青色で，シミュレーションの出力は黄色で示す．

module main ();

initial $display("hello, world");

endmodule

スライドPDFからコピーすると正しく動作しないことがあるので，コードはサポートページを参照してください．

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code002.v

• main.vをcode002.vの内容となるように入力して，シミュレーションする．

• ２つのシステムタスク$displayを用いた出力の例．２つのシステムタスクをブロックとしてまと
めている．

• ブロックはキーワードbeginで始まり，キーワードendで終わる．C言語の { } に対応．

• code002_ng1.vは２番目の$displayがinitialブロックに含まれないので文法エラーとなる．

36

module main ();
initial begin
$display("hello, world");
$display("in Verilog HDL");

end
endmodule

hello, world
in Verilog HDL

module main ();
initial $display("hello, world");
$display("in Verilog HDL");

endmodule

code002.v

code002_ng.v

スライドPDFからコピーすると正しく動作しないことがあるので，コードはサポートページを参照してください．

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code003.v

• main.vをcode003.vの内容となるように入力して，シミュレーションする．

• モジュール内で複数のinitialを用いても良い．
code002.vとcode003.vの出力は同じ．

37

module main ();
initial begin
$display("hello, world");
$display("in Verilog HDL");

end
endmodule

hello, world
in Verilog HDL

module main ();
initial $display("hello, world");
initial $display("in Verilog HDL");

endmodule

code002.v

code003.v

hello, world
in Verilog HDL

スライドPDFからコピーすると正しく動作しないことがあるので，コードはサポートページを参照してください．

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code005.v

38

• main.vをcode005.vの内容となるように入力して，シミュレーションする．

• 指定した時間が経過するまで待たせる命令# を用いた例．

• #200 により，ここではシミュレーション開始時（時刻0）から200だけ時間が経過した時刻
200に hello, world を表示する．

• #100 により，ここではシミュレーション開始時（時刻0）から100だけ時間が経過した時刻
100に in Verilog HDL を表示する．

• 1行目はコメント，Verilog HDLのコメントはC, C++と同様．

/* sample Verilog code */
module main ();
initial #200 $display("hello, world");
initial #100 $display("in Verilog HDL");

endmodule

code005.v

in Verilog HDL
hello, world

スライドPDFからコピーすると正しく動作しないことがあるので，コードはサポートページを参照してください．

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code006.v

39

• main.vをcode006.vの内容となるように入力して，シミュレーションする．

• $displayによる出力の順番はどうなるか？

module main ();
initial #200 $display("hello, world");
initial begin
#100 $display("in Verilog HDL");
#150 $display("When am I displayed?");

end
endmodule

code006.v

スライドPDFからコピーすると正しく動作しないことがあるので，コードはサポートページを参照してください．

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code007.v

40

• main.vをcode007.vの内容となるように入力して，シミュレーションする．

• 出力はどうなるか？

• Vivadoを用いてシミュレーションする場合，デフォルトの設定では1000nsしかシミュレーシ
ョンしないので Verilog is easy? は出力されない．

module main ();
initial #200 $display("hello, world");
initial begin
#100 $display("in Verilog HDL");
#150 $display("When am I displayed?");
#1000 $display("Verilog is easy?");

end
endmodule

code007.v

スライドPDFからコピーすると正しく動作しないことがあるので，コードはサポートページを参照してください．

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code008.v

41

• main.vをcode008.vの内容となるように入力して，シミュレーションする．

• システムタスク$timeは，64ビットのシミュレーション時刻を返す．

• このコードでは，それぞれの $display が表示する時刻を表示する．

• 複雑な回路のシミュレーションでは，どの出力がどの時刻に出力されたのかわかりにくい場
合がある．その場合，この例のように時刻を出力すると良い．

module main ();
initial #200 $display("%3d hello, world", $time);
initial begin

#100 $display("%3d in Verilog HDL", $time);
#150 $display("%3d When am I displayed?", $time);

end
endmodule

code008.v

100 in Verilog HDL
200 hello, world
250 When am I displayed?

