Fiscal Year 2021

N

Course number: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

7. Instruction Level Parallelism:
Dynamic Scheduling

&
www.arch.cs.titech.ac.jp/lecture/ACA/

Kenji Kise, Department of Computer Science
Mon 14:20-16:00, Thr 14:20-16:00 kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYQPIECH 1

Four stage pipelined processor supporting ADD and BNE, which does not
adopt data forwarding (procO8.v, Assignment 5)

Wb stage \

If stage Id stage Ex stage
Ex_TKN | IfId IdEx ExWb
IdEx_TPC
- x
IfId NPC IdEx_TPC
— \l Id_TPC
+
4 Id_IM Sign extend & J
Shift left 2
If NPC Id_132
pc - —
—f\
& | 1dop IdEx_OP
: = >
N If IR || %
c .
’ Hhen Ex_TKN
Id_RS \
Id_RRS IdEX_RRS
Id_RT 5
D
@
ExWb_RD = g ExWb_RSLT
)
- o
Id_RRT IdEx_RRT e
o]
wn
—
_|
Id RD IdEx_RD ExWb_RD

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Scalar and Superscalar processors
\

« Superscalar processor can execute more than one instruction per clock
cycle by executing multiple instructions using multiple pipelines.

« TIPC (Executed Instructions Per Cycle) can be more than 1.
« using n pipelines is called n-way superscalar

Time (in clock cycles)

200 400 600 800 1000 1200 1400
T T T T T T T - CC1 ccz cCc3 CC4 CC5 CCE6 CC1 ccz2 CC3
Instruct Instruction . Data .
Instruction Data fetch decode (Eszilel access Write back
Pt Reg| ALU Reg n
e AcGaas Instruction | Instruction Executi Data Wirite back
P Instruction Data fetch decode Euon access fite bac
ucti
etc access Instruction | Instruction . Data .
200 ps | fetch Reg |- ALU Reg Execul Virite back
fetch decode cutan access fite bas
.l .
Instruction Data
Re| ALU Re i i
200ps | fetch ° access ° inetniction | Insticton | execuion | 027 | write back
- -———— > -———— > - -
Instruction | Instruction . Data .
200 ps 200ps 200 ps 200 ps 200 ps fetch decode Execution access | VWrite back
Instruction | Instruction . Data .
fetch decode B i access Write back
Instruction | Instruction . Data .
fetch decode =i access Wirite back
Instruction | Instruction . Data .
fetch decode Bzl access Write back

(a) pipeline diagram of scalar processor
(b) pipeline diagram of 2-way superscalar processor

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Exploiting Instruction Level parallelism (ILP) x
\

A superscalar processor has to handle some flows
efficiently to exploit ILP
 Conftrol flow

« To execute ninstructions per clock cycle, the processor has to
fetch at least n instructions per cycle.

« The main obstacles are branch instruction (BNE, BEQ)
 Another obstacle is instruction cache

* Register data flow
« Dynamic scheduling

* Memory data flow

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Exploiting Instruction Level Parallelism (ILP)

What is the solution?

4 cycles for 4 insns

Prediction & speculation ILP=10
Control

B1 m dependence

BE[/}\
Error check

v T
BZ[}
*C=*C+ (*A + *B) vy

False True (3)

N

Control flow graph
Data flow graph

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Instruction

Data dependence

return

\

3 cycles for 4 insns
ILP =133

Data flow graph

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Exercise: what is data dependence

\
+ Draw a data flow graph for each instruction stream %%

R3 = R2 + 1 (1)
RS = R4 + 2 (2)
R7 = R6 + 3 (3)

Instruction stream 1

R3 = R2 + 1 (1)
RS = R4 + 2 (2)
R7 = R3 + 3 (3)

Instruction stream 2

R3 = R2 + 1 (1)
R3 = R4 + 2 (2)
R7 = R6 + 3 (3)

Instruction stream 3

R3 = R2 + 1 (1)
R5 = R4 + 2 (2)
R4 = R6 + 3 (3)

Instruction stream 4

Tr

ue data dependence

« Insniwrites aregister that insn j reads, RAW (read after write)
* Program order must be preserved to ensure insn j receives the value of

<

nsn i.
R3 = R3 x R5 (1)
R4 = R3 + 1 (2)

(R3)= R5 + 2 (3)
R7 =(R3)+ R4 (4)

Assume R3=10, R5=3

20 = 10 X 2 (1) 20_ =
21 = 20 + 1 (2) 21 =2

=3 +2 (3) 41 =
26 =(5)+ 21 (4) 5 =

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

X

+
+
+

2
1
21

Assume R3=10, R5=3

(1)
(2)
(4)
(3)

\

Output dependence

A
* Insniand jwrite the same register, WAW (write after write) 2%

« Program order must be preserved to ensure that the value finally
written corresponds to instruction j.

