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Intel Skylake-X, Core i9-7980XE (2017)

• 18 core

• 2D mesh topology
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Bus vs. Networks on Chip (NoC) of mesh topology

Virtual Channel

To mitigate 
head-of-line (HOL) blocking
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Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput 
and low latency 

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware 
mechanism to support thread 
synchronization
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MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)
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Cache writing policy

• Write-through

• writing is done synchronously both to the cache and to the main 
memory. All stores update the main memory.

• Write-back

• initially, writing is done only to the cache. The write to the main 
memory is postponed until the modified content is about to be 
replaced by another cache block.

• reduces the required network and memory bandwidth.

• Which policy is better for many-core?
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Cache coherence problem

• Processors (cores) see different values for shared data u after event 3

• With write-back caches, value written back to memory depends on which 
cache flushes or writes back value when

• Processes accessing main memory may see stale (out-of-date) value

• Unacceptable for programming, and its frequent!

I/O devices
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Cache coherence problem

• Processors may see different values through their caches

• assuming a write-back cache

• after the value of X has been written by A, A’s cache 
contains the new value, but B’s cache and the main memory do 
not

11
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Cache coherence and enforcing coherence

• Cache coherence 
• All reads by any processor must return the most recently 

written value

• Writes to the same location by any two processors are seen 
in the same order by all processors

• Cache coherence protocols
• Snooping (write invalidate / write update)

• Each core tracks sharing status of each block

• Directory based
• Sharing status of each block kept in one location
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Snooping coherence protocols using bus network

• Write invalidate
• On write, invalidate all other copies by an invalidate broadcast

• Use bus itself to serialize
• Write cannot complete until bus access is obtained

• Write update

• On write, update all copies
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Snooping coherence protocols using bus network

• A write invalidate, cache coherence protocol for a private write-back cache 
showing the states and state transitions for each block in the cache

Modified
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Snooping coherence protocols using bus network

• The coherence mechanism of a private cache

C1

C2

C3

C4

C5
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Snooping coherence protocols using bus network

• The coherence mechanism of a private cache
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Snooping coherence protocols using bus network
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Snooping coherence protocols using bus network

• The coherence mechanism of a private cache
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Snooping coherence protocols using bus network

• A write invalidate, cache coherence protocol for a private write-back cache 
showing the states and state transitions for each block in the cache

Modified
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Snooping coherence protocols using bus network

• The basic coherence protocol

• MSI (Modified, Shared, Invalid) protocol

• Extensions

• MESI (Modified, Exclusive, Shared, Invalid) protocol

• MOESI (MESI + Owned) protocol
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Directory protocols

• Snooping coherence protocols are based on the use of bus 
network. 
What are the protocols for mesh topology NoC? 

• Directory protocols

• A logically-central directory keeps track of where the copies 
of each cache block reside. Caches consult this directory to 
ensure coherence.
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Coherence influences the cache miss rate

• Coherence misses

• True sharing misses

• Write to shared block (transmission of invalidation)

• Read

• False sharing misses
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Sequential version as the baseline

• A sequential program main01.c and the execution result

• Computations in blue color are fully parallel

#define N 8      /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

void solve () {

int i, done = 0;

while (!done) {

float diff = 0;

for (i=1; i<=N; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

for (i=1; i<=N; i++) A[i] = B[i];

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("| diff=%6.2f¥n", diff); /* for debug */

}

}

int main() {

int i;

for (i=1; i<N-1; i++) A[i] = 100+i*i;

solve();

}

0.00  68.26 104.56 109.56 116.55 125.54  86.91  45.29   0.00   0.00 | diff=129.32

0.00  57.55  94.03 110.11 117.10 109.56  85.83  44.02  15.08   0.00 | diff= 55.76

0.00  50.48  87.15 106.97 112.14 104.06  79.72  48.26  19.68   0.00 | diff= 42.50

0.00  45.83  81.45 101.99 107.62  98.54  77.27  49.17  22.63   0.00 | diff= 31.68

0.00  42.38  76.35  96.92 102.61  94.38  74.92  49.64  23.91   0.00 | diff= 26.88

0.00  39.54  71.81  91.87  97.87  90.55  72.91  49.44  24.49   0.00 | diff= 23.80

0.00  37.08  67.67  87.10  93.34  87.02  70.89  48.90  24.62   0.00 | diff= 22.12

0.00  34.88  63.89  82.62  89.06  83.67  68.87  48.09  24.48   0.00 | diff= 21.06

0.00  32.89  60.40  78.44  85.03  80.45  66.81  47.10  24.17   0.00 | diff= 20.26

0.00  31.07  57.19  74.55  81.23  77.35  64.72  45.98  23.73   0.00 | diff= 19.47

0.00  29.39  54.21  70.92  77.63  74.36  62.62  44.77  23.21   0.00 | diff= 18.70

0.00  27.84  51.46  67.52  74.23  71.47  60.52  43.49  22.64   0.00 | diff= 17.95

0.00  26.41  48.89  64.34  71.00  68.67  58.43  42.17  22.02   0.00 | diff= 17.23

0.00  25.07  46.50  61.35  67.94  65.97  56.37  40.84  21.38   0.00 | diff= 16.53

0.00  23.83  44.26  58.54  65.02  63.36  54.34  39.49  20.72   0.00 | diff= 15.85

0.00  22.68  42.17  55.88  62.24  60.85  52.34  38.14  20.05   0.00 | diff= 15.20

0.00  21.59  40.20  53.38  59.60  58.42  50.39  36.81  19.38   0.00 | diff= 14.58

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

+, +, x 

A[0] A[9]

i=4

+, +, x 

i=8
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Core 2

Decomposition and assignment

• Single Program Multiple Data (SPMD)

• Decomposition: there are eight tasks to compute B[i]

• Assignment:  the first four tasks for core 1, and the last four tasks for core 2

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0;         /* variable  in shared memory */

void solve_pp (int pid, int ncores) {

int i, done = 0;                    /* private variables */

int mymin = 1 + (pid * N/ncores);   /* private variable  */

int mymax = mymin + N/ncores – 1;   /* private variable  */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

diff = diff + mydiff;

if (diff <TOL) done = 1;

if (pid==1) diff = 0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

}

}

int main() { /* solve this using two cores */

initialize shared data A and B;   

create thread1 and call solve_pp(1, 2);

create thread2 and call solve_pp(2, 2);

}

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Decomposition

Assignment

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Core 1

Computation
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Data cache of single word block (block size is 4byte)
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False sharing 
Data cache of four word block (block size is 16byte)

One word/block

A[0], A[1], A[2], A[3]

A[4], A[5], A[6], A[7]

A[8], A[9]

A[0], A[1], A[2], A[3]

A[4], A[5], A[6], A[7] A[4], A[5], A[6], A[7]

A[8], A[9]

A[0], A[1], A[2], A[3]

A[4], A[5], A[6], A[7] A[4], A[5], A[6], A[7]

A[8], A[9]

Core 2Core 1

Core 2

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Core 1
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