
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

14. Final report

Ver. 2022-02-08aFiscal Year 2021

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936
Mon 14:20-16:00, Thr 14:20-16:00

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Final report

1. Submit your final report describing your answers to
questions 1 - 7 in a PDF file
via E-mail by February 17, 2022

2. Enjoy!

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

1. Academic paper reading

• Select an academic paper from the list below and

• In your own word, describe the problem that the authors try to solve,

• Describe the key idea of the proposal,

• Describe your opinion why the authors could solve the problem
although there may be many researchers try to solve similar
problems.

• List
• Prophet/critic hybrid branch prediction, ISCA’04, 2004

• The V-Way Cache: Demand Based Associativity via Global Replacement, ISCA’05, 2005

• Emulating Optimal Replacement with a Shepherd Cache, MICRO-40, 2008

• A new case for the TAGE branch predictor, MICRO-44, 2011

• Skewed Compressed Caches, MICRO-47, 2014

• Focused Value Prediction, ISCA, 2020

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

2. MIPS assembly programming

• Write MIPS assembly code asm1.s for code1.c in C.

• Write MIPS assembly code asm2.s for code2.c in C.

int sum = 0;
int i, j;
for (i=0; i=<100; i++)

for (j=0; j=<100; j++) sum += (j+i);

int A[200];
int sum = 0;
int i;
for (i=0; i<200; i++) A[i] = i; /* initialize the array */
for (i=1; i<200; i++) A[i] = A[i-1] + A[i]; /* compute */
for (i=0; i<200; i++) sum += A[i]; /* obtain the sum */

code1.c

code2.c

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

3. Pipelined processor

• Design a five stage pipelined scalar processor supporting MIPS
add, addi, lw, sw, and bne instructions in Verilog HDL. Please
download proc08.v from the support page and refer it.
Note that you do not need to implement data forwarding.

• Verify the behavior of designed processor using asm1.s and
asm2.s.
You may insert NOP instructions if necessary.

• The report should include a block diagram, a source code in
Verilog HDL, the description of the changes of the code, and
obtained waveforms of your design.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

4. OoO execution and dynamic scheduling

• Draw the cycle by cycle processing behavior of these 10
instructions

• Modify this dataflow graph and draw another cycle by cycle
processing behavior of the graph having 10 instructions

75

6

8 10

9

3

4

1 2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Instruction window Issue Execute Commit

ROB

Retire

Cycle 1

Instruction window Issue Execute Commit

ROB

Retire

Cycle 2

Instruction window Issue Execute Commit

ROB

Retire

Cycle 3

Instruction window Issue Execute Commit

ROB

Retire

Cycle 4

Instruction window Issue Execute Commit

ROB

Retire

Cycle 5

Instruction window Issue Execute Commit

ROB

Retire

Cycle 6

Instruction window Issue Execute Commit

ROB

Retire

Cycle 7

Instruction window Issue Execute Commit

ROB

Retire

Cycle 8

Instruction window Issue Execute Commit

ROB

Retire

Cycle 9

Instruction window Issue Execute Commit

ROB

Retire

Cycle 10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

5. Parallel programming (The free lunch is over)

• Describe an efficient parallel program for the following sequential
program using LOCK(), UNLOCK() and BARRIER() assuming a shared
memory architecture

• Explain why your cord runs correctly
and why your code is efficient.

#define N 8 /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

void solve () {

int i, done = 0;

while (!done) {

float diff = 0;

for (i=1; i<=N; i++) { /* use A as input */

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

}

for (i=1; i<=N; i++) { /* use B as input */

A[i] = 0.333 * (B[i-1] + B[i] + B[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("| diff=%6.2f¥n", diff); /* for debug */

}

}

int main() {

int i;

for (i=1; i<N-1; i++) A[i] = B[i] = 100+i*i;

solve();

}main02.c

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

6. Building blocks for synchronization

• Fetch-and-increment reads an original value from memory and
increments (adds one to) it in memory atomically

• Implement fetch-and-increment (FAI) using the load-linked/store-
conditional instruction pair

• Refer the discussion of implementing an atomic exchange EXCH

• Implement BARRIER() using FAI

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

7. Cache coherence protocols

• Select your favorite commercial multi-core processor

• Describe the memory organization including caches and
main memory

• cache line size, write policy, write allocate/no-allocate,
direct-mapped/set-associative, the number of caches (L1, L2,
and L3?)

• Describe the cache coherence protocol used there

