
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

12. Thread Level Parallelism: Coherence and
Synchronization

Ver. 2022-02-02aFiscal Year 2021

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936
Mon 14:20-16:00, Thr 14:20-16:00

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Final report

1. For details of the final report, please visit the lecture support page.
http://www.arch.cs.titech.ac.jp/lecture/ACA

2. Submit your final report in a PDF file via E-mail by February 17, 2022

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Intel Skylake-X, Core i9-7980XE (2017)

• 18 core

• 2D mesh topology

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Bus vs. Networks on Chip (NoC) of mesh topology

Virtual Channel

To mitigate
head-of-line (HOL) blocking

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput
and low latency

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4Proc3

Caches Caches CachesCaches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)

20Tag 10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

What kind of locality are we taking advantage of?

20

Data

32

Hit

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Cache writing policy

• Write-through

• writing is done synchronously both to the cache and to the main
memory. All stores update the main memory.

• Write-back

• initially, writing is done only to the cache. The write to the main
memory is postponed until the modified content is about to be
replaced by another cache block.

• reduces the required network and memory bandwidth.

• Which policy is better for many-core?
System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Cache coherence problem

• Processors (cores) see different values for shared data u after event 3

• With write-back caches, value written back to memory depends on which
cache flushes or writes back value when

• Processes accessing main memory may see stale (out-of-date) value

• Unacceptable for programming, and its frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5

1

u :5

2

u :5

3

u= 7

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Cache coherence problem

• Processors may see different values through their caches

• assuming a write-back cache

• after the value of X has been written by A, A’s cache
contains the new value, but B’s cache and the main memory do
not

11

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Cache coherence and enforcing coherence

• Cache coherence
• All reads by any processor must return the most recently

written value

• Writes to the same location by any two processors are seen
in the same order by all processors

• Cache coherence protocols
• Snooping (write invalidate / write update)

• Each core tracks sharing status of each block

• Directory based
• Sharing status of each block kept in one location

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Snooping coherence protocols using bus network

• Write invalidate
• On write, invalidate all other copies by an invalidate broadcast

• Use bus itself to serialize
• Write cannot complete until bus access is obtained

• Write update

• On write, update all copies

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Snooping coherence protocols using bus network

• A write invalidate, cache coherence protocol for a private write-back cache
showing the states and state transitions for each block in the cache

Modified

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Snooping coherence protocols using bus network

• The coherence mechanism of a private cache

C1

C2

C3

C4

C5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Snooping coherence protocols using bus network

• The coherence mechanism of a private cache

C1

C2

C3

C4

C5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Snooping coherence protocols using bus network

• The coherence mechanism of a private cache

C1

C2

C3

C4

C5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Snooping coherence protocols using bus network

• The coherence mechanism of a private cache

C1

C2

C3

C4

C5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Snooping coherence protocols using bus network

• A write invalidate, cache coherence protocol for a private write-back cache
showing the states and state transitions for each block in the cache

Modified

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Snooping coherence protocols using bus network

• The basic coherence protocol

• MSI (Modified, Shared, Invalid) protocol

• Extensions

• MESI (Modified, Exclusive, Shared, Invalid) protocol

• MOESI (MESI + Owned) protocol

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Directory protocols

• Snooping coherence protocols are based on the use of bus
network.
What are the protocols for mesh topology NoC?

• Directory protocols

• A logically-central directory keeps track of where the copies
of each cache block reside. Caches consult this directory to
ensure coherence.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

Coherence influences the cache miss rate

• Coherence misses

• True sharing misses

• Write to shared block (transmission of invalidation)

• Read

• False sharing misses

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

Sequential version as the baseline

• A sequential program main01.c and the execution result

• Computations in blue color are fully parallel

#define N 8 /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

void solve () {

int i, done = 0;

while (!done) {

float diff = 0;

for (i=1; i<=N; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

for (i=1; i<=N; i++) A[i] = B[i];

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("| diff=%6.2f¥n", diff); /* for debug */

}

}

int main() {

int i;

for (i=1; i<N-1; i++) A[i] = 100+i*i;

solve();

