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A four stage pipelined 2-way superscalar processor supporting ADD 
which does not adopt data forwarding (proc10, Assignment 4)

using negedge CLK 
to update
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Waveform of Proc10

add  $0,  $0,  $0   # NOP
add  $0,  $0,  $0   # NOP
add  $1,  $1,  $1   # $1 = 0x16 + 0x16
add  $2,  $2,  $2   # $2 = 0x21 + 0x21
add  $3,  $3,  $3   # $3 = 0x2c + 0x2c
add  $4,  $4,  $4   # $4 = 0x37 + 0x37

r[1]=22, r[2]=33, r[3]=44, and r[4]=55
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Branch predictor

• A branch predictor is a digital circuit that tries to guess or predict 
which way (taken or untaken) a branch will go before this is known 
definitively.

• A random predictor will achieve about a 50% hit rate because the 
prediction output is 1 or 0.

• Let’s guess the accuracy. What is the accuracy of typical branch 
predictors for high-performance commercial processors?
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Sample program: vector add with two branches

#define VSIZE 4
void vadd(long *A, long *B, long *C){
for(i=0; i<VSIZE; i++) {
if(A[i]<0) error_routine();
C[i] += (A[i] + B[i]);

}
}
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Simple branch predictor: bimodal

• Program has many branch instructions. The behavior may depend on 
each branch. Use one counter for one branch instruction

• How to predict

• Select one counter using PC, then it predicts 1 if the MSB of the 
register is one, otherwise predicts 0.

• How to update

• Select one counter using PC, then update the counter in the same 
way as 2bit counter. 

Pattern History Table (PHT)

Program  
Counter

…

2n entry

Predictionn

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken2 bit
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An innovation in branch predictors in 1993

• Using branch history

• global branch history

• local branch history

• 2-level branch predictor and Gshare

• Assume predicting the sequence 1110 1110 1110 1110 1110 …

11101110 ?

111011101 ?

1110111011 ?

11101110111 ?

111011101110 ?
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Recommended Reading

• Combining Branch Predictors

• Scott McFarling, Digital Western Research Laboratory

• WRL Technical Note TN-36, 1993 

• A quote:
“In this paper, we have presented two new methods for improving 
branch prediction performance. First, we showed that using the bit-
wise exclusive OR of the global branch history and the branch address 
to access predictor counters results in better performance for a given 
counter array size.”
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Gshare (TR-DEC 1993)

• How to predict
• Using the exclusive OR of the global branch history and PC to access PHT, 

then MSB of the selected counter is the prediction.

• How to update

• Shifting BHR one bit left and update LSB by branch outcome in IF stage.

• Update the used counter in the same way as 2BC in WB stage.
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Pattern History Table (PHT)

…
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Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)
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Branch History 
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Bi-Mode (MICRO 1997)

• A choice predictor (bimodal) is used as a meta-predictor

• How to predict

• Like Gshare, both of Taken PHT and Untaken PHT make two 
predictions.

• Select one among them by the choice predictor which tracks the 
global bias of a branch.

• How to update

• The used PHT is updated 
in the same way as 2BC.

• Choice predictor is update 
in the same way as bimodal

Untaken PHTTaken PHT

…

Prediction

Choice predictor

…

Program Counter

XOR

BHR
…
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YAGS, Yet Another Global Scheme (MICRO 1998)

• Using two tagged PHTs

• When a PHT miss, choice PHT makes a prediction.

From YAGS paper
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An innovation in branch predictors in 1993 (again)

• Using branch history

• global branch history

• local branch history

• 2-level branch predictor and Gshare

• Assume predicting the sequence 1110 1110 1110 1110 1110 …

11101110 ?

111011101 ?

1110111011 ?

11101110111 ?

111011101110 ?

11101110 ?

111011101 ?

1110111011 ?

11101110111 ?