スライドPDFからコピーすると正しく動作しないことがあるので，コードはサポートページを参照してください．

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code009.v

42

• main.vをcode009.vの内容となるように入力して，シミュレーションする．

• システムタスク$finishは，シミュレーションを終了させる．

• このコードでは時刻210でシミュレーションが終了する．

• Vivadoのデフォルトの設定では1000nsシミュレーションするが，それより短い時間のシミュ
レーションや，ある条件でシミュレーションを終了させたい場合等に用いると良い．

module main ();
initial #200 $display("%3d hello, world", $time);
initial begin

#100 $display("%3d in Verilog HDL", $time);
#150 $display("%3d When am I displayed?", $time);

end
initial #210 $finish;

endmodule

code009.v

100 in Verilog HDL
200 hello, world

スライドPDFからコピーすると正しく動作しないことがあるので，コードはサポートページを参照してください．

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code011.v

• reg型の信号a, bを宣言する．reg型はC言語の変数に相当する．

• wire型の信号cを宣言する．wire型はハードウェア記述言語に固有のもの．

• 継続的代入assign は，wire型の信号cをa & bに接続する．initialブロックやalways@ブロックの外に
記述する．

• & はANDの論理演算子．

• always@ブロックは，@以降に書かれた事象が発生するたびに繰り返し実行される．always@(*) で
は，何らかの入力が変化した事象となる．

• initialブロックの中の <= はノンブロッキング代入と呼ばれ，reg型の信号への代入を表す． a <= 0; は
reg型の信号aへの値0の代入を表す．wire型にノンブロッキング代入は使えない．

43

11: 0 0 -> 0
21: 0 1 -> 0
31: 1 0 -> 0
41: 1 1 -> 1

Simulation output

module main ();
reg a, b;
wire c;
assign c = a & b;

initial begin
#10 a <= 0; b <= 0;
#10 a <= 0; b <= 1;
#10 a <= 1; b <= 0;
#10 a <= 1; b <= 1;

end
always@(*) #1 $display("%2d: %d %d -> %d", $time, a, b, c);

endmodule

code011.v

c
a

b

AND gate

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code012.v

• | はORの論理演算子．

• 論理演算子には，単項演算子の ~ (NOT), 2項演算子として & (AND), | (OR),
^ (EXOR)がある．

• 算術演算子には，+ (加算), - (減算), * (乗算), / (除算), % (剰余)がある．

• これらの論理演算子，算術演算子はC言語と同じ．

44

11: 0 0 -> 0
21: 0 1 -> 1
31: 1 0 -> 1
41: 1 1 -> 1

Simulation output

module main ();
reg a, b;
wire c;
assign c = a | b;

initial begin
#10 a <= 0; b <= 0;
#10 a <= 0; b <= 1;
#10 a <= 1; b <= 0;
#10 a <= 1; b <= 1;

end
always@(*) #1 $display("%2d: %d %d -> %d", $time, a, b, c);

endmodule

code012.v

c
a

b

OR gate

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code013.v

• wire dはどこにも接続されていない．シミュレーション結果は？

• 信号線の取り得る値には，0, 1, x, z がある． xは不定値を，zはハイインピーダンスを表す．

• どこにも接続されていないwire, あるいは明示的にハイインピーダンスに設定されたwireはzと
なる．

• 初期化されていないreg型の信号や，不定値を用いた演算結果などはxとなる．

• 意図的にx, zとしていないのにx, zが出力される場合，コードに記述ミスがあることが多いので
，コードの記述を見直すと良い．

• code012.v の | の部分を他の論理演算子や算術演算子に変更してシミュレーションすること．

45

11: 0 x -> x z
21: 0 1 -> 1 z
31: 1 0 -> 1 z
41: 1 1 -> 1 z

Simulation output

module main ();
reg a, b;
wire c, d;
assign c = a | b;

initial begin
#10 a <= 0;
#10 a <= 0; b <= 1;
#10 a <= 1; b <= 0;
#10 a <= 1; b <= 1;

end
always@(*) #1 $display("%2d: %d %d -> %d %d", $time, a, b, c, d);

endmodule

code013.v

c
a

b

OR gate

d

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code014.v

• Verilog HDLでは，2本以上の信号線の束をバス(bus)と呼ぶ．

• reg型，wire型の信号線をバスとして宣言するには，reg, wire の後に [3:0] の様に本数を指定する．
例えば reg [3:0] a は，a[3], a[2], a[1], a[0]の4本から成るバスを宣言する．

• code014.v では，4ビット幅のバスとしてreg型a, bを，4ビット幅のバスとしてwire型cを宣言する．

• 数値を表現するためには，’（シングルクォーテーション）より前の数字がビット幅を表し，’の後のbが2
進法であることを表す（その他，16進法h, 10進法d, 8進法oがある）．例えば，4’b1010 は2進法で示さ
れた4ビットの1010となる．数値の表現では大文字，小文字は区別されない．4’b1010 と 4’B1010 と
4’hAは同じ値となる．
ビット幅を省略すると32ビットとなる．基数を指定しないと10進法となる．

