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Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput 
and low latency 

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware 
mechanism to support thread 
synchronization

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core
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A Typical computer System
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Bus, I/O System Interconnect

• A bus is a shared communication link 

1bit data wire

1bit control wire

Bus
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Bus Network

• N processors,  1 switch  (    ),  1 link (the bus)

• Only 1 simultaneous transfer at a time

• NB (best case) = link (bus) bandwidth x 1

• BB (worst case)  = link (bus) bandwidth x 1

• All processors can snoop the bus

Processor node

Bidirectional

network switch
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Performance metrics of interconnection network 

• Network cost
• number of links on a switch to connect to the network (plus 

one link to connect to the processor)

• width in bits per link, length of link

• number of switches

• Network bandwidth (NB) 
• represents the best case

• bandwidth of each link x number of links

• Bisection bandwidth (BB)
• represents the worst case

• divide the machine in two parts, each with half the nodes and 
sum the bandwidth of the links that cross the dividing line
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Ring Network

• N processors, N switches, 2 links/switch, N links

• N simultaneous transfers

• NB (best case) = link bandwidth x N

• BB (worst case) = link bandwidth x 2

• If a link is as fast as a bus, the ring is only twice as fast as 
a bus in the worst case, but is N times faster in the best 
case
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Fat Tree (1)

• Trees are good structures. People in CS use them all the 
time. Suppose we wanted to make a tree network.

• Any time A wants to send to C, it ties up the upper links, so 
that B can't send to D. 

• The bisection bandwidth on a tree is horrible - 1 link, at all 
times

• The solution is to 'thicken' the upper links. 

• More links as the tree gets thicker increases the bisection 
bandwidth

C DA B

N = 4
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Fat Tree

• N processors, log(N-1) x logN switches, 2 up + 4 down = 6 
links/switch, N x logN links

• N simultaneous transfers

• NB = link bandwidth x N log N

• BB = link bandwidth x 4

N = 4 N = 8
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Crossbar (Xbar) Network

• N processors, N2 switches (unidirectional), 2 links/switch, 
N2 links

• N simultaneous transfers

• NB = link bandwidth x N  (best case)

• BB = link bandwidth x N  (worst case)

A symbol of Xbar
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Mesh Network

• N processors, N switches, 4 links/switch, N x (N1/2 – 1) links

• N simultaneous transfers

• NB = link bandwidth x 2N  (best case)

• BB = link bandwidth x 2N1/2  (worst case)

N = 16N = 4
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2D and 3D Mesh / Torus Network

2D Mesh Torus 3D Mesh
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Cell Broadband Engine (2005)

• Cell Broadband Engine (2005)
• 8 core (SPE) + 1 core (PPE)

• each SPE has 256KB memory

• PS3, IBM Roadrunner (12k cores)

Diagram created by IBM to promote the CBEP, ©2005 from WIKIPEDIA

PlayStation3
from PlaySation.com (Japan)

IEEE Micro, Cell Multiprocessor Communication Network: Built for Speed
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Intel Single-Chip Cloud Computer (2009)

• To research multi-core processors and parallel processing.

Intel Single-Chip Cloud Computer (48 Core)
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Intel Xeon Phi (2012)
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Epiphany-V: A 1024 core 64-bit RISC SoC (2016)
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Intel Skylake-X, Core i9-7980XE (2017)

• 18 core

• 2D mesh topology
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Bus vs. Networks on Chip (NoC) of mesh topology

intersection



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Packet organization (Flit encoding)

• A flit (flow control unit or flow control digit) is a link-level 
atomic piece that forms a network packet. 

• A packet has one head flit and some body flits.

• For simplicity, assume that a packet has only one flit.

• Later we see a packet which has some flits.

• Each flit has typical three fields:

• Payload (data)

• Route information

• Virtual channel identifier (VC)

VCRoute infoFlit Payload

Packet (tag + data)
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Packet organization (Flit encoding)

• A flit (flow control unit or flow control digit) is a link-level 
atomic piece that forms a network packet. 

• A packet has one head flit and some body flits.

• Each flit has typical three fields:

• payload(data) or route information(tag)

• flit type : head, body, tail, etc.

• virtual channel identifier

VC Type Route info

VC Type Payload

Head flit

Body flit

Head and body flit formats

Packet (tag + data)

Head flit

Body flit

Body flit

Body flit

Head flit

Body flit

Body flit

Tail  flit
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Routing

• XY dimension order routing (DOR), YX DOR
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Typical NoC architecture of mesh topology

• NoC requirements: low latency, high throughput, low cost

• Packet based data transmission via NoC routers and XY-
dimension order routing
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R: Router
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Simple NoC router architecture

• Routing computation for XY-dimension order
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Packet from 
node (1, 3) to 
node (3, 1)

NoC router
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Simple NoC router architecture

• Buffering and arbitration
• time stamp based, round robin, etc.
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Simple NoC router architecture

• Flow control
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Simple NoC router architecture

• Problem: Head-of-line (HOL) blocking
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Two (physical) networks to mitigate HOL ?

Simple NoC router
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Datapath of Virtual Channel (VC) NoC router

• To mitigate head-of-line (HOL) blocking, virtual channels are used
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Bus vs. Networks on Chip (NoC) of mesh topology

Virtual Channel

To mitigate 
head-of-line (HOL) blocking
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Pipelining the NoC router microarchitecture
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“A Delay Model and Speculative Architecture for Pipelined Routers,” L. S. Peh and W. J. Dally,
Proc. of the 7th Int’l Symposium on High Performance Computer Architecture, January, 2001.
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Bus vs. Networks on Chip (NoC) of mesh topology

FIFO

Packet
(tag + data)

Distributed system

intersection
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Average packet latency of mesh NoCs

• 5 stage router pipeline

• Uniform traffic (destination nodes are selected randomly)

8x8 NoC 64x64 NoC (4096 nodes)

Thiem Van Chu, Myeonggu Kang, Shi FA and Kenji Kise: Enhanced Long Edge First Routing Algorithm and Evaluation in Large-Scale Networks-on-Chip, 
IEEE 11th International Symposium on Embedded Multicore/Many-core Systems-on-Chip, (September 2017).

Saturation
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Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput 
and low latency 

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware 
mechanism to support thread 
synchronization

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches
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Caches
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