Fiscal Year 2021

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

13. Thread Level Parallelism: Memory Consistency

Model
&
www.arcrm(}/\/

Kenji Kise, Department of Computer Science
Mon 14:20-16:00, Thr 14:20-16:00 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Key components of many-core processors

* Main memory and caches

« New issues

memory consistency

* Core
* High-performance superscalar
processor providing a hardware e L e T e L
meChaniSm 1-0 Suppor'T Thr‘ead Caches Caches Caches Caches
sy n C h r‘o n i ZGT io n | ; Infirconnec’rion nef;wor'k . |
Y Y
Main memory (DRAM) I/0

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Orchestration

« LOCK and UNLOCK around critical section
« Lock provides exclusive access to the locked data.
« Set of operations we want to execute atomically

« BARRIER ensures all reach here

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0; /* variable in shared memory */

void solve pp (int pid, int ncores) {
int i, done = ©;
int mymin = 1 + (pid * N/ncores);
int mymax = mymin + N/ncores - 1;
while (!done) {
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]);
}
LOCK();
diff = diff + mydiff;
UNLOCK() ;

BARRIER();

if (diff <TOL) done = 1;

BARRIER();

if (pid==1) diff = ©;

for (i=mymin; i<=mymax; i++) A[i] = B[i];
BARRIER();

= }

Xar—="
D

/* private variables */
/* private variable
/* private variable

*/
*/

These operations must be executed
atomically

(1) load diff
(2) add
(3) store diff

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

Synchronization

* Basic building blocks (instructions) :
« Atomic exchange
« Swaps register with memory location
« Test-and-set
« Sets under condition

« Fetch-and-increment
* Reads original value from memory and increments it in memory

« These requires memory read and write in uninterruptable
instruction

* |oad linked/store conditional

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Implementing an atomic exchange EXCH

\
* Load linked/store conditional instructions X

« If the contents of the memory location specified by the load
linked are changed before the store conditional o the same
address, the store conditional fails

« Store conditional instruction
* it returns 1if it was successful and a O otherwise

« EXCHR4,0(R1) ;exchange R4 and O(R1) atomically

try: ADD R3,R4,R0O 5
LL R2,0(R1) 5
SC R3,0(R1) 5
BEQ R3,R0O,try 5
ADD R4,R2,R0 5

move exchange value, R3<=R4
load linked

store conditional

branch if store fails (R3==3)
put load value in R4, R4<=R2

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Implementing Locks in no coherence

A

« Spin lock
« Rl is the address of the lock variable and its initial value is O (not
locked).
ADDI R2, RO, 1 ; R2 =1
lockit: EXCH R2, O(R1) ; atomic exchange

BNE R2,R0,1lockit ; already locked?

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Implementing Locks using coherence
A
« Spin lock
« Rl is the address of the lock variable and its initial value is O.

« We can cache the lock using the coherence mechanism to maintain
the lock value coherently.

« This code spins by doing read on a local copy of the lock until it
successfully sees that the lock is available (lock variable is 0).

lockit: LD R2, O(R1) ; load of lock
BNE R2,R0,1lockit ; not available-spin if R2==1
ADDI R2,R0O,1 ; load locked value, R2<=1

EXCH R2,0(R1) swap
BNE R2,R0,lockit ; branch if lock wasn’t ©

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

oo

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Implementing Unlocks using coherence x
\

* Unlock

« Just resetting the lock variable

unlock: SW R@,0(R1) ; reset the lock, lock variable <= ©

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Implementing Barriers using coherence
\
« This code counts up the arrived threads using a shared variable counter.

o If all threads increments the variable, the last thread set the shared
variable flag to exit the barrier.

BARRIER(){
LOCK();
if (counter == @) flag = @; /* counter and flag are shared data */
counter = counter + 1; /* increment counter */
mycount = counter; /* mycount is a private variable */
UNLOCK () ;
if (mycount == p) {
counter = 0;
flag = 1;
}
else while (flag == 0); /* wait until all threads reach BARRIER */
}

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

12

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

13

Memory consistency: problem in multi-core context X
\

« Assume that A=0 and Flag=0 initially

« Core1(Cl) writes data into A and sets Flag to tell C2 that data value
can be read (loaded) from A.

