
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

6. Instruction Level Parallelism: Instruction Fetch
and Branch Prediction

Ver. 2022-01-06aFiscal Year 2021

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936
Mon 14:20-16:00, Thr 14:20-16:00

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

A four stage pipelined 2-way superscalar processor supporting ADD
which does not adopt data forwarding (proc10, Assignment 4)

using negedge CLK
to update

+

pc
If_IRS

8

pc

If stage Id stage

Id_RRS1

Id_RRT1

IdEx_RRS1

E
x
_
R
S
L
T
1

Ex stage Wb stage
IfId IdEx ExWb

ExWb_RSLT2

+

imem

IdEx_RRT1

IdEx_RD2 ExWb_RD2

Id_IR1(IfId_IRS[31:0])

I
f
I
d
_
I
R
S

Id_RS1

Id_RT1

IdEx_RRS2

E
x
_
R
S
L
T
2+

IdEx_RRT2

Id_RRS2

Id_RRT2

Pipeline1

Id_RT2

r
e
g
f
i
l
e

IdEx_RD1Id_RD1

ExWb_RSLT1

ExWb_RD1

Id_IR2(IfId_IRS[63:32])

Id_RD2

Id_RS2

Pipeline2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Waveform of Proc10

add $0, $0, $0 # NOP
add $0, $0, $0 # NOP
add $1, $1, $1 # $1 = 0x16 + 0x16
add $2, $2, $2 # $2 = 0x21 + 0x21
add $3, $3, $3 # $3 = 0x2c + 0x2c
add $4, $4, $4 # $4 = 0x37 + 0x37

r[1]=22, r[2]=33, r[3]=44, and r[4]=55

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Branch predictor

• A branch predictor is a digital circuit that tries to guess or predict
which way (taken or untaken) a branch will go before this is known
definitively.

• A random predictor will achieve about a 50% hit rate because the
prediction output is 1 or 0.

• Let’s guess the accuracy. What is the accuracy of typical branch
predictors for high-performance commercial processors?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Sample program: vector add with two branches

#define VSIZE 4
void vadd(long *A, long *B, long *C){
for(i=0; i<VSIZE; i++) {
if(A[i]<0) error_routine();
C[i] += (A[i] + B[i]);

}
}

B1 BE B2 BE B2 BE B2 BE B2 B3

B3 B3 B3 B2

0 1 0 1 0 1 0 0

Executed instruction sequence

i = 0

*C = *C + (*A + *B)

return

False True

B1

BE

B3

Error check

B2

Control flow graph

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Simple branch predictor: bimodal

• Program has many branch instructions. The behavior may depend on
each branch. Use one counter for one branch instruction

• How to predict

• Select one counter using PC, then it predicts 1 if the MSB of the
register is one, otherwise predicts 0.

• How to update

• Select one counter using PC, then update the counter in the same
way as 2bit counter.

Pattern History Table (PHT)

Program
Counter

…

2n entry

Predictionn

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken2 bit

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

An innovation in branch predictors in 1993

• Using branch history

• global branch history

• local branch history

• 2-level branch predictor and Gshare

• Assume predicting the sequence 1110 1110 1110 1110 1110 …

11101110 ?

111011101 ?

1110111011 ?

11101110111 ?

111011101110 ?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Recommended Reading

• Combining Branch Predictors

• Scott McFarling, Digital Western Research Laboratory

• WRL Technical Note TN-36, 1993

• A quote:
“In this paper, we have presented two new methods for improving
branch prediction performance. First, we showed that using the bit-
wise exclusive OR of the global branch history and the branch address
to access predictor counters results in better performance for a given
counter array size.”

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Gshare (TR-DEC 1993)

• How to predict
• Using the exclusive OR of the global branch history and PC to access PHT,

then MSB of the selected counter is the prediction.

• How to update

• Shifting BHR one bit left and update LSB by branch outcome in IF stage.

• Update the used counter in the same way as 2BC in WB stage.

