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Four stage pipelined processor supporting ADD and BNE, which does not 
adopt data forwarding (proc08.v, Assignment 5)
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Scalar and Superscalar processors

• Scalar processor can execute at most one single instruction per clock 
cycle using one ALU. 

• IPC (Executed Instructions Per Cycle) is less than 1.

• Superscalar processor can execute more than one instruction per clock 
cycle by executing multiple instructions using multiple pipelines.

• IPC (Executed Instructions Per Cycle) can be more than 1.

• using n pipelines is called n-way superscalar

n

(a) pipeline diagram of scalar processor

(b) pipeline diagram of 2-way superscalar processor
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Exploiting Instruction Level parallelism (ILP)

• A superscalar processor has to handle some flows 
efficiently to exploit ILP

• Control flow

• To execute n instructions per clock cycle, the processor has to 
fetch at least n instructions per cycle.

• The main obstacles are branch instruction (BNE, BEQ)

• Another obstacle is instruction cache

• Register data flow

• Dynamic scheduling

• Memory data flow
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Exploiting Instruction Level Parallelism (ILP)
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Exercise: what is data dependence

• Draw a data flow graph for each instruction stream

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R3 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R6 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R4 = R6 + 3 (3)

R3 = R2 + 1 (1)

R3 = R4 + 2 (2)

R7 = R6 + 3 (3)

Instruction stream 1

Instruction stream 2 Instruction stream 3 Instruction stream 4
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True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the value of 
insn i.

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 2      (3)

R7 = R3 + R4     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 3  + 2      (3)

26 = 5 + 21     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

41 = 20 + 21     (4)

5  = 3  + 2      (3)
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Output dependence

• Insn i and j write the same register, WAW (write after write)

• Program order must be preserved to ensure that the value finally 
written corresponds to instruction j.

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 2      (3)

R7 = R3 + R4     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 3  + 2      (3)

26 = 5 + 21     (4)

Assume R3=10, R5=3

5  = 3  + 2      (3)

20 = 10 x 2      (1)

21 = 20 + 1      (2)

41 = 20 + 21     (4)
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Antidependence

• Insn i reads a register that insn j writes, WAR (write after read)

• Program order must be preserved to ensure that i reads the correct 
value.

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 2      (3)

R7 = R3 + R4     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5  = 3  + 2      (3)

26 = 5  + 21     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

5 = 3  + 2      (3)

6  = 5 + 1      (2)

11 = 5  + 6 (4)
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Exercise: what is data dependence

• Draw a data flow graph for each instruction stream

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R3 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R7 = R6 + 3 (3)

R3 = R2 + 1 (1)

R5 = R4 + 2 (2)

R4 = R6 + 3 (3)

R3 = R2 + 1 (1)

R3 = R4 + 2 (2)

R7 = R6 + 3 (3)

Instruction stream 1

Instruction stream 2 Instruction stream 3 Instruction stream 4
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Data dependence and renaming

• True data dependence (RAW)

• Name dependences

• Output dependence (WAW)

• Antidependence (WAR)

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 2      (3)

R7 = R3 + R4     (4)
(3)

(4)

(3)

(4)

(1)

(1)(2)

(2)

RAW

RAW

RAW

WAW

WAR

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R8 = R5 + 2      (3)

R7 = R8 + R4     (4)

RAW

RAW
RAW
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Hardware register renaming

• Logical registers (architectural registers) which are ones defined by 
ISA

• $0, $1, … $31

• Physical registers

• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a unique 
physical register dynamically  

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Commit Retire

Typical instruction pipeline of high-performance superscalar processor
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Exercise: register renaming

• Rename the following instruction stream using physical registers 
of p9, p10, p11, and p12 

I0: sub $5,$1,$2

I1: add $9,$5,$4

I2: or  $5,$5,$2

I3: and $2,$9,$1
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Example behavior of register renaming (1/4)

• Renaming the first instruction I0

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

0

1

2

3

4

5

6

7

8

9

10

31

dst = $5
src1 = $1
src2 = $2

dst  = p9
src1 = p1
src2 = p2

I0: sub p9,p1,p2
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Example behavior of register renaming (2/4)

• Renaming the second instruction I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1

