
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

10. Multi-Processor: Distributed Memory and
Shared Memory Architecture

Ver. 2022-01-24aFiscal Year 2021

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936
Mon 14:20-16:00, Thr 14:20-16:00

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Instruction
window

Instruction pipeline of OoO execution processor

• Allocating instructions to instruction window is called dispatch

• Issue or fire wakes up instructions and their executions begin

• In commit stage, the computed values are written back to ROB

• The last stage is called retire or graduate. The result is written back
to register file (architectural register file) using a logical register
number.

Instruction
Fetch

Instruction
Decode

Register
Renaming

Register Read/
Dispatch

Issue
Execute/
Memory

Commit

Retire

In-order front-end

Out-of-order back-end

In-order retirement

RFROB

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Datapath of OoO execution processor

Instruction cache

Data cache

Integer

Branch FP ALU

Floating-point Memory

Reorder buffer (ROB)
Store
queue

Adr gen.Adr gen.ALU ALU

Register file

RS

Branch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decode

Dispatch

Renaming

Instruction fetch

Reservation station (RS)

Instruction window

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Pollack’s Rule

• Pollack's Rule states that microprocessor "performance
increase due to microarchitecture advances is roughly
proportional to the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

WIKIPEDIA

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Multithreading (1/2)

• During a branch miss recovery and access to the main memory by a cache miss,
ALUs have no jobs to do and have to be idle.

• Executing multiple independent threads (programs) will mitigate the overhead.

• They are called coarse- and fine-grained multithreaded processors having
multiple architecture states.

http://www.realworldtech.com/alpha-ev8-
smt/ http://www.realworldtech.com/alpha-ev8-smt/

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Multithreading (2/2)

• Simultaneous Multithreading (SMT) can improve hardware resource
usage.

http://www.realworldtech.com/alpha-ev8-
smt/

http://www.realworldtech.com/alpha-ev8-smt/

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Growth in clock rate of microprocessors

From CAQA 5th edition

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

From multi-core era to many-core era

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

From multi-core era to many-core era

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Instruction window

Instruction window

Aside: What is a window?

• A window is a space in the wall of a building or in the side of a vehicle,
which has glass in it so that light can come in and you can see out. (Collins)

Instructions to be executed for an application

Large instruction window

Instruction window

(a)

(b)

(c)

Instruction window

8 5

7

6

4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

The free lunch is over

• Programmers have to worry much about performance and concurrency

• Parallel programming & multi-processor (multi-core) architecture

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Distributed Memory Multi-Processor Architecture

• A PC cluster or parallel computers for higher performance

• Each memory module is associated with a processor

• Using explicit send and receive functions (message passing) to obtain the data
required.

• Who will send and receive data? How?

PC2 PC3 PC4PC1

Chip Chip Chip Chip

Proc1 Proc2 Proc4

Caches Caches Caches

Interconnection network

Memory
(DRAM)

Proc3

Caches

Memory
(DRAM)

Memory
(DRAM)

Memory
(DRAM)

PC cluster

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Shared Memory Multi-Processor Architecture

• All the processors can access the same address space of the main memory
(shared memory) through an interconnection network.

• The shared memory or shared address space (SAS) is used as a means for
communication between the processors.

• What are the means to obtain the shared data?

• What are the advantages and disadvantages of shared memory?

System

Interconnection network

Main memory (DRAM) I/O

Chip Chip Chip Chip

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

System

Chip

Shared memory many-core architecture

• The single-chip integrates many cores (conventional processors) and an
interconnection network.

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

Intel Skylake-X, Core i9-7980XE, 2017

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Four steps in creating a parallel program

1. Decomposition of computation in tasks

2. Assignment of tasks to processes

3. Orchestration of data access, comm, synch.

4. Mapping processes to processors

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

Adapted from Parallel Computer Architecture, David E. Culler

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Simulating ocean currents

• Model as two-dimensional grids
• Discretize in space and time

• finer spatial and temporal resolution enables greater accuracy

• Many different computations per time step
• Concurrency across and within grid computations

• We use one-dimensional grids for simplicity

(a) Cross sections (b) Spatial discretization of a cross section

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Sequential version as the baseline