• システムタスク$displayでは，2進法で表示するための %b が利用できる．

46

11: 1010 1100 -> 1110

Simulation output

module main ();
reg [3:0] a, b;
wire [3:0] c;
assign c = a | b;

initial begin
#10 a <= 4’b1010; b <= 4’b1100;

end
always@(*) #1 $display("%2d: %b %b -> %b", $time, a, b, c);

endmodule

code014.v

c
a

b

OR gate

4
4

4

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code015.v

• Multiplexer（マルチプレクサ）のVerilog HDL記述を考える．

• sが0であればaを出力として，sが1であればbを出力とする回路．

47

11: 0 0 0 -> 0
21: 0 0 1 -> 0
31: 0 1 0 -> 1
41: 0 1 1 -> 1
51: 1 0 0 -> 0
61: 1 0 1 -> 1
71: 1 1 0 -> 0
81: 1 1 1 -> 1

Simulation output

module main ();
reg a, b, s;
wire c;
assign c = (a & ~s) | (s & b);
initial begin

#10 s <= 0; a <= 0; b <= 0;
#10 s <= 0; a <= 0; b <= 1;
#10 s <= 0; a <= 1; b <= 0;
#10 s <= 0; a <= 1; b <= 1;
#10 s <= 1; a <= 0; b <= 0;
#10 s <= 1; a <= 0; b <= 1;
#10 s <= 1; a <= 1; b <= 0;
#10 s <= 1; a <= 1; b <= 1;

end
always@(*) #1 $display("%2d: %d %d %d -> %b", $time, s, a, b, c);

endmodule

code015.v

c

a

b

s

s
a

b

c

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code016.v

• マルチプレクサのVerilog HDL記述を考える．

• 3項演算子の条件演算子 (? :) を使っても同じ結果になる．この記述の方が簡潔でわ
かりやすい．

48

11: 0 0 0 -> 0
21: 0 0 1 -> 0
31: 0 1 0 -> 1
41: 0 1 1 -> 1
51: 1 0 0 -> 0
61: 1 0 1 -> 1
71: 1 1 0 -> 0
81: 1 1 1 -> 1

Simulation output

module main ();
reg a, b, s;
wire c;
assign c = s ? b : a;
initial begin

#10 s <= 0; a <= 0; b <= 0;
#10 s <= 0; a <= 0; b <= 1;
#10 s <= 0; a <= 1; b <= 0;
#10 s <= 0; a <= 1; b <= 1;
#10 s <= 1; a <= 0; b <= 0;
#10 s <= 1; a <= 0; b <= 1;
#10 s <= 1; a <= 1; b <= 0;
#10 s <= 1; a <= 1; b <= 1;

end
always@(*) #1 $display("%2d: %d %d %d -> %b", $time, s, a, b, c);

endmodule

code016.v

c

a

b

s

s
a

b

c

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code017.v

• モジュールをインスタンス化する例を示す．

• モジュール名とインスタンス名を記述して，その後に入出力端子名を列挙する．C言語の関数呼び
出しに似ている．この例では m_mux というモジュール名のインスタンスm_mux0 を生成する．

49

11: 0 0 0 -> 0
21: 0 0 1 -> 0
31: 0 1 0 -> 1
41: 0 1 1 -> 1
51: 1 0 0 -> 0
61: 1 0 1 -> 1
71: 1 1 0 -> 0
81: 1 1 1 -> 1

Simulation output

module m_top ();
reg a, b, s;
wire c;
initial begin

#10 s <= 0; a <= 0; b <= 0;
#10 s <= 0; a <= 0; b <= 1;
#10 s <= 0; a <= 1; b <= 0;
#10 s <= 0; a <= 1; b <= 1;
#10 s <= 1; a <= 0; b <= 0;
#10 s <= 1; a <= 0; b <= 1;
#10 s <= 1; a <= 1; b <= 0;
#10 s <= 1; a <= 1; b <= 1;

end
always@(*) #1 $display("%2d: %d %d %d -> %b", $time, s, a, b, c);
m_mux m_mux0 (a, b, s, c);

endmodule

module m_mux (a, b, s, c);
input wire a, b, s;
output wire c;
assign c = s ? b : a;