Program
Counter

XOR

n

n m

Pattern History Table (PHT)

…

2n entry

Prediction

Weakly
Taken (10)

Weakly
Untaken (01)

Taken

Taken

Untaken

Untaken

Taken

Untaken

Strongly
Taken (11)

Taken

Strongly
Untaken (00)

Untaken2 bit

1110111011 （shift register）

Branch History
Register (BHR)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Bi-Mode (MICRO 1997)

• A choice predictor (bimodal) is used as a meta-predictor

• How to predict

• Like Gshare, both of Taken PHT and Untaken PHT make two
predictions.

• Select one among them by the choice predictor which tracks the
global bias of a branch.

• How to update

• The used PHT is updated
in the same way as 2BC.

• Choice predictor is update
in the same way as bimodal

Untaken PHTTaken PHT

…

Prediction

Choice predictor

…

Program Counter

XOR

BHR
…

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

YAGS, Yet Another Global Scheme (MICRO 1998)

• Using two tagged PHTs

• When a PHT miss, choice PHT makes a prediction.

From YAGS paper

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

An innovation in branch predictors in 1993 (again)

• Using branch history

• global branch history

• local branch history

• 2-level branch predictor and Gshare

• Assume predicting the sequence 1110 1110 1110 1110 1110 …

11101110 ?

111011101 ?

1110111011 ?

11101110111 ?

111011101110 ?

11101110 ?

111011101 ?

1110111011 ?

11101110111 ?

111011101110 ?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Perceptron (HPCA 2001)

• How to predict

• Select one perceptron by PC

• Compute y using the equation. It predicts 1 if y>=0, predicts 0 if y<0

• How to update

• Train the weights of used perceptron when the prediction miss or |y| < T

Perceptron Model

w1 w2w0 wn

...

y

1 x1 xnx2

Table of Perceptrons (w)

Program Counter
…

Branch History (x)

Selected
Perceptron

Compute y

Prediction

y

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Branch predictors based on pattern matching

• Find the longest matching pattern (green rectangle)

• Select the proper matching length or long matching pattern (blue rectangle)

• Count the number of 0 and the number of 1 after the pattern (red rectangle),
then predict.

?

?010

The long matching pattern

0

1

0

Prediction

Global branch history Prediction 0 or 1

?

The longest matching pattern

Appearing 0 twice and 1 once, so the prediction will be 0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Partial Pattern Matching (CBP 2004)

3b

ctr
m

3b

ctr
u

8 bit

tag

hash hash

=?

3b

ctr
u

8 bit

tag

hash hash

=?

3b

ctr
u

8 bit

tag

hash hash

=?

3b

ctr
u

8 bit

tag

hash hash

=?

prediction 0/1

pc pc h[0:9] pc h[0:19] pc h[0:39] pc h[0:79]

12

10 10 10 108 8 8 8

8 8 8 8

1
1 1 1 1 1 1 1 1

1

1

1

Table 0Table 1Table 2Table 3Table 4

From CBP2004 presentation slide

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Prediction accuracy

• The accuracy of 4KB Gshare is about 93%.

• The accuracy of 4KB PPM is about 97%.

0

2

4

6

8

10

12

14

16

18

20

F
P

-1

F
P

-2

F
P

-3

F
P

-4

F
P

-5

IN
T
-1

IN
T
-2

IN
T
-3

IN
T
-4

IN
T
-5

M
M

-1

M
M

-2

M
M

-3

M
M

-4

M
M

-5

S
E
R

V
-1

S
E
R

V
-2

S
E
R

V
-3

S
E
R

V
-4

S
E
R

V
-5

A
ve

ra
ge

M
is

pr
ed

ic
ti
o
ns

 R
at

e
(%

)

Bimodal

Gshare

Bimode

PPM

8KB hardware budget

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Recommended Reading

• Prophet-Critic Hybrid Branch Prediction

• Ayose Falcon, UPC, Jared Stark, Intel, Alex Ramirez, UPC,
Konrad Lai, Intel, Mateo Valero

• ISCA-31 pp. 250-261 (2004)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

A quote from Introduction (1/2)

Conventional predictors are analogous to a taxi with just one driver.