111011101110 ?
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Perceptron (HPCA 2001)

• How to predict

• Select one perceptron by PC

• Compute y using the equation.  It predicts 1 if y>=0, predicts 0 if y<0

• How to update

• Train the weights of used perceptron when the prediction miss or |y| < T

Perceptron Model

w1 w2w0 wn

...

y

1 x1 xnx2

Table of Perceptrons (w)

Program Counter
…

Branch History (x)

Selected 
Perceptron

Compute y

Prediction

y
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Branch predictors based on pattern matching

• Find the longest matching pattern (green rectangle)

• Select the proper matching length or long matching pattern (blue rectangle)

• Count the number of 0 and the number of 1 after the pattern (red rectangle), 
then predict.

?
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The long matching pattern

0
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Prediction

Global branch history Prediction 0 or 1

?

The longest matching pattern

Appearing 0 twice and 1 once, so the prediction will be 0
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Partial Pattern Matching (CBP 2004)
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Prediction accuracy

• The accuracy of 4KB Gshare is about 93%.

• The accuracy of 4KB PPM is about 97%.
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Recommended Reading

• Prophet-Critic Hybrid Branch Prediction

• Ayose Falcon, UPC, Jared Stark, Intel, Alex Ramirez, UPC, 
Konrad Lai, Intel, Mateo Valero

• ISCA-31  pp. 250-261 (2004)
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A quote from Introduction (1/2)

Conventional predictors are analogous to a taxi with just one driver. 

He gets the passenger to the destination using knowledge of the 
roads acquired from previous trips; i. e., using history information 
stored in the predictor’s memory structures. 

When he reaches an intersection, he uses this knowledge to decide 
which way to turn. 

The driver accesses this knowledge in the context of his current 
location. 

Modern branch predictors access it in the context of the current 
location (the program counter) plus a history of the most recent 
decisions that led to the current location.



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

A quote from Introduction (2/2)

Prophet/critic hybrids are analogous to a taxi with two drivers: the 
front-seat and the back-seat. The front-seat driver has the same role 
as the driver in the single-driver taxi. This role is called the prophet. 

The back-seat driver has the role of critic. She watches the turns the 
prophet makes at intersections. She doesn’t say anything unless she 
thinks he’s made a wrong turn. When she thinks he’s made a wrong turn, 
she waits until he’s made a few more turns to be certain they are lost. 
(Sometimes the prophet makes turns that initially look questionable, but, 
after he makes a few more turns, in hindsight appear to be correct.) 
Only when she’s certain does she point out the mistake. 

To recover, they backtrack to the intersection where she believes the 
wrong-turn was made and try a different direction.
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Prophet-Critic Hybrid Branch Prediction
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Assignment 5

1. Design a four stage pipelined scalar processor supporting MIPS add and bne
instruction in Verilog HDL. Please download proc06.v and proc07.v from the 
support page and refer it. 

2. Verify the behavior of designed processor using following assembly code.

3. Submit your report in a PDF file via E-mail by the next Thursday.

• The report should include a block diagram, a source code in Verilog HDL, and 
obtained waveforms of your design.

p.imem.mem[0] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[1] = {6'h0, 5'd5, 5'd1, 5'd5, 5'd0, 6'h20};  // L1: add  $5, $5, $1

p.imem.mem[2] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[3] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[4] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[5] = {6'h5, 5'd4, 5'd5, 16'hfffb};           //     bne $4, $5, L1

p.imem.mem[6] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[7] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[8] = {6'h0, 5'd0, 5'd0, 5'd5, 5'd0, 6'h20};  //     add  $5, $0, $0

p.imem.mem[9] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP    

p.imem.mem[10]= {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP

p.imem.mem[11]= {6'h5, 5'd2, 5'd0, 16'hfff5};           //     bne $2, $0, L1

p.imem.mem[12]= {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP    

p.imem.mem[13]= {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20};  //     NOP    

p.regfile.r[1] = 1; p.regfile.r[2] = 22; p.regfile.r[3] = 0; p.regfile.r[4] = 4; p.regfile.r[5] = 0;

while(1){
for(int i=1; i!=4; i++){

}
}
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Four stage pipelined processor supporting ADD, which does not adopt 
data forwarding (proc06.v, Assignment 3)
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Four stage pipelined processor supporting ADD and BNE, which does not 
adopt data forwarding (proc08.v, Assignment 5)
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Exercise: how to update PHT and BHR of Gshare
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