endmodule

code017.v

c

a

b

s

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code010.v

50

• main.vをcode010.vの内容となるように入力して，シミュレーションする．

• 整数integerとforループを用いた温度変換プログラムの例．

• 整数型のfahr, celsiusを定義．

• C言語の様に演算子++は使えない．fahr++ という記述はエラーとなるので注意．

module main ();
integer fahr, celsius;
initial begin
for (fahr = 0; fahr <= 300; fahr = fahr + 20) begin
celsius = 5*(fahr-32) / 9;
$display("%3d %6d", fahr, celsius);

end
end

endmodule

code010.v 0 -17
20 -6
40 4
60 15
80 26
100 37
120 48
140 60
160 71
180 82
200 93
220 104
240 115
260 126
280 137
300 148スライドPDFからコピーすると正しく動作しないことがあるので，コードはサポートページを参照してください．

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Some rules for following lectures and exercises

• モジュールの名前には m_ から始まる名前を使う．wire型の信号の名前には w_ から始ま
る名前を使う．reg型の名前には r_ から始まる名前を使う．

• シミュレーションの最上位のモジュール（トップモジュール）には m_top という名前を使う．

• $display などのシステムタスクは m_top の中でしか用いてはいけない．

• 論理合成のトップモジュールには m_main という名前を使う．

• Nameという名前のモジュールのインスタンス名には Nameに数字を付加した名前を使う．

module m_top ();
reg r_a, r_b, r_s;
wire w_c;
initial begin

#10 r_s <= 0; r_a <= 0; r_b <= 0;
#10 r_s <= 0; r_a <= 0; r_b <= 1;

end
always@(*) #1 $display("%2d: %d %d %d -> %b", $time, r_s, r_a, r_b, w_c);
m_mux m_mux0 (r_a, r_b, r_s, w_c);

endmodule

module m_mux (w_a, w_b, w_s, w_c);
input wire w_a, w_b, w_s;
output wire w_c;
assign w_c = w_s ? w_b : w_a;

endmodule

ルールを適用したVerilog HDL記述の例

51

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code018.v

• 0～9を表示する seven-segment LED decoder の例を示す．

• 場合分けの処理を記述するための case文 がある．記述はC言語と同様．

• モジュールm_7segledでは，入力の値により，点灯させるLEDのビットを１とする．

• r_led の MSBから，LEDのabcdefgのセグメントを割り当てる．

52

module m_7segled (w_in, r_led);
input wire [3:0] w_in;
output reg [6:0] r_led;
always @(*) begin

case (w_in)
4'd0 : r_led <= 7'b1111110;
4'd1 : r_led <= 7'b0110000;
4'd2 : r_led <= 7'b1101101;
4'd3 : r_led <= 7'b1111001;
4'd4 : r_led <= 7'b0110011;
4'd5 : r_led <= 7'b1011011;
4'd6 : r_led <= 7'b1011111;
4'd7 : r_led <= 7'b1110000;
4'd8 : r_led <= 7'b1111111;
4'd9 : r_led <= 7'b1111011;
default: r_led <= 7'b0000000;

endcase
end

endmodule

code018.v

module m_top ();
reg [3:0] r_in;
wire [6:0] w_led;
integer i;
initial
for (i=0; i<=15; i=i+1) begin r_in <= i; #10; end

initial $display(" abcdefg");
always@(*) #1 $display(" %x -> %b", r_in, w_led);

m_7segled m_7segled0 (r_in, w_led);
endmodule

abcdefg
0 -> 1111110
1 -> 0110000
2 -> 1101101
3 -> 1111001
4 -> 0110011
5 -> 1011011
6 -> 1011111
7 -> 1110000
8 -> 1111111
9 -> 1111011
a -> 0000000
b -> 0000000
c -> 0000000
d -> 0000000
e -> 0000000
f -> 0000000

