
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

7. Instruction Level Parallelism:
Dynamic Scheduling

Ver. 2021-01-12aFiscal Year 2021

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936
Mon 14:20-16:00, Thr 14:20-16:00

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Four stage pipelined processor supporting ADD and BNE, which does not
adopt data forwarding (proc08.v, Assignment 5)

+

pc
If_IR

4

pc

If stage Id stage

Id_RRS

Id_RRT

Id_RS

Id_RT
IdEx_RRS

E
x
_
R
S
L
T

Ex stage Wb stage

IfId IdEx ExWb

ExWb_RSLT

Id_RD

imem

r
e
g
f
i
l
e

IdEx_RRT

I
f
I
d
_
I
R

IdEx_RD ExWb_RD

ExWb_RD

Sign extend &
Shift left 2

Id_IM

+

Ex_TKN

If_NPC Id_I32

Id_TPC

M
u

x

IfId_NPC IdEx_TPC

IdEx_TPC

Ex_TKN

+
,

!
=

Id_OP IdEx_OP

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Scalar and Superscalar processors

• Scalar processor can execute at most one single instruction per clock
cycle using one ALU.

• IPC (Executed Instructions Per Cycle) is less than 1.

• Superscalar processor can execute more than one instruction per clock
cycle by executing multiple instructions using multiple pipelines.

• IPC (Executed Instructions Per Cycle) can be more than 1.

• using n pipelines is called n-way superscalar

n

(a) pipeline diagram of scalar processor

(b) pipeline diagram of 2-way superscalar processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Exploiting Instruction Level parallelism (ILP)

• A superscalar processor has to handle some flows
efficiently to exploit ILP

• Control flow

• To execute n instructions per clock cycle, the processor has to
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE, BEQ)

• Another obstacle is instruction cache

• Register data flow

• Dynamic scheduling

• Memory data flow

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Exploiting Instruction Level Parallelism (ILP)

(3)

(4)

Data flow graph

Instruction

Data dependence

(3)

(4)

Data flow graph

4 cycles for 4 insns
ILP = 1.0

3 cycles for 4 insns
ILP = 1.33

i = 0

*C = *C + (*A + *B)

return

False True

B1

BE

B3

Error check

B2

Control flow graph

(1)

(1)(2)

(2)

Control
dependence

Prediction & speculation

What is the solution?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Exercise: what is data dependence

• Draw a data flow graph for each instruction stream

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R3 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R6 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R4 = R6 + 3 (3)

R3 = R2 + 1 (1)

R3 = R4 + 2 (2)

R7 = R6 + 3 (3)

Instruction stream 1

Instruction stream 2 Instruction stream 3 Instruction stream 4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the value of
insn i.

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 3 + 2 (3)

26 = 5 + 21 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

41 = 20 + 21 (4)

5 = 3 + 2 (3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Output dependence

• Insn i and j write the same register, WAW (write after write)

• Program order must be preserved to ensure that the value finally
written corresponds to instruction j.

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 3 + 2 (3)

26 = 5 + 21 (4)

Assume R3=10, R5=3

5 = 3 + 2 (3)

20 = 10 x 2 (1)

21 = 20 + 1 (2)

41 = 20 + 21 (4)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Antidependence

• Insn i reads a register that insn j writes, WAR (write after read)

• Program order must be preserved to ensure that i reads the correct
value.

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 3 + 2 (3)

26 = 5 + 21 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

5 = 3 + 2 (3)

6 = 5 + 1 (2)

11 = 5 + 6 (4)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Exercise: what is data dependence

• Draw a data flow graph for each instruction stream

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R3 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R6 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R4 = R6 + 3 (3)

R3 = R2 + 1 (1)

R3 = R4 + 2 (2)

R7 = R6 + 3 (3)

Instruction stream 1

Instruction stream 2 Instruction stream 3 Instruction stream 4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Data dependence and renaming

• True data dependence (RAW)

• Name dependences

• Output dependence (WAW)

• Antidependence (WAR)

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)
(3)

(4)

(3)

(4)

(1)

(1)(2)

(2)

RAW

RAW

RAW

WAW

WAR

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R8 = R5 + 2 (3)

R7 = R8 + R4 (4)

RAW

RAW
RAW

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Hardware register renaming

• Logical registers (architectural registers) which are ones defined by
ISA

• $0, $1, … $31

• Physical registers

• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a unique
physical register dynamically