}

0.00 68.26 104.56 109.56 116.55 125.54 86.91 45.29 0.00 0.00 | diff=129.32

0.00 57.55 94.03 110.11 117.10 109.56 85.83 44.02 15.08 0.00 | diff= 55.76

0.00 50.48 87.15 106.97 112.14 104.06 79.72 48.26 19.68 0.00 | diff= 42.50

0.00 45.83 81.45 101.99 107.62 98.54 77.27 49.17 22.63 0.00 | diff= 31.68

0.00 42.38 76.35 96.92 102.61 94.38 74.92 49.64 23.91 0.00 | diff= 26.88

0.00 39.54 71.81 91.87 97.87 90.55 72.91 49.44 24.49 0.00 | diff= 23.80

0.00 37.08 67.67 87.10 93.34 87.02 70.89 48.90 24.62 0.00 | diff= 22.12

0.00 34.88 63.89 82.62 89.06 83.67 68.87 48.09 24.48 0.00 | diff= 21.06

0.00 32.89 60.40 78.44 85.03 80.45 66.81 47.10 24.17 0.00 | diff= 20.26

0.00 31.07 57.19 74.55 81.23 77.35 64.72 45.98 23.73 0.00 | diff= 19.47

0.00 29.39 54.21 70.92 77.63 74.36 62.62 44.77 23.21 0.00 | diff= 18.70

0.00 27.84 51.46 67.52 74.23 71.47 60.52 43.49 22.64 0.00 | diff= 17.95

0.00 26.41 48.89 64.34 71.00 68.67 58.43 42.17 22.02 0.00 | diff= 17.23

0.00 25.07 46.50 61.35 67.94 65.97 56.37 40.84 21.38 0.00 | diff= 16.53

0.00 23.83 44.26 58.54 65.02 63.36 54.34 39.49 20.72 0.00 | diff= 15.85

0.00 22.68 42.17 55.88 62.24 60.85 52.34 38.14 20.05 0.00 | diff= 15.20

0.00 21.59 40.20 53.38 59.60 58.42 50.39 36.81 19.38 0.00 | diff= 14.58

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

+, +, x

A[0] A[9]

i=4

+, +, x

i=8

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

Core 2

Decomposition and assignment

• Single Program Multiple Data (SPMD)

• Decomposition: there are eight tasks to compute B[i]

• Assignment: the first four tasks for core 1, and the last four tasks for core 2

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0; /* variable in shared memory */

void solve_pp (int pid, int ncores) {

int i, done = 0; /* private variables */

int mymin = 1 + (pid * N/ncores); /* private variable */

int mymax = mymin + N/ncores – 1; /* private variable */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

diff = diff + mydiff;

if (diff <TOL) done = 1;

if (pid==1) diff = 0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

}

}

int main() { /* solve this using two cores */

initialize shared data A and B;

create thread1 and call solve_pp(1, 2);

create thread2 and call solve_pp(2, 2);

}

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Decomposition

Assignment

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Core 1

Computation

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

8

Index

Data (4 word)

Index TagValid

0

1

2

.

.

.

253

254

255

Byte
offset

20

20
Tag

Hit Data

32

Block offset

Two caches of different block sizes

20Tag 10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

20

Data

32

Hit

One word/block Four words/block

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

Data cache of single word block (block size is 4byte)

20Tag 10

Index

DataIndex TagValid

0

1

2

.

.

.

1021

122

1023

20

Data

32

Hit

One word/block

A[1]

A[2]
A[3]
A[4]

A[5]

A[6]

A[7]

A[8]

A[0]

A[9]

A[1]

A[2]
A[3]
A[4]

A[5]

A[0]

A[4]

A[5]

A[6]

A[7]

A[8]
A[9]

Core 2Core 1

A[1]

A[2]
A[3]
A[4]

A[5]

A[0]

A[4]

A[5]

A[6]

A[7]

A[8]
A[9]

A[1]

A[2]
A[3]
A[4]

A[5]

A[0]

A[4]

A[5]

A[6]

A[7]

A[8]
A[9]

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30

False sharing
Data cache of four word block (block size is 16byte)

One word/block

A[0], A[1], A[2], A[3]

A[4], A[5], A[6], A[7]

A[8], A[9]

A[0], A[1], A[2], A[3]

A[4], A[5], A[6], A[7] A[4], A[5], A[6], A[7]

A[8], A[9]

A[0], A[1], A[2], A[3]

A[4], A[5], A[6], A[7] A[4], A[5], A[6], A[7]

A[8], A[9]

Core 2Core 1

Core 2

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Core 1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 31