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code019.v

• Seven-segment LED decoder の別の例を示す．

• 関係演算子(==)は等しい時に1’b1となり，そうでなければ1’b0となる．

• code019.v ではreg型は使っていない．このため，m_7segled からは組合せ回路が合成される．

• code018.v の m_7segled から，組合せ回路が合成されるか？順序回路が合成されるか？

• reg型の信号が常にレジスタに合成されるという訳ではない．

53

module m_7segled (w_in, w_led);
input wire [3:0] w_in;
output wire [6:0] w_led;

assign w_led = (w_in==4'd0) ? 7'b1111110 :
(w_in==4'd1) ? 7'b0110000 :
(w_in==4'd2) ? 7'b1101101 :
(w_in==4'd3) ? 7'b1111001 :
(w_in==4'd4) ? 7'b0110011 :
(w_in==4'd5) ? 7'b1011011 :
(w_in==4'd6) ? 7'b1011111 :
(w_in==4'd7) ? 7'b1110000 :
(w_in==4'd8) ? 7'b1111111 :
(w_in==4'd9) ? 7'b1111011 :
7'b0000000;

endmodule

code019.v （m_topの記述はcode18.vと同じ）

abcdefg
0 -> 1111110
1 -> 0110000
2 -> 1101101
3 -> 1111001
4 -> 0110011
5 -> 1011011
6 -> 1011111
7 -> 1110000
8 -> 1111111
9 -> 1111011
a -> 0000000
b -> 0000000
c -> 0000000
d -> 0000000
e -> 0000000
f -> 0000000

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code020.v

• Seven-segment LED decoder の別の例を示す．

• code020.v の m_7segled から，組合せ回路が合成されるか？順序回路が合成されるか？

• w_in が 4’ha の時に，どうして 7’b1111011 が出力されるのか？

54

module m_7segled (w_in, r_led);
input wire [3:0] w_in;
output reg [6:0] r_led;
always @(*) begin
case (w_in)

4'd0 : r_led <= 7'b1111110;
4'd1 : r_led <= 7'b0110000;
4'd2 : r_led <= 7'b1101101;
4'd3 : r_led <= 7'b1111001;
4'd4 : r_led <= 7'b0110011;
4'd5 : r_led <= 7'b1011011;
4'd6 : r_led <= 7'b1011111;
4'd7 : r_led <= 7'b1110000;
4'd8 : r_led <= 7'b1111111;
4'd9 : r_led <= 7'b1111011;
default: r_led <= 7'b0000000;

endcase
end

endmodule

code018.v

abcdefg
0 -> 1111110
1 -> 0110000
2 -> 1101101
3 -> 1111001
4 -> 0110011
5 -> 1011011
6 -> 1011111
7 -> 1110000
8 -> 1111111
9 -> 1111011
a -> 0000000
b -> 0000000
c -> 0000000
d -> 0000000
e -> 0000000
f -> 0000000

module m_7segled (w_in, r_led);
input wire [3:0] w_in;
output reg [6:0] r_led;
always @(*) begin
case (w_in)

4'd0 : r_led <= 7'b1111110;
4'd1 : r_led <= 7'b0110000;
4'd2 : r_led <= 7'b1101101;
4'd3 : r_led <= 7'b1111001;
4'd4 : r_led <= 7'b0110011;
4'd5 : r_led <= 7'b1011011;
4'd6 : r_led <= 7'b1011111;
4'd7 : r_led <= 7'b1110000;
4'd8 : r_led <= 7'b1111111;
4'd9 : r_led <= 7'b1111011;

endcase
end

endmodule

code020.v

abcdefg
0 -> 1111110
1 -> 0110000
2 -> 1101101
3 -> 1111001
4 -> 0110011
5 -> 1011011
6 -> 1011111
7 -> 1110000
8 -> 1111111
9 -> 1111011
a -> 1111011
b -> 1111011
c -> 1111011
d -> 1111011
e -> 1111011
f -> 1111011

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code021.v

• Seven-segment LED decoder の別の例を示す．

• case文ではなく， if文 (if else) を用いて記述することもできる．

• code18.v と code21.v は同じ出力となる．

55

module m_7segled (w_in, r_led);
input wire [3:0] w_in;
output reg [6:0] r_led;
always @(*) begin
case (w_in)

4'd0 : r_led <= 7'b1111110;
4'd1 : r_led <= 7'b0110000;
4'd2 : r_led <= 7'b1101101;
4'd3 : r_led <= 7'b1111001;
4'd4 : r_led <= 7'b0110011;
4'd5 : r_led <= 7'b1011011;
4'd6 : r_led <= 7'b1011111;
4'd7 : r_led <= 7'b1110000;
4'd8 : r_led <= 7'b1111111;
4'd9 : r_led <= 7'b1111011;
default: r_led <= 7'b0000000;

