Fiscal Year 2021

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

14. Final report

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Kenji Kise, Department of Computer Science
Mon 14:20-16:00, Thr 14:20-16:00 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1



Final report
\

1. Submit your final report describing your answers to
questions 1 - 7 in a PDF file
via E-mail by February 17, 2022

2. Enjoy!

K CSC.T433 Advance d Computer Architecture, Department of Computer Science, TOKYO TECH 2



1. Academic paper reading

« Select an academic paper from the list below and

o List

A

In your own word, describe the problem that the authors try to solve,
Describe the key idea of the proposal,

Describe your opinion why the authors could solve the problem
although there may be many researchers try to solve similar
problems.

Prophet/critic hybrid branch prediction, ISCA'04, 2004

The V-Way Cache: Demand Based Associativity via Global Replacement, ISCA'05, 2005
Emulating Optimal Replacement with a Shepherd Cache, MICRO-40, 2008

A new case for the TAGE branch predictor, MICRO-44, 2011

Skewed Compressed Caches, MICRO-47, 2014

Focused Value Prediction, ISCA, 2020

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3



2. MIPS assembly programming

« Write MIPS assembly code asml.s for codel.c in C.

int sum = 0;
int i, j;
for (i=0; i=<100; i++)
for (j=0; j=<100; j++) sum += (j+i);

codel.c

« Write MIPS assembly code asm2.s for code2.c in C.

int A[200];
int sum = 0;
int i;

for (i=0; i<200; i++) A[i] = 1i; /* initialize the array */
for (i=1; i<200; i++) A[i] = A[i-1] + A[i]; /* compute */
for (i=0; i<200; i++) sum += A[i]; /* obtain the sum */

code2.c

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



3. Pipelined processor X
\

 Design a five stage pipelined scalar processor supporting MIPS
add, addi, lw, sw, and bne instructions in Verilog HDL. Please
download proc08.v from the support page and refer it.
Note that you do not need to implement data forwarding.

 Verify the behavior of designed processor using asml.s and
asme.s.
You may insert NOP instructions if necessary.

« The report should include a block diagram, a source code in
Verilog HDL, the description of the changes of the code, and
obtained waveforms of your design.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5



4. 000 execution and dynamic scheduling X
\

« Draw the cycle by cycle processing behavior of these 10
instructions

* Modify this dataflow graph and draw another cycle by cycle
processing behavior of the graph having 10 instructions

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH



Cycle 1

Cycle 6

Instruction window

Issue

Execute

[ ]
[ ]

Commit

Retire

||
||

Instruction window

Issue

Execute

[ ]
[ ]

Commit

[ ]
[ ]

Retire

||
[

UL

|ROB

Cycle 2

L

|ROB

Cycle 7

Instruction window

Issue

Execute

[ ]
[ ]

Commit

[ ]
[ ]

Retire

||
||

Instruction window

Issue

Execute

[ ]
[ ]

Commit

[ ]
[ ]

Retire

||
[

L

|ROB

Cycle 3

L

|ROB

Cycle 8

Instruction window

Issue

Execute

[ ]
[ ]

Commit

[ ]
[ ]

Retire

||
||

Instruction window

Issue

Execute

[ ]
[ ]

Commit

[ ]
[ ]

Retire

||
||

L

|ROB

Cycle 4

L

|ROB

Cycle 9

Instruction window

Issue

Execute

[ ]
[ ]

Commit

[ ]
[ ]

Retire

||
||

Instruction window

Issue

Execute

[ ]
[ ]

Commit

[ ]
[ ]

Retire

||
[

UL

|ROB

Cycle 5

L

|ROB

Cycle 10

Instruction window

Issue

Execute

[ ]
[ ]

Commit

[ ]
[ ]

Retire

||
||

Instruction window

Issue

Execute

[ ]
[ ]

Commit

[ ]
[ ]

Retire

||
||

[ ]
[ ]
[ ]

|ROB

< [ [ [T1]

[ ]
[ ]
[ ]

|ROB




5. Parallel programming (The free lunch is over)

« Describe an efficient parallel program for the following sequential
program using LOCK(), UNLOCK() and BARRIER() assuming a shared
memory architecture

\

« Explain why your cord runs correctly |#efinen® /7 the nuber of grids %

. . . #define TOL 15.@0 /* tolerance parameter */
and why your code is efficient. Float A[N+2], B[N+2];

void solve () {
int i, done = ©;
while (!done) {
float diff = 0;
for (i=1; i<=N; i++) { /* use A as input */
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
}
for (i=1; i<=N; i++) { /* use B as input */
A[i] = ©.333 * (B[i-1] + B[i] + B[i+1]);
diff = diff + fabsf(B[i] - A[i]);
}
if (diff <TOL) done = 1;
for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);
printf("| diff=%6.2f¥n", diff); /* for debug */
}
}

int main() {
int i;
for (i=1; i<N-1; i++) A[i] = B[i] = 100+i*i;
solve();

) ‘“ﬁ_,;' main®@2.c }




6. Building blocks for synchronization

« Fetch-and-increment reads an original value from memory and
increments (adds one to) it in memory atomically

« Implement fetch-and-increment (FAI) using the load-linked/store-
conditional instruction pair

« Refer the discussion of implementing an atomic exchange EXCH
« Implement BARRIER() using FAT



7. Cache coherence protocols X
\

« Select your favorite commercial multi-core processor
« Describe the memory organization including caches and
main memory

 cache line size, write policy, write allocate/no-allocate,
direct-mapped/set-associative, the number of caches (L1, L2,
and L3?)

+ Describe the cache coherence protocol used there