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Commit Retire

Typical instruction pipeline of high-performance superscalar processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Exercise: register renaming

• Rename the following instruction stream using physical registers
of p9, p10, p11, and p12

I0: sub $5,$1,$2

I1: add $9,$5,$4

I2: or $5,$5,$2

I3: and $2,$9,$1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Example behavior of register renaming (1/4)

• Renaming the first instruction I0

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

0

1

2

3

4

5

6

7

8

9

10

31

dst = $5
src1 = $1
src2 = $2

dst = p9
src1 = p1
src2 = p2

I0: sub p9,p1,p2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Example behavior of register renaming (2/4)

• Renaming the second instruction I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 2

101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $9
src1 = $5
src2 = $4

dst = p10
src1 = p9
src2 = p4

I0: sub p9,p1,p2
I1: add p10,p9,p4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Example behavior of register renaming (3/4)

• Renaming instruction I2

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 3

1112

Free tag buffer

head

13

0

Register map table

1

2

3

4

9->11

6

7

8

10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $5
src1 = $5
src2 = $2

dst = p11
src1 = p9
src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4
I2: or p11,p9,p2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Example behavior of register renaming (4/4)

• Renaming instruction I3

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 4

12

Free tag buffer

head

13

0

Register map table

1

2->12

3

4

11

6

7

8

10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $2
src1 = $9
src2 = $1

dst = p12
src1 = p10
src2 = p1

I0: sub p9,p1,p2
I1: add p10,p9,p4
I2: or p11,p9,p2
I3: and p12,p10,p1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Renaming two instructions per cycle for superscalar

• Renaming instruction I0 and I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $5
src1 = $1
src2 = $2

dst = p9
src1 = p1
src2 = p2

I0: sub p9,p1,p2
I1: add p10,p5,p4 (Wrong) dst = $9

src1 = $5
src2 = $4

dst = p10
src1 = p5
src2 = p4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Renaming two instructions per cycle for superscalar

• Renaming instruction I0 and I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

A_dst = $5
A_src1 = $1
A_src2 = $2

A_dst = p9
A_src1 = p1
A_src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4 B_dst = $9

B_src1 = $5
B_src2 = $4

B_dst = p10
B_src1 = p9
B_src2 = p4

M
u

x

If B_src1==A_dst, use tag from free tag buffer
I0

I1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Pollack’s Rule

• Pollack's Rule states that microprocessor "performance
increase due to microarchitecture advances is roughly
proportional to the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

WIKIPEDIA

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the value of
insn i.

R3 = R3 x R5 (1)

R4 = R3 + 1 (2)

R3 = R5 + 2 (3)

R7 = R3 + R4 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

5 = 3 + 2 (3)

26 = 5 + 21 (4)

Assume R3=10, R5=3

20 = 10 x 2 (1)

21 = 20 + 1 (2)

41 = 20 + 21 (4)

5 = 3 + 2 (3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

Recommended Reading

• Focused Value Prediction

• Sumeet Bandishte, Jayesh Gaur, Zeev Sperber, Lihu Rappoport, Adi Yoaz, and Sreenivas
Subramoney, Intel

• ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pp. 79-91,
2020

• A quote:
“Value Prediction was proposed to speculatively break true data dependencies, thereby allowing Out of
Order (OOO) processors to achieve higher instruction level parallelism (ILP) and gain performance.
State-of-the-art value predictors try to maximize the number of instructions that can be value
predicted, with the belief that a higher coverage will unlock more ILP and increase performance.
Unfortunately, this comes at increased complexity with implementations that require multiple
different types of value predictors working in tandem, incurring substantial area and power cost. In
this paper we motivate towards lower coverage, but focused, value prediction. Instead of aggressively
increasing the coverage of value prediction, at the cost of higher area and power, we motivate
refocusing value prediction as a mechanism to achieve an early execution of instructions that
frequently create performance bottlenecks in the OOO processor. Since we do not aim for high
coverage, our implementation is light-weight, needing just 1.2 KB of storage. Simulation results on 60
diverse workloads show that we deliver 3.3% performance gain over a baseline similar to the Intel
Skylake processor. This performance gain increases substantially to 8.6% when we simulate a
futuristic up-scaled version of Skylake. In contrast, for the same storage, state-of-the-art value
predictors deliver a much lower speedup of 1.7% and 4.7% respectively. Notably, our proposal is
similar to these predictors in performance, even when they are given nearly eight times the storage
and have 60% more prediction coverage than our solution.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