endcase
end

endmodule

code018.v

module m_7segled (w_in, r_led);
input wire [3:0] w_in;
output reg [6:0] r_led;
always @(*) begin
if (w_in==4'd0) r_led <= 7'b1111110;
else if (w_in==4'd1) r_led <= 7'b0110000;
else if (w_in==4'd2) r_led <= 7'b1101101;
else if (w_in==4'd3) r_led <= 7'b1111001;
else if (w_in==4'd4) r_led <= 7'b0110011;
else if (w_in==4'd5) r_led <= 7'b1011011;
else if (w_in==4'd6) r_led <= 7'b1011111;
else if (w_in==4'd7) r_led <= 7'b1110000;
else if (w_in==4'd8) r_led <= 7'b1111111;
else if (w_in==4'd9) r_led <= 7'b1111011;
else r_led <= 7'b0000000;

end
endmodule

code021.v

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code022.v

• ビット選択の例を示す．バスは多ビットの束で表現されるので，バスから選択するビットの範
囲を指定する．MIPSアーキテクチャの機械命令で用いられるI形式の命令から各フィールド
を選択する例．

56

module m_top ();
reg [31:0] r_ir = 32'h1464fffe;
wire [5:0] w_op;
wire [4:0] w_rs;
wire [4:0] w_rt;
wire [15:0] w_imm;
initial begin
#1 $display(" %x -> %x %x %x %x", r_ir, w_op, w_rs, w_rt, w_imm);
$display(" %b -> ", r_ir);
$display(" %b %b %b %b", w_op, w_rs, w_rt, w_imm);

end
m_decode m_decode0 (r_ir, w_op, w_rs, w_rt, w_imm);

endmodule

module m_decode (w_ir, w_op, w_rs, w_rt, w_imm);
input wire [31:0] w_ir;
output wire [5:0] w_op;
output wire [4:0] w_rs;
output wire [4:0] w_rt;
output wire [15:0] w_imm;
assign w_op = w_ir[31:26];
assign w_rs = w_ir[25:21];
assign w_rt = w_ir[20:16];
assign w_imm = w_ir[15:0];

endmodule code022.v

1464fffe -> 05 03 04 fffe
00010100011001001111111111111110 ->
000101 00011 00100 1111111111111110

Simulation output

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code023.v

• ビットの連結 (concatenation) の例を示す．

• 連結演算子 ({ } ，波括弧 curly brackets) は，幾つかの信号を連結してビット長の大きい１つのバスに
できる．4ビットの信号 w_a, w_b を連結するには {w_a, w_b} と記述する．4ビットの信号 w_a, w_b,
w_c を連結するには {w_a, w_b, w_c} と記述する．

• ある信号を複製してビット長の大きい１つのバスにできる．例えば，4ビットの信号 w_a を3回複製して連
結するには {3{w_a}} と記述する．例えば，{4{w_a}} と {w_a, w_a, w_a, w_a} は同じビット列となる．

• 最後の例で示した下位ビットのMSBを複製して上位ビットを補填する操作は，2の補数で表現された符号
付きの整数を符号拡張する際に用いられる．後の講義で解説する．

57

module m_top ();
reg [3:0] r_a = 4'b1001;
reg [3:0] r_b = 4'b0101;
reg [3:0] r_c = 4'b1111;
initial #1 begin
$display("%b", {r_a, r_b});
$display("%b", {r_a, r_b, r_c});
$display("%b", {2{r_a}});
$display("%b", {3{r_a}});
$display("%b", {4{r_a}});
$display("%b", {{4{r_a[3]}}, r_a});
$display("%b", {{4{r_b[3]}}, r_b});

end
endmodule

code023.v

10010101
100101011111
10011001
100110011001
1001100110011001
11111001
00000101

Simulation output

w_bの値を赤色で強調した．

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code024.v

• 関係演算子 (>, <, >=, <=, ==, !=) の例を示す．

• 例えば，w_a >= w_b は，w_a の値が w_b の値以上であれば 1’b1，そうでなければ 1’b0 となる．

• C言語と同様．

• ノンブロッキング代入の演算子 <= と 関係演算子 <= は同じ記述だが，文法的に区別できる．
この演習では (w_a >= w_b) の様に，関係演算子の比較の前後に () を追加して明示的に区別す
る．