(R3)= R3 x RS (1)
R4 = R3 + 1 (2)
(R3)= R5 + 2 (3)

R7 = R3 + R4 (4)

Assume R3=10, R5=3 Assume R3=10, R5=3
(20)= 10 x 2 (1) (5)=3 +2 (3)
21 = 20 + 1 (2) (20)= 10 x 2 (1)
(GH=3 +2 (3) 21 = 20 + 1 (2)
26 = 5 + 21 (4) 41 = 20 + 21 (4)

Antidependence

« Insnireads aregister that insn j writes, WAR (write after read)

« Program order must be preserved to ensure that i reads the correct

value.
R3 = R3 X R5
R4‘ijia}+ 1
(R3)= R5 + 2
R7 = R3 + R4

<

Assume R3=10, R5=3
10 x 2

.+1

20 =
21=

@:

26 =

5

+ 2
+ 21

(1)
(2)
(3)
(4)

Assume R3=10, R5=3

20

5= 3

6
11

10 x 2
+ 2

®+1

6

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

(1)
(3)
(2)
(4)

\

10

Exercise: what is data dependence

\
+ Draw a data flow graph for each instruction stream %%

R3 = R2 + 1 (1)
RS = R4 + 2 (2)
R7 = R6 + 3 (3)

Instruction stream 1

R3 = R2 + 1 (1)
RS = R4 + 2 (2)
R7 = R3 + 3 (3)

Instruction stream 2

R3 = R2 + 1 (1)
R3 = R4 + 2 (2)
R7 = R6 + 3 (3)

Instruction stream 3

R3 = R2 + 1 (1)
R5 = R4 + 2 (2)
R4 = R6 + 3 (3)

Instruction stream 4

11

Data dependence and renaming

« True data dependence (RAW)
« Name dependences

<

 Output dependence (WAW)
« Antidependence (WAR)

R3 = R3 x R5 (1)
R4 = R3 + 1

R3 = R5 +

R7 = R3 + R4 (4)

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

R3
R4
R8

X R5 (1)
+ 1 (2)
+ 2 (3)
+ R4 (4)

(2)
L@ @)

12

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

13

Hardware register renaming

\

 Logical registers (architectural registers) which are ones defined by
ISA

« $0, %1, .. $31
 Physical registers
« Assuming plenty of registers are available, p0O, p1, p2, ...

« A processor renames (converts) each logical register to a unique
physical register dynamically

Typical instruction pipeline of scalar processor

Typical instruction pipeline of high-performance superscalar processor

IF

ID

EX

MEM

WB

IF

ID

Renaming

Dispatch

Issue

Execute

Commit

Retire

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

14

Exercise: register renaming

« Rename the following instruction stream using physical registers
of p9, pl0, pl1, and p12

10:
I11:
12:
I13:

sub $5,%$1,%2
add $9,%5,%4
or $5,%5,%2
and $2,%9,%1

\

15

Example behavior of register renaming (1/4) X
\

« Renaming the first instruction I0

Register map table

Cycle 1
Y . -
10: sub $5,%1,%2 1 1
I1: add $9,$5,$4 — %2 2
I2: or $5,%5,%2 3 3
I3: and $2,%$9,%1 4 4
5 Fo->9 | | e » dst = p9
Free tag buffer | 6 | 6ot L srcl = pl
I I 5 = orc2 = p2
13]12[11]10] 9 p=" 8 8
9
Thead 10 I0: sub p9,pl,p2
dst = $5
srcl = $1 —
src2 = $2

iﬁw .
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Example behavior of register renaming (2/4) x
\

« Renaming the second instruction Il

Register map table

Cycle 2 0 5
I10: sub $5,%$1,%2 1 1
I1: add $9,%5,%4 2 2
I2: or $5,$5,%2 3 3
I3: and $2,$9,%1 4 4
> § 9 1 » dst = plo
6 | 6.t T et - b
freetagbuffer | |- - ;s . arc2 - ba
13112111110 8 8
T g =310
head 16 I0: sub p9,pl,p2
I1: add ple,p9,p4s
dst = $9
srcl = $5 —
src2 = $4

iﬁw .
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Example behavior of register renaming (3/4) X
\