• A sequential program main01.c and the execution result

• Computations in blue color are fully parallel

#define N 8 /* the number of grids */

#define TOL 15.0 /* tolerance parameter */

float A[N+2], B[N+2];

void solve () {

int i, done = 0;

while (!done) {

float diff = 0;

for (i=1; i<=N; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

diff = diff + fabsf(B[i] - A[i]);

}

if (diff <TOL) done = 1;

for (i=1; i<=N; i++) A[i] = B[i];

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);

printf("| diff=%6.2f¥n", diff); /* for debug */

}

}

int main() {

int i;

for (i=1; i<N-1; i++) A[i] = 100+i*i;

solve();

}

0.00 68.26 104.56 109.56 116.55 125.54 86.91 45.29 0.00 0.00 | diff=129.32

0.00 57.55 94.03 110.11 117.10 109.56 85.83 44.02 15.08 0.00 | diff= 55.76

0.00 50.48 87.15 106.97 112.14 104.06 79.72 48.26 19.68 0.00 | diff= 42.50

0.00 45.83 81.45 101.99 107.62 98.54 77.27 49.17 22.63 0.00 | diff= 31.68

0.00 42.38 76.35 96.92 102.61 94.38 74.92 49.64 23.91 0.00 | diff= 26.88

0.00 39.54 71.81 91.87 97.87 90.55 72.91 49.44 24.49 0.00 | diff= 23.80

0.00 37.08 67.67 87.10 93.34 87.02 70.89 48.90 24.62 0.00 | diff= 22.12

0.00 34.88 63.89 82.62 89.06 83.67 68.87 48.09 24.48 0.00 | diff= 21.06

0.00 32.89 60.40 78.44 85.03 80.45 66.81 47.10 24.17 0.00 | diff= 20.26

0.00 31.07 57.19 74.55 81.23 77.35 64.72 45.98 23.73 0.00 | diff= 19.47

0.00 29.39 54.21 70.92 77.63 74.36 62.62 44.77 23.21 0.00 | diff= 18.70

0.00 27.84 51.46 67.52 74.23 71.47 60.52 43.49 22.64 0.00 | diff= 17.95

0.00 26.41 48.89 64.34 71.00 68.67 58.43 42.17 22.02 0.00 | diff= 17.23

0.00 25.07 46.50 61.35 67.94 65.97 56.37 40.84 21.38 0.00 | diff= 16.53

0.00 23.83 44.26 58.54 65.02 63.36 54.34 39.49 20.72 0.00 | diff= 15.85

0.00 22.68 42.17 55.88 62.24 60.85 52.34 38.14 20.05 0.00 | diff= 15.20

0.00 21.59 40.20 53.38 59.60 58.42 50.39 36.81 19.38 0.00 | diff= 14.58

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

+, +, x

A[0] A[9]

i=4

+, +, x

i=8

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Sample parallel program using pthread

#include <stdio.h>

#include <pthread.h>

#define N 10000000

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){

a++;

}

printf("func1: %d¥n", a);

};

int func2(){

int i;

for(i=0; i<N; i++){

a++;

}

printf("func2: %d¥n", a);

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, (void *)func1, NULL);

pthread_create(&t2, NULL, (void *)func2, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

#include <stdio.h>

#include <pthread.h>

#define N 10000000

int a = 0;

int func1(){

int i;

for(i=0; i<N; i++){

a++;

}

printf("func1: %d¥n", a);

};

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, (void *)func1, NULL);

pthread_create(&t2, NULL, (void *)func1, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("main: %d¥n", a);

return 0;

}

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Core 2

Decomposition and assignment

• Single Program Multiple Data (SPMD)

• Decomposition: there are eight tasks to compute B[i]

• Assignment: the first four tasks for core 1, and the last four tasks for core 2

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0; /* variable in shared memory */

void solve_pp (int pid, int ncores) {

int i, done = 0; /* private variables */

int mymin = 1 + (pid * N/ncores); /* private variable */

int mymax = mymin + N/ncores – 1; /* private variable */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

diff = diff + mydiff;

if (diff <TOL) done = 1;

if (pid==1) diff = 0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

}

}

int main() { /* solve this using two cores */

initialize shared data A and B;

create thread1 and call solve_pp(1, 2);

create thread2 and call solve_pp(2, 2);

}

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Decomposition

Assignment

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Core 1

Computation

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Orchestration

• LOCK and UNLOCK around critical section

• Lock provides exclusive access to the locked data.