58

module m_top ();
reg [3:0] r_a = 4'd7;
reg [3:0] r_b = 4'd8;
initial #1 begin
$display("%b", (r_a> r_b));
$display("%b", (r_a< r_b));
$display("%b", (r_a>=r_b));
$display("%b", (r_a<=r_b));
$display("%b", (r_a==r_b));
$display("%b", (r_a!=r_b));

end
endmodule

code024.v

0
1
0
1
0
1

Simulation output

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code025.v

• 論理シフト演算 (>>, <<) の例を示す．算術シフトについては別の演習で．

• C言語と同様．

• 例えば，w_a << 3 は，w_a の値を左に3ビット移動させ，下位の3ビットは0となる．同様
に，w_b >> 2 では，w_bの値を右に2ビット移動させ，上位の2ビットは0となる．

• 論理シフト演算では，シフトさせるビット数としてワイヤ型やレジスタ型の信号を用いても
よい．

59

module m_top ();
reg [7:0] r_a = 8'b11110101;
reg [2:0] r_s = 3'd3;
initial #1 begin
$display("%b", (r_a>>0));
$display("%b", (r_a>>1));
$display("%b", (r_a<<1));
$display("%b", (r_a>>r_s));
$display("%b", (r_a<<r_s));

end
endmodule

code025.v

11110101
01111010
11101010
00011110
10101000

Simulation output

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code026.v

60

• リダクション演算子(&, |, ^) の例．
例えば ^ はバスの全てのビットの排他的論理和となる．コメントを参照．

module m_top ();
reg [4:0] r_btn;
wire [2:0] w_led;
initial begin

#10 r_btn <= 5’b00000;
#10 r_btn <= 5’b11111;
#10 r_btn <= 5’b00010;

end
always@(*) #1 $display(" %b -> %b", r_btn, w_led);
m_main m_main0 (r_btn, w_led);

endmodule

module m_main (w_btn, w_led);
input wire [4:0] w_btn;
output wire [2:0] w_led;
assign w_led[0] = &w_btn; // same as w_btn[0] & w_btn[1] & w_btn[2] & w_btn[3] & w_btn[4]
assign w_led[1] = |w_btn; // same as w_btn[0] | w_btn[1] | w_btn[2] | w_btn[3] | w_btn[4]
assign w_led[2] = ^w_btn; // same as w_btn[0] ^ w_btn[1] ^ w_btn[2] ^ w_btn[3] ^ w_btn[4]

endmodule

code026.v

コンピュータ論理設計
Computer Logic Design

3. ハードウェア記述言語：順序回路

Hardware Description Language: Sequential Circuit

吉瀬 謙二 情報工学系
Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp www.arch.cs.titech.ac.jp/lecture/CLD/

Course number: CSC.T341

61Ver. 2020-08-27_1

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code051.v

• シミュレーションのためのクロックの記述例を示す．

• forever文は，続くブロックの処理を無限に繰り返す．この例では，reg型の信号r_clkを開始時に
0に初期化し，#50の後にr_clkの値の反転を繰り返す．

• 波形を確認することで、クロック周波数10MHz（クロック周期100ns）のクロックが生成されているこ
とがわかる．

62

`timescale 1ns/100ps
module m_top ();
reg r_clk=0;
initial forever #50 r_clk = ~r_clk;

always@(*) $write("%3d %d¥n", $time, r_clk);
initial #800 $finish;

initial $dumpfile("main.vcd"); /* file name for GTKWave */
initial $dumpvars(0, m_top); /* module for GTKWave */

endmodule

code051.v
0 0

50 1
100 0
150 1
200 0
250 1
300 0
350 1
400 0
450 1
500 0
550 1
600 0
650 1
700 0
750 1
800 0

Simulation output

Waveform
of GTKwave

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code052.v

• 単純な2ビットカウンタの記述例を示す．

• クロック信号 w_clk の立ち上がりの時 (posedge w_clk) に
，1インクリメントする．ただし、最初の値を 0 とする。

• 2ビットカウンタなので，最大値3の次は0となる点に注意．

• iverilogでシミュレーションし，GTKWaveで波形を確認する．

63

`timescale 1ns/100ps
module m_top ();
reg r_clk=0;
initial forever #50 r_clk = ~r_clk;
wire [1:0] w_cnt;
m_main m_main0 (r_clk, w_cnt);
initial $dumpfile("main.vcd");
initial $dumpvars(0, m_main0);
initial #1000 $finish;

endmodule

module m_main (w_clk, w_cnt);
input wire w_clk;
output wire [1:0] w_cnt;

reg [1:0] r_cnt = 0;
always@(posedge w_clk) begin

r_cnt <= #5 r_cnt + 1;
end
assign w_cnt = r_cnt;