He gets the passenger to the destination using knowledge of the
roads acquired from previous trips; i. e., using history information
stored in the predictor’s memory structures.

When he reaches an intersection, he uses this knowledge to decide
which way to turn.

The driver accesses this knowledge in the context of his current
location.

Modern branch predictors access it in the context of the current
location (the program counter) plus a history of the most recent
decisions that led to the current location.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

A quote from Introduction (2/2)

Prophet/critic hybrids are analogous to a taxi with two drivers: the
front-seat and the back-seat. The front-seat driver has the same role
as the driver in the single-driver taxi. This role is called the prophet.

The back-seat driver has the role of critic. She watches the turns the
prophet makes at intersections. She doesn’t say anything unless she
thinks he’s made a wrong turn. When she thinks he’s made a wrong turn,
she waits until he’s made a few more turns to be certain they are lost.
(Sometimes the prophet makes turns that initially look questionable, but,
after he makes a few more turns, in hindsight appear to be correct.)
Only when she’s certain does she point out the mistake.

To recover, they backtrack to the intersection where she believes the
wrong-turn was made and try a different direction.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

Prophet-Critic Hybrid Branch Prediction

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

Assignment 5

1. Design a four stage pipelined scalar processor supporting MIPS add and bne
instruction in Verilog HDL. Please download proc06.v and proc07.v from the
support page and refer it.

2. Verify the behavior of designed processor using following assembly code.

3. Submit your report in a PDF file via E-mail by the next Thursday.

• The report should include a block diagram, a source code in Verilog HDL, and
obtained waveforms of your design.

p.imem.mem[0] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.imem.mem[1] = {6'h0, 5'd5, 5'd1, 5'd5, 5'd0, 6'h20}; // L1: add $5, $5, $1

p.imem.mem[2] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.imem.mem[3] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.imem.mem[4] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.imem.mem[5] = {6'h5, 5'd4, 5'd5, 16'hfffb}; // bne $4, $5, L1

p.imem.mem[6] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.imem.mem[7] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.imem.mem[8] = {6'h0, 5'd0, 5'd0, 5'd5, 5'd0, 6'h20}; // add $5, $0, $0

p.imem.mem[9] = {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.imem.mem[10]= {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.imem.mem[11]= {6'h5, 5'd2, 5'd0, 16'hfff5}; // bne $2, $0, L1

p.imem.mem[12]= {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.imem.mem[13]= {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}; // NOP

p.regfile.r[1] = 1; p.regfile.r[2] = 22; p.regfile.r[3] = 0; p.regfile.r[4] = 4; p.regfile.r[5] = 0;

while(1){
for(int i=1; i!=4; i++){

}
}

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

Four stage pipelined processor supporting ADD, which does not adopt
data forwarding (proc06.v, Assignment 3)

+

pc
If_IR

4

pc

If stage Id stage

Id_RRS

Id_RRT

Id_RS

Id_RT
IdEx_RRS

E
x
_
R
S
L
T

Ex stage Wb stage

IfId IdEx ExWb

ExWb_RSLT

Id_RD

+

imem

r
e
g
f
i
l
e

IdEx_RRT

IfId_IR

IdEx_RD ExWb_RD

ExWb_RD

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

Four stage pipelined processor supporting ADD and BNE, which does not
adopt data forwarding (proc08.v, Assignment 5)

+

pc
If_IR

4

pc

If stage Id stage

Id_RRS

Id_RRT

Id_RS

Id_RT
IdEx_RRS

E
x
_
R
S
L
T

Ex stage Wb stage

IfId IdEx ExWb

ExWb_RSLT

Id_RD

imem

r
e
g
f
i
l
e

IdEx_RRT

I
f
I
d
_
I
R

IdEx_RD ExWb_RD

ExWb_RD

Sign extend &
Shift left 2

Id_IM

+

Ex_TKN

If_NPC Id_I32

Id_TPC

M
u

x

IfId_NPC IdEx_TPC

IdEx_TPC

Ex_TKN

+
,

!
=

Id_OP IdEx_OP

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

Exercise: how to update PHT and BHR of Gshare

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 30