• Set of operations we want to execute atomically

• BARRIER ensures all reach here

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable in shared memory */

void solve_pp (int pid, int ncores) {

int i, done = 0; /* private variables */

int mymin = 1 + (pid * N/ncores); /* private variable */

int mymax = mymin + N/ncores – 1; /* private variable */

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i-1] + A[i] + A[i+1]);

mydiff = mydiff + fabsf(B[i] - A[i]);

}

LOCK();

diff = diff + mydiff;

UNLOCK();

BARRIER();

if (diff <TOL) done = 1;

BARRIER();

if (pid==1) diff = 0;

for (i=mymin; i<=mymax; i++) A[i] = B[i];

BARRIER();

}

}

(1) load diff
(2) add
(3) store diff

These operations must be executed
atomically

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Key components of many-core processors

• Interconnection network

• connecting many modules on a chip achieving high throughput
and low latency

• Main memory and caches

• Caches are used to reduce latency and to lower network traffic

• A parallel program has private data and shared data

• New issues are cache coherence and memory consistency

• Core

• High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

Flynn's taxonomy (1996)

• A classification of computer architectures, proposed by Michael J.

Flynn in 1966. The four classifications are based upon the number of

concurrent instruction streams and data streams available in the

architecture.

• SISD (Single Instruction stream, Single Data stream)

• SIMD (Single Instruction stream, Multiple Data stream)

• MISD (Multiple Instruction stream, Single Data stream)

• MIMD (Multiple Instruction stream, Multiple Data stream)

Instruction stream

Data stream
SISD SIMD MISD MIMD

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

Flynn's taxonomy (1996)

• A classification of computer architectures, proposed by Michael J.

Flynn in 1966. The four classifications are based upon the number of

concurrent instruction streams and data streams available in the

architecture.

• SISD (Single Instruction stream, Single Data stream)

• SIMD (Single Instruction stream, Multiple Data stream)

• MISD (Multiple Instruction stream, Single Data stream)

• MIMD (Multiple Instruction stream, Multiple Data stream)

MIMD

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

Flynn's taxonomy (1996)

• A classification of computer architectures, proposed by Michael J.

Flynn in 1966. The four classifications are based upon the number of

concurrent instruction streams and data streams available in the

architecture.

• SISD (Single Instruction stream, Single Data stream)

• SIMD (Single Instruction stream, Multiple Data stream)

• MISD (Multiple Instruction stream, Single Data stream)

• MIMD (Multiple Instruction stream, Multiple Data stream)

Instruction stream

Data stream
SISD SIMD

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

SIMD Variants

• Vector architectures

• SIMD extensions

• Graphics Processing Units (GPUs)

• SIMD variants exploit data-level parallelism

• Instruction-level parallelism in superscalar processors

• Thread-level parallelism in multicore processors

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30

Vector architecture

• Computers designed by Seymour Cray starting in the 1970s

• Basic idea:

• Read sets of data elements into “vector registers”

• Operate on those registers

• Disperse the results back into memory

Cray Supercomputer

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 31

DAXPY in MIPS Instructions

Example: DAXPY (double precision a x X + Y)

L.D F0,a ; load scalar a

DADDIU R4,Rx,#512 ; upper bound of what to load

Loop: L.D F2,0(Rx) ; load X[i]

MUL.D F2,F2,F0 ; a x X[i]

L.D F4,0(Ry) ; load Y[i]

ADD.D F4,F2,F2 ; a x X[i] + Y[i]

S.D F4,9(Ry) ; store into Y[i]

DADDIU Rx,Rx,#8 ; increment index to X

DADDIU Ry,Ry,#8 ; increment index to Y

SUBBU R20,R4,Rx ; compute bound

BNEZ R20,Loop ; check if done

• Requires almost 600 MIPS operations

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 32

DAXPY in VMIPS (MIPS with Vector) Instructions

• ADDV.D : add two vectors

• ADDVS.D : add vector to a scalar

• LV/SV : vector load and vector store from address

• Example: DAXPY (double precision a*X+Y)

L.D F0,a ; load scalar a

LV V1,Rx ; load vector X

MULVS.D V2,V1,F0 ; vector-scalar multiply

LV V3,Ry ; load vector Y

ADDV.D V4,V2,V3 ; add

SV Ry,V4 ; store the result

• Requires 6 instructions

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 33