endmodule

code052.v

Waveform

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code053.v

• 単純な2ビットカウンタの別の記述例を示す．

• クロック信号 w_clk の立ち上がりの時 (posedge w_clk) に
，1インクリメントする．ただし、最初の値を 0 とする。

• 2ビットカウンタなので，最大値3の次は0となる点に注意．

• iverilogでシミュレーションし，GTKWaveで波形を確認する．

64

`timescale 1ns/100ps
module m_top ();
reg r_clk=0;
initial forever #50 r_clk = ~r_clk;
wire [1:0] w_cnt;
m_main m_main0 (r_clk, w_cnt);
initial $dumpfile("main.vcd");
initial $dumpvars(0, m_main0);
initial #1000 $finish;

endmodule

module m_main (w_clk, r_cnt);
input wire w_clk;
output reg [1:0] r_cnt;

initial r_cnt = 0;
always@(posedge w_clk) r_cnt <= #5 r_cnt + 1;

endmodule

code053.v

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code054.v

• 同期リセット付き2ビットカウンタの記述例を示す．

• クロック信号 w_clkの立ち上がりの時に，リセット信号 r_rst
が1の時にはカウンタの値はゼロで初期化され，そうでなけれ
ば1インクリメントされる．

• 2ビットカウンタなので，最大値3の次は0となる点に注意．

• iverilogでシミュレーションし，GTKWaveで波形を確認する．

65

`timescale 1ns/100ps
module m_top ();
reg r_clk=0;
initial forever #50 r_clk = ~r_clk;
reg r_rst=1;
initial #230 r_rst=0;
wire [1:0] w_cnt;
m_main m_main0 (r_clk, r_rst, w_cnt);
initial $dumpfile("main.vcd");
initial $dumpvars(0, m_main0);
initial #1000 $finish;

endmodule

module m_main (w_clk, w_rst, w_cnt);
input wire w_clk, w_rst;
output wire [1:0] w_cnt;

reg [1:0] r_cnt;
always@(posedge w_clk) begin
if (w_rst) r_cnt <= 0;
else r_cnt <= #5 r_cnt + 1;

end
assign w_cnt = r_cnt;

endmodule

code054.v

Waveform

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code055.v and code056.v

• 1MHz のクロック信号を入力として、1秒の間隔で 0, 1, 0, 1
と変化させるハードウェアの記述例を示す．LED を点滅させ
る場合などに利用する。

• 補足

• 1MB = 1024 x 1024 B

• 1MHz = 1000 x 1000 Hz

66

`timescale 1ns/100ps
module m_top ();
reg r_clk=0;
initial forever #50 r_clk = ~r_clk;
wire w_out;
m_main m_main0 (r_clk, w_out);
initial $dumpfile("main.vcd");
initial $dumpvars(0, m_main0);
initial #1000 $finish;

endmodule

module m_main (w_clk, r_out);
input wire w_clk;
output reg r_out;

reg [31:0] r_cnt = 0;
always@(posedge w_clk) begin
r_cnt <= (r_cnt==999999) ? 0 : r_cnt +1;

end

initial r_out = 0;
always@(posedge w_clk) begin
r_out <= (r_cnt==0) ? ~r_out : r_out;

end
endmodule

code055.v

module m_main (w_clk, r_out);
input wire w_clk;
output reg r_out;

initial r_out = 0;
reg [31:0] r_cnt = 0;
always@(posedge w_clk) begin
r_cnt <= (r_cnt==999999) ? 0 : r_cnt +1;
r_out <= (r_cnt==0) ? ~r_out : r_out;

end
endmodule

code056.v

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH

Inside code057.v

• 100MHz のクロック信号を入力として、1秒の間隔で 0, 1, 0, 1 と変化させるハードウェアの記述例
を示す．LED を点滅させる場合などに利用する。

• 回路の出力を4ビットのLEDに変更する。

67

module m_main (w_clk, w_led);
input wire w_clk;
output wire [3:0] w_led;

reg r_out = 0;
reg [31:0] r_cnt = 0;
always@(posedge w_clk) begin
r_cnt <= (r_cnt==99999999) ? 0 : r_cnt +1;
r_out <= (r_cnt==0) ? ~r_out : r_out;

end
assign w_led = {r_out, r_out, r_out, r_out};
// vio_0 vio_00(w_clk, w_led[3], w_led[2], w_led[1], w_led[0]);

endmodule

code057.v

CSC.T341 Computer Logic Design, Department of Computer Science, TOKYO TECH 68