Cycle 2

101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $9
src1 = $5
src2 = $4

dst = p10
src1 = p9
src2 = p4

I0: sub p9,p1,p2
I1: add p10,p9,p4
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Example behavior of register renaming (3/4)

• Renaming instruction I2

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1

Cycle 3

1112

Free tag buffer

head

13

0

Register map table

1

2

3

4

9->11

6

7

8

10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $5
src1 = $5
src2 = $2

dst = p11
src1 = p9
src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4
I2: or  p11,p9,p2
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Example behavior of register renaming (4/4)

• Renaming instruction I3

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1

Cycle 4

12

Free tag buffer

head

13

0

Register map table

1

2->12

3

4

11

6

7

8

10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $2
src1 = $9
src2 = $1

dst = p12
src1 = p10
src2 = p1

I0: sub p9,p1,p2
I1: add p10,p9,p4
I2: or  p11,p9,p2
I3: and p12,p10,p1
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Renaming two instructions per cycle for superscalar

• Renaming instruction I0 and I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

dst = $5
src1 = $1
src2 = $2

dst = p9
src1 = p1
src2 = p2

I0: sub p9,p1,p2
I1: add p10,p5,p4 (Wrong) dst = $9

src1 = $5
src2 = $4

dst = p10
src1 = p5
src2 = p4
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Renaming two instructions per cycle for superscalar

• Renaming instruction I0 and I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1

2

3

4

5->9

6

7

8

->10

0

1

2

3

4

5

6

7

8

9

10

31

A_dst = $5
A_src1 = $1
A_src2 = $2

A_dst = p9
A_src1 = p1
A_src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4 B_dst = $9

B_src1 = $5
B_src2 = $4

B_dst = p10
B_src1 = p9
B_src2 = p4

M
u

x

If B_src1==A_dst, use tag from free tag buffer
I0

I1
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Pollack’s Rule

• Pollack's Rule states that microprocessor "performance 
increase due to microarchitecture advances is roughly 
proportional to the square root of the increase in 
complexity".  Complexity in this context means processor 
logic, i.e. its area.

WIKIPEDIA
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True data dependence

• Insn i writes a register that insn j reads, RAW (read after write)

• Program order must be preserved to ensure insn j receives the value of 
insn i.

R3 = R3 x R5     (1)

R4 = R3 + 1      (2)

R3 = R5 + 2      (3)

R7 = R3 + R4     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

5 = 3  + 2      (3)

26 = 5 + 21     (4)

Assume R3=10, R5=3

20 = 10 x 2      (1)

21 = 20 + 1      (2)

41 = 20 + 21     (4)

5  = 3  + 2      (3)
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Recommended Reading

• Focused Value Prediction

• Sumeet Bandishte, Jayesh Gaur, Zeev Sperber, Lihu Rappoport, Adi Yoaz, and Sreenivas 
Subramoney, Intel

• ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA),  pp. 79-91, 
2020 

• A quote:
“Value Prediction was proposed to speculatively break true data dependencies, thereby allowing Out of 
Order (OOO) processors to achieve higher instruction level parallelism (ILP) and gain performance. 
State-of-the-art value predictors try to maximize the number of instructions that can be value 
predicted, with the belief that a higher coverage will unlock more ILP and increase performance. 
Unfortunately, this comes at increased complexity with implementations that require multiple 
different types of value predictors working in tandem, incurring substantial area and power cost. In 
this paper we motivate towards lower coverage, but focused, value prediction. Instead of aggressively 
increasing the coverage of value prediction, at the cost of higher area and power, we motivate 
refocusing value prediction as a mechanism to achieve an early execution of instructions that 
frequently create performance bottlenecks in the OOO processor. Since we do not aim for high 
coverage, our implementation is light-weight, needing just 1.2 KB of storage. Simulation results on 60 
diverse workloads show that we deliver 3.3% performance gain over a baseline similar to the Intel 
Skylake processor. This performance gain increases substantially to 8.6% when we simulate a 
futuristic up-scaled version of Skylake. In contrast, for the same storage, state-of-the-art value 
predictors deliver a much lower speedup of 1.7% and 4.7% respectively. Notably, our proposal is 
similar to these predictors in performance, even when they are given nearly eight times the storage 
and have 60% more prediction coverage than our solution.
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