« Renaming instruction I2

Cycle 3

Register map table

0 0
I10: sub $5,%1,%2 ; :
I1: add $9,%5,%4 .]
I2: or $5,%$5,%2 3 3
I3: and $2,%9,%1 ’ 4
g 5 y 9->11
Free tag buffer | =
I e ¥ >
13|12(11 i 8 8
! S 10
e 10
dst = $5
srcl = $5 —
src2 = $2

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

31

...................... » dst = pl1l
.......... srcl = po
> src2 = p2

I0: sub p9,pl,p2
I1: add p10,p9,p4s
I2: or pl1,p9,p2

18

Example behavior of register renaming (4/4)

* Renaming instruction I3

Cycle 4

10:
I1:
I12:
I13:

sub $5,%1,%2
add $9,%5,%4
$5,%$5,%$2
and $2,%$9,%1

or

Free tag buffer

<

13|12
Thead
dst
srcl
src2

Register map table

\

....................... » dst = pl2
.......... srcl = plo
> src2 = pl

° 0
2 N 2—>12
fg“ 3
- 4
5 1
6 B
__ I
e 8 8
> 9 5
10
$2
$¢9 |
$1
31

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

: sub p9,pl,p2

: add pl1o,p9,ps
: or
: and pl2,pleo,pl

pll,p9,p2

19

Renaming two instructions per cycle for superscalar

« Renaming instruction I0 and Il

Cycle 1

I0: sub $5,%1,%2

Register map table

—

dst
srcl
src2

dst
srcl
src2

I1: add plo,p5,p4 (Wrong)

0 0
I1: add $9,%5,%4 1 1
I2: or $5,%$5,%2 5 5
13: and $2,%9,31 3 3 | | .
Free tag buffer a4 | A4 g :
O O s "B 5-50
13 12 11 1@ 9) I Sl 6 6
T R 7 7 R
head | “[t-.| 8 8 >
dst _ $5 9 Ul >1@ >
srcl = $1 10
src2 = $2
I0: sub p9,pl,p2
dst = $9
srcl = $5
src2 = $4 — 31

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

20

Renaming two instructions per cycle for superscalar

« Renaming instruction I0 and Il

Cycle 1 Register map table
I0: sub $5,%1,%2 0 0
I1: add $9,%$5,%4 > 1 1
I2: or $5,%$5,%2 > >
I3: and $2,%9,%1 3 3 | e » A dst = p9
Free tag buffer "4 | At : 2 zﬁz ; : E ;
.. *E e 5-0 =
13(/12(11110! 9 - 6 6
MT ... Ve 7 » B dst = plo
nead |-l | o g G B_srcl = p9
I0 Adst =9$5 | | | | 5K 2510 B_src2 = p4
A srcl = $1 10 If B_srcl==A_dst, use tag from free tag buffer
A src2 = $2
I0: sub p9,pl,p2
T1 B_dst = $9 I1: add pleo,p9,ps
B srcl = $5
= $4— 31

ﬁw B src2
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Pollack's Rule

\

* Pollack’s Rule states that microprocessor "performance 2%
increase due to microarchitecture advances is roughly
proportional to the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

? WIKIPEDIA
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Tr

ue data dependence

« Insniwrites aregister that insn j reads, RAW (read after write)
* Program order must be preserved to ensure insn j receives the value of

<

nsn i.
R3 = R3 x R5 (1)
R4 = R3 + 1 (2)

(R3)= R5 + 2 (3)
R7 =(R3)+ R4 (4)

Assume R3=10, R5=3

20 = 10 X 2 (1) 20_ =
21 = 20 + 1 (2) 21 =2

=3 +2 (3) 41 =
26 =(5)+ 21 (4) 5 =

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

X

+
+
+

2
1
21

Assume R3=10, R5=3

(1)
(2)
(4)
(3)

\

23

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

24

Recommended Reading
A
* Focused Value Prediction

« Sumeet Bandishte, Jayesh Gaur, Zeev Sperber, Lihu Rappoport, Adi Yoaz, and Sreenivas
Subramoney, Intel

« ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pp. 79-91,
2020

* A quote:
"Value Prediction was proposed to speculatively break true data dependencies, thereby allowing Out of
Order (OOOQ) processors to achieve higher instruction level parallelism (ILP) and gain performance.

In
this paper we motivate fowards lower coverage, but focused, value prediction. Instead of aggressively
increasing the coverage of value prediction, at the cost of higher area and power, we motivate
refocusing value prediction as a mechanism to achieve an early execution of instructions that
frequently create performance bottlenecks in the OOO processor.

Simulation results on 60
diverse workloads show that we deliver 3.3% performance gain over a baseline similar to the Intel
Skylake processor.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

26