« C2 waits till Flag is set and then reads (loads) data from A.
« What is the printed value by C2?

Cl (Core 1) C2 (Core 2)
A = 3; while (Flag==0);
Flag = 1; print A;

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Problem in multi-core context X
\

« If the two writes (stores) of different addresses on C1 can be
reordered, it is possible for C2 to read O from variable A.
« This can happen on most modern processors.

« For single-core processor, Codel and Code?2 are equivalent. These
writes may be reordered by compilers statically or by OoO
execution units dynamically.

« The printed value by C2 will be O or 3.

Codel Code?2
A = 3; Flag = 1;
Flag = 1; A = 3;
Cl (Core 1) C2 (Core 2)
A = 3; while (Flag==0);
Flag = 1; print A;

Af_a'

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

15

Problem in multi-core context \2\%
\

« Assume that A=0 and B=0 initially
 Should be impossible for both outputs to be zero.
* Intuitively, the outputs may be 01, 10, and 11.

Cl (Core 1) C2 (Core 2)
A=1; B =1;
print B; print A;

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Examples
\

« Assume that A=0 and B=0 initially

Cl (Core 1) C2 (Core 2) Cl (Core 1) C2 (Core 2)
A=1,; A=1,;
print B; — ©

B =1,; B =1;

print A;— 1 print A;—/— 1

print B; — ., 1q

The outputs are @1. The outputs are 11.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Problem in multi-core context x
\

« Assume that A=0 and B=0 initially
 Should be impossible for both outputs to be zero.
 Intuitively, the outputs may be 01, 10, and 11.

 This is true only if reads and writes on the same core to
different locations are not reordered by the compiler or
the hardware.

e The outputs may be 01, 10, 11, and OO.

Cl (Core 1) C2 (Core 2)
A=1; B =1;
print B; print A;

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Memory Consistency Models

\
A single-core processor can reorder instructions subject only to 2\%
control and data dependence constraints

* These constraints are not sufficient in shared-memory multi-cores
 simple parallel programs may produce counter-intuitive results

* Question: what constraints must we put on single-core instruction
reordering so that

* shared-memory programming is intuitive
« but we do not lose single-core performance?

» The answers are called memory consistency models supported by
the processor

« Memory consistency models are all about ordering constraints on
independent memory operations in a single-core's instruction stream

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

20

Simple and Intuitive Model: Sequential Consistency X
\

« Sequential consistency (SC) model

Tt constrains all memory operations:
« Worite -> Read
* Write -> Write
« Read -> Read
« Read -> Write
« Simple model for reasoning about parallel programs

* You can verify that the examples considered earlier work
correctly under sequential consistency.

 This simplicity comes at the cost of single-core performance.
« How to implement SC?

« How do we modify sequential consistency model with the
demands of performance?

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Orchestration

« LOCK and UNLOCK around critical section
« Lock provides exclusive access to the locked data.
« Set of operations we want to execute atomically

« BARRIER ensures all reach here

float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0; /* variable in shared memory */

void solve pp (int pid, int ncores) {
int i, done = ©;
int mymin = 1 + (pid * N/ncores);
int mymax = mymin + N/ncores - 1;
while (!done) {
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]);
}
LOCK();
diff = diff + mydiff;
UNLOCK() ;

BARRIER();

if (diff <TOL) done = 1;

BARRIER();

if (pid==1) diff = ©;

for (i=mymin; i<=mymax; i++) A[i] = B[i];
BARRIER();

= }

Xar—="
D

/* private variables */
/* private variable
/* private variable

*/
*/

These operations must be executed
atomically

(1) load diff
(2) add
(3) store diff

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

22

Relaxed consistency model: Weak Consistency X
\

* Programmer specifies regions within which global memory

operations can be reordered
* Processor has fence or sync instruction:

» all data operations before fence in program order must complete

before fence is executed

* all data operations after fence in program order must wait for

fence to complete
 fences are performed in program order

« Example: MIPS has SYNC instruction

* Implementation of SYNC

* a processor may flush all instructions

when a SYNC instruction is retired
Program

execution \

ﬁw Memory operations within a region can be reordered
c

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

y

- - Fence, Sync

- - Fence, Sync

23

Release Consistency Model

 Further relaxation of weak consistency Region \
A fence instruction is divided into "I eire
. . . egion
« Acquire: operation like lock B
. . —_——_————— Release
« Release: operation like unlock Region
Pr‘ogr‘am C
- Semantics of Acquire: execution

* Acquire must complete before all following memory accesses
« Memory operations in region B and C must complete before Acquire
Semantics of Release:

* all memory operations before Region
Release are complete A Acquire
* Memory operations in region A Region | | Region
and B must complete B C
before Release
~ Release

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Memory Consistency Model

\
* Inthe literature, there are a large number of other consistency %%
models

« Sequential Consistency

« Causal Consistency

* Processor Consistency

« Weak Consistency (Weak Ordering)
« Release Consistency

« Entry Consistency

« It isimportant to remember that these are concerned with
reordering of independent memory operations within a single
thread.

« Weak or Release Consistency Models are adequate

~ =
@ 25

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Key components of many-core processors
A
« Interconnection network

* connecting many modules on a chip achieving high throughput
and low latency

* Main memory and caches
« Caches are used to reduce latency and to lower network traffic
A parallel program has private data and shared data
« New issues are cache coherence and memory consistency

* Core

System
* High-performance superscalar
processor providing a hardware e L e T e L
mZChGnism 1-0 SUPPOPT Thr.ead Caches Caches Caches Caches
Sy n C h r'o n i ZGT io n | ; In’zrconnec’rion nef;wor'k . |
v v
Main memory (DRAM) I/0

~ =
! 26

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Putting It All Together

» 18 core
« 2D mesh topology

]

CORE 19

X-series

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Syllabus (3/3)

Course schedule/Required learning

Class 1

Class 2

Class 3

Class 4

Course schedule

Design and Analysis of Computer Systems

Instruction Set Architecture

Memory Hierarchy Design

Pipelining

Required learning

Understand the basic of design and analysis of
computer systems.

Understand the examples of instruction set
architectures

Understand the organization of memary hierarchy
designs

Understand the idea and organization of pipelining

Class 5

Class 6

Class 7

Class 8

Class 2

Class 10

Instruction Level Parzllelism: Concepts and Chellenges

Instruction Level Parzllelism: Instruction Fetch and Branch Preadiction

Instruction Level Parzllelism: Advanced Techniques for Branch Prediction

Instruction Level Parallelism: Dynamic Scheduling

Instruction Level Parzllelism: Expleiting ILP Using Multiple Issue and
Speculation

Instruction Level Parzllelism: Out-of-order Execution and Multithreading

Understand the idea and requirements for exploiting
instruction level parallelism

Understand the organization of instruction fetch and
branch predictions to exploit instruction lavel
parallelism

Understand the advanced techniques for branch
prediction to exploit instruction level parallelism

Understand the dynamic scheduling to exploit
instruction level parallelism

Understand the multiple issue mechanism and
speculation to exploit instruction level parallelism

Understand the out-of-order execution and
multithreading to exploit instruction level parzllelism

Class 11

Class 12

Class 13

Class 14

Multi-Processor: Distributed Memory and Shared Memory Architecture

Thread Level Parzllelism: Coherence and Synchronization

Thread Level Parallelism: Memory Consistency Model

Thread Level Parallelism: Interconnection Network and Man-core
Processors

Understand the distributed memeory and shared
memory architecture for multi-processors

Understand the coherence and synchronization for
thread level parallelism

Understand the memory consistency medel for thread
level parallelism

Understand the interconnection network and many-
core processors for thread level parallelism

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Final report
\
1.

For details of the final report, please visit the lecture support page.
http://www.arch.cs.titech.ac.jp/lecture/ACA

2. Submit your final report in a PDF file via E-mail by February 17, 2022

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

